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Abstract
We utilize data from Hopkinson-bar experiments and quasi-static compression experiments to
characterize uncertainties for parameters governing the Preston-Tonks-Wallace (PTW) [1]
plastic deformation model for a variety of materials. This particular plastic deformation
model is designed to be valid over a range of input conditions, which include strain, strain
rate and temperature. However, because of variations between experimental samples, mea-
surement variation, as well as slight inadequacies in the model, no single parameter setting
gives a good match to all of the experimental data for a given material. These deficiencies
need to be taken into account when assessing the uncertainties in the model parameters.
In this paper, we use a Bayesian hierarchical model to account for the variations in the ex-
perimental data. This modeling approach results in parameter estimates for each material,
along with uncertainty estimates, which are the main focus of this paper. The results are
summarized in the table below.

Parameter Al Be DU Ta U-6Nb

θ 0.0364 0.0268 0.0465 0.0124 0.0974
(0.011) (0.00756) (0.0219) (0.00558) (0.0497)

κ 0.415 0.197 0.136 0.711 0.503
(0.137) (0.112) (0.064) (0.156) (0.113)

−log(γ) 10.3 11.2 14.7 11.5 6.32
(4.0) (5.74) (3.03) (1.77) (4.16)

y0 0.0113 0.00165 0.00534 0.00939 0.00665
(0.00323) (0.000248) (0.000766) (0.00129) (0.00351)

y∞ 0.0058 0.000938 0.00236 0.00136 0.000724
(0.000239) (0.000283) (0.000934) (0.00028) (0.000522)

s0 0.0295 0.0169 0.0123 0.0168 0.0707
(0.0118) (0.00978) (0.00327) (0.00554) (0.0228)

s∞ 0.00781 0.00337 0.00485 0.00295 0.00646
(0.000411) (0.00148) (0.00165) (0.00062) (0.000495)

Keywords: plastic deformation model, Preston-Tonks-Wallace model, uncertainty analysis,
Bayesian analysis, hierarchical model, model uncertainty, Hopkinson-bar experiments, quasi-
static-compression experiments



1 Introduction

The primary sources of data that are typically used to characterize the plastic behavior of
a metal are obtained in quasi-static and Hopkinson-bar experiments. In quasi-static tests,
a small cylinder of the material is typically squeezed at a constant, relatively slow rate
and the change in its height is measured as a function of the load on the cylinder. These
measurements are easily converted to stress and strain values. In Hopkinson-bar experiments,
an elastic wave is transmitted through a thin cylinder of the material and its change in
dimensions measured. Although these measurements require the use of a simulation code for
precise interpretation, they are straightforwardly converted to a stress-strain curve at nearly
constant strain rate. The strain rates attained in Hopkinson-bar experiments are around 10 3

per second, whereas in quasi-static tests they are typically about one per second or less. We
use data from these experiments to estimate uncertainties for PTW model parameters that
are appropriate for dynamic simulations. The analysis of data collected from these basic
experiments is a fairly straightforward nonlinear data-fitting problem.

In this report we describe results from fitting the Preston-Tonks-Wallace (PTW) model
[1] to five materials: aluminum (Al), beryllium (Be), depleted uranium (DU), tantalum (Ta),
and uranium 6 wt% niobium (U-6Nb). While the PTW model has been fit to some of these
materials before [2], our contribution is to impose a Bayesian hierarchical model on the data
and to estimate the uncertainties in parameter estimates from the Bayesian analysis. The
hierarchical model is fit via Markov chain Monte Carlo (MCMC).

In Section 2 we describe the PTW model in some detail. Section 3 discusses the rationale
for the hierarchical model. Section 4 describes the hierarchical model as it applies to our data.
Section 5 describes the analysis of the data and results for each material type. Section 6
concludes with a discussion. The Appendix provides a more detailed presentation of the
MCMC algorithm used to fit the hierarchical model.

2 Material Characterization Model

The PTW model describes the plastic deformation of metals in terms of the dependence
of plastic stress on plastic strain over a wide range of strain rates and temperatures. The
following summary of the PTW model is taken directly from [3].

In the PTW model, the plastic stress in a material is a function of the amount of strain
ψ it has undergone, the strain rate ψ̇, the material temperature T , and its density ρ. It is
assumed that the plastic stress is independent of the history of the material. Furthermore,
PTW ignores non-isotropic plasticity and material texture effects. Material fracture or failure
is not incorporated in PTW.

The PTW model is written in terms of three scaled dimensionless variables. The scaled
stress variable is τ̂ = τ/G(ρ, T ), where τ is the flow stress, which is one-half the usual von
Mises equivalent deviatoric stress σ (i.e., τ = σ/2) and G(ρ, T ) is the shear modulus, which
is a function of the material density ρ and temperature T . The shear modulus is taken to
be G(ρ, T ) = G0(ρ) (1 − α T̂ ), where G0(ρ) is the shear modulus at T = 0 and α > 0 is a
material parameter. The material temperature is scaled to its melt temperature Tm, which
is a function of the material density ρ, T̂ = T/Tm(ρ). For plastic flow, clearly T̂ < 1. The
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equivalent plastic strain is denoted by ψ. The strain rate ψ̇ is scaled to an appropriate rate

ξ̇(ρ, T ) =
1

2

(
4πρ

3M

) 1
3
(
G

ρ

) 1
2

,

whereM is the atomic mass of the material and ξ̇ is the reciprocal of the time for a transverse
sound wave to cross an atom (i.e., atomic vibration frequency). The strain rate always

appears in the PTW formulas in terms of the ratio ψ̇/ξ̇.
For any fixed values of strain rate and temperature, the scaled stress τ̂ ranges between

the lower and upper limits given by the yield stress τ̂y and the saturation value τ̂s. The
functional form for τ̂ depends on the strain ψ as follows

τ̂ = τ̂s +
1

p
(s0 − τ̂y) ln

{
1− [1− exp(−p r)] exp

[
−

p θ ψ

(s0 − τ̂y) [exp(p r)− 1]

]}
,

where p and θ are material-specific parameters that appear in the modified work hardening
law (see [1]) and r = (τ̂s − τ̂y)/(s0 − τ̂y). The parameter s0 is explained below.

At low strain rates as a function of temperature, the plastic deformation process is con-
trolled by thermal activation. The values for τ̂y and τ̂s are given by

τ̂y = y0 − (y0 − y∞) erf

[
κ T̂ ln

(
γ ξ̇

ψ̇

)]
,

τ̂s = s0 − (s0 − s∞) erf

[
κ T̂ ln

(
γ ξ̇

ψ̇

)]
,

where κ and γ are dimensionless material-related parameters. The error function, defined as
erf(x) = 2√

π

∫ x
0
exp (−t2) dt, has the limiting values erf(0) = 0 and erf(∞) = 1. The parame-

ters y0 and y∞ are the values that τ̂y takes at zero temperature and very high temperatures,
respectively; s0 and s∞ have analogous interpretations for τ̂s. Table 1 gives constraints on
the parameters of the PTW model.

Parameter Constraints

θ > 0

κ > 0

γ ≥ ψ̇/ξ̇

y0 > y∞ > 0

s0 > s∞ > 0

s0 ≥ y0

s∞ ≥ y∞

Table 1: PTW parameter constraints.

The PTW model is designed to extend the range of normal plastic-flow models to very
high strain rates, above 10 8 s−1, in which regime it relies on Wallace’s theory of over-driven
shocks in metals [4]. This extension introduces three additional material-specific parameters:
β, y1, and y2. Because quasi-static and Hopkinson-bar experiments, which are the focus of
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the present study, do not reach these very high strain rates, the formulas that apply in that
regime are not given. Suffice it to say that the PTW parameters β, y1, and y2 have no effect
in the lower strain rate regime.

Table 2 gives the mean and standard deviation of the PTW parameters from our hierar-
chical analysis for each material. The posterior distribution that these summaries are based
on accounts for the entire range of uncertainty in the PTW parameters across the spec-
trum of data sets analyzed. It is given explicitly in equation (6). The entries in the table
were computed from the posterior samples by using every other realization from 100,001 to
600,000.

Parameter Al Be DU Ta U-6Nb

θ 0.0364 0.0268 0.0465 0.0124 0.0974

(0.011) (0.00756) (0.0219) (0.00558) (0.0497)

κ 0.415 0.197 0.136 0.711 0.503

(0.137) (0.112) (0.064) (0.156) (0.113)

−log(γ) 10.3 11.2 14.7 11.5 6.32

(4.0) (5.74) (3.03) (1.77) (4.16)

y0 0.0113 0.00165 0.00534 0.00939 0.00665

(0.00323) (0.000248) (0.000766) (0.00129) (0.00351)

y∞ 0.0058 0.000938 0.00236 0.00136 0.000724

(0.000239) (0.000283) (0.000934) (0.00028) (0.000522)

s0 0.0295 0.0169 0.0123 0.0168 0.0707

(0.0118) (0.00978) (0.00327) (0.00554) (0.0228)

s∞ 0.00781 0.00337 0.00485 0.00295 0.00646

(0.000411) (0.00148) (0.00165) (0.00062) (0.000495)

Table 2: Posterior mean (standard deviation) from hierarchical model analysis.
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3 Why Hierarchical Modeling?

The goal of this effort is not to come up with improved “best estimates” of the PTW
parameters for various materials, but rather to use the available experimental data to specify
uncertainties for the parameters that are appropriate for dynamic simulations. For example,
when simulating a Taylor cylinder test, the material goes through a range of temperatures
and strain rates that may be orders of magnitude different from those in Hopkinson-bar
experiments. We therefore would like to determine ranges for the PTW parameters that
are consistent with the experiments and are wide enough to cover conceivable settings that
are appropriate when temperature, strain, and strain rate may vary substantially over the
course of the experiment.

In the left-hand plot of Figure 1 we show data from 9 Hopkinson-bar experiments using
the material DU along with mean and uncertainty curves. The analysis producing these
results assumes a common value for the PTW parameters across all 9 experiments. We refer
to this model fitting approach as the “common model analysis”—there is one set of PTW
parameters that applies to all experimental conditions. If one looks at the uncertainty from
the common model analysis it is clear that the estimated uncertainty in the PTW parameters
is not sufficient to cover the observed behavior. Using parameter ranges from this analysis
in a dynamic simulation could give misleading results, particularly if the simulation takes
the material through states that are not well represented in the data.

The right-hand plot of Figure 1 shows the same data as in the left-hand plot along with
mean and uncertainty curves derived from fitting a hierarchical model to the 9 data sets.
The hierarchical model allows a separate set of parameters for each experimental sample, it
shrinks the parameter estimates together, if possible, and then uses the variation between
these estimates to derive parameter uncertainties. The uncertainty curves in Figure 1 are 90%
point-wise bounds. This means that for a fixed temperature and strain rate and for a given
value of strain, there is a 90% chance that the true stress falls between the corresponding
points on the upper and lower uncertainty curves if the assumptions of the model hold.
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Figure 1: Fitted values and uncertainties for each of the 9 DU Hopkinson-bar experiments. The left-hand
plot shows the posterior mean and point-wise 90% uncertainty bounds under the common model. The
right-hand plot shows the posterior mean and point-wise 90% uncertainty bounds under the hierarchical
model.
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In what follows we sometimes refer to data sets that are used to estimate model param-
eters as “training data” or “training sets.” Data sets that are not used to estimate model
parameters are sometimes referred to as “hold-out sets.” To see how the uncertainties from
the hierarchical model differ from those of the common model, consider Figure 2. Here pre-
dictions were made for a sequence of 18 identical, or replicate, Hopkinson-bar experiments
in which 18 samples of DU were subjected to deformation at a temperature of T = 296K
and a strain rate of ψ̇ = 0.001/s. As described in Section 5.3, the common and hierarchical
models were each fit to the K = 9 DU training sets shown in Figure 1. Based on the fitted
model parameters the 18 replicate hold-out sets were then predicted.
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Figure 2: Fitted values and uncertainties for DU Hopkinson-bar experiments at temperature T = 296K and
strain rate ψ̇ = 0.001/s. The thin blue lines show experimental data from 18 different hold-out samples. The
left-hand plot shows the posterior mean and point-wise 90% uncertainty bounds under the common model.
The right-hand plot shows each of the K = 9 posterior mean and point-wise 90% uncertainty bounds under
the hierarchical model. The break in lines at the strain value of 0.3 is due to one experiment being stopped
and then restarted.

The uncertainty resulting from the common model analysis is shown in the left-hand plot
of Figure 2. This uncertainty is clearly too narrow to account for the data. The right-hand
plot provides prediction bounds obtained from the hierarchical model fit. The hierarchical
model provides separate parameter estimates for each of the 9 DU training sets. Predictions
are made for each of the 9 sets of parameter estimates under the temperature and strain
rate conditions of the replicate experiments. Thus, in the right-hand plot, there are 9 sets of
prediction bounds and mean curves. The overall prediction uncertainty from the hierarchical
model can be combined into a single uncertainty as shown in Figure 3.

This uncertainty is generally too conservative for predicting the result of a single Hopkinson-
bar experiment. However, our goal is to determine a range of PTW parameter settings that
is appropriate over a wide range of temperatures, strains, and strain rates that may be
required for a dynamic simulation. Hence this wider uncertainty, resulting from the hier-
archical model analysis, is necessary to account for possible material behavior over a wide
range of input conditions.

If it is known in advance that a particular process of interest will primarily operate at
a particular temperature, strain, and strain rate regime, then experimental data near that
particular regime has the potential to reduce uncertainties. If such data is not available,
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Figure 3: Estimated prediction uncertainties under the hierarchical modeling framework. The hierarchical
model uses individual parameter uncertainties to determine combined uncertainty on the PTW parameters,
which results in wider prediction intervals. The top and bottom red curves are point-wise 90% uncertainty
bands and the middle red curve is the mean.

then one is forced to use the available data to predict behavior in untested regimes. For
the Taylor cylinder simulation, one would like the estimated parameter uncertainties to be
appropriate for much higher strain rates than used in the Hopkinson-bar experiments. A
pressing question is whether the estimated ranges are valid for such extrapolations in strain
rate. To see what effect mild extrapolation has on uncertainty estimates we can estimate
the PTW model parameters by training on data from low strain rate experiments and then
predicting higher strain rate hold-out experiments. Figure 4 shows the results from such an
investigation and the results demonstrate there is little additional uncertainty due to this
extrapolation. This suggests these estimated ranges are sufficiently broad for extrapolating
to high strain rates.

Results from these material strength parameter uncertainty studies have been utilized
in several applications involving extrapolation to higher strain rate regimes. For example,
flyer plate experiments are conducted to explore the behavior of materials subjected to strain
rates several orders of magnitude higher than can be achieved by Hopkinson-bar experiments.
Flyer plate experiments involve forcing a plane shock wave through stationary test samples
of material and measuring the free surface velocity at the back side of the target as a
function of time. This experiment can be modeled as a function of parameters governing
the equation of state (EOS), strength and damage properties of the target material. Interest
lies in calibrating these parameters to experimental data (e.g. [5]). Uncertainties in the
material strength parameters derived from the analysis proposed in this paper provide prior
information for this calibration.

Figure 5 shows flyer plate velocity profiles calculated at 500 samples drawn from the final
distribution of the PTW parameters for both the common and hierarchical models (EOS
and damage parameters were set at nominal values). Note how little uncertainty is present
in the traces based on the common model relative to the hierarchical model. This result
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Figure 4: Estimated point-wise 90% prediction uncertainties under the hierarchical modeling framework
training on only low strain rate data (left-hand plot) and on the entire data (right-hand plot). The similar
uncertainties in the two sets of predictions suggest strain rate extrapolations add little additional uncertainty.
In both plots we are predicting the high strain rate data. The prediction bands shown correspond to high
strain rate data.

stresses the importance of carefully deriving parameter uncertainties that are designed to
apply across a wide range of experimental conditions (such as strain rate and temperature).
It will often be the case that assuming a common model for parameters when not required by
physical considerations will yield unrealistically small uncertainties, particularly for follow-
on analyses involving extrapolations to regimes not represented by the training data. The
analysis proposed in this paper maintains the common model as a special case, in the event
it is actually the most appropriate representation of the physical process generating the
training data.
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Figure 5: Flyer plate traces corresponding to the final distribution of PTW parameters from the hierarchical
model (blue) and common model (red). Each set contains 500 velocity curves. There is very little variability
in the common model traces relative to the hierarchical model traces.
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4 Bayesian Models and Posterior Distributions

In this section we discuss Bayesian hierarchical models as they apply to modeling data from
Hopkinson-bar and quasi-static experiments. We also discuss a special case of a hierarchical
model that we refer to as the “common model”. Details about the algorithm we used can
be found in the appendix. For more details on Bayesian data analysis and in particular
hierarchical models see ([6], [7]).

For each material type a measurement error model for the data can be written as

yij = g(xij; tij,ηi) + εij, i = 1, . . . , K, j = 1, . . . , ni , (1)

where yij is the jth observed stress from the ith Hopkinson-bar or quasi-static experiment
and g(xij; tij,ηi) denotes the PTW model output. The input parameters ηi are unknown
and must be estimated. The xij are known calculated strains and tij represents the known
temperature, strain rate and other fixed parameters corresponding to the data yij. In what
follows we omit xij and tij and write gi(ηi) to denote the PTW model output for data
set i. The εijs represent random measurement errors and we assume they are distributed
as independent normal random variables with mean 0 and variance ξij. For simplifying
formulas we define yi = (yi1, . . . , yini

)T ; y = vec[y1; · · · ;yK ], η = vec[η1; · · · ;ηK ], and
ξ = vec[ ξ1; · · · ; ξK ], where the vec operator stacks the column vectors into a single column
vector.

Model (1) is a non-linear regression model and the unknown ηi parameters can be esti-
mated by independently fitting K regression models. However, estimating the ηis this way
ignores information the experiments may share about parameter values. The hierarchical
model we propose allows information from each experiment to be linked in the process of
estimating the ηis.

One way to combine information from the K experiments is to assume that η1 = . . . =
ηK = η0 and to fit the model

yij = gi(η0) + εij, i = 1, . . . , K, j = 1, . . . , ni (2)

to the observed data. Previous modeling of Hopkinson-bar and quasi-static experiments took
this approach, see ([2], [8]). This model is identical to model (1) except that the unknown
parameters η0 are the same for each experiment. We refer to model (2) as the “common
model.” An optimization technique, such as non-linear least squares, is typically used to
estimate the unknown parameters η0. Uncertainty in the parameter estimates is estimated
by appealing to asymptotic approximations (e.g. [9]).

An alternative method for estimating parameters and uncertainties in model (2) is to use a
Bayesian modeling approach. A Bayesian treatment of model (2) assumes that the unknown
parameters (η0 and ξ) are random variables and uncertainty about these parameters is
described by a prior probability distribution, which we write p(η0, ξ). Conditional on η0

and ξ the data have some probability of being observed and we denote this by p(y |η0, ξ).
Viewed as a function of the parameters (η0, ξ), this quantity is referred to as the (data)
likelihood function.

The key quantity in a Bayesian analysis of model (2) is the posterior distribution of the
unknown parameters, which is

p(η0, ξ |y) =
p(y |η0, ξ) p(η0, ξ)

p(y)
∝ p(y |η0, ξ) p(η0, ξ) , (3)
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where p(y) =
∫
p(y |η0, ξ) p(η0, ξ) dη0 dξ is the marginal distribution of the data which does

not depend upon η0 or ξ. The posterior distribution is proportional to the likelihood function
times the prior distribution. The posterior distribution of η0, for example, is obtained by
integrating ξ out of the left-hand side of (3). From the posterior distribution we can derive
interval and point estimates for the unknown parameters and for functions of the parameters.

In the Bayesian framework uncertainty about future observables is described by the pos-
terior predictive distribution. For a future stress value, say ỹ, the posterior predictive dis-
tribution is

p(ỹ |y) =

∫
p(ỹ,θ |y) dθ =

∫
p(ỹ |θ,y) p(θ |y) dθ =

∫
p(ỹ |θ) p(θ |y) dθ

where for ease of notation we let θ = (η0, ξ). The last line follows because conditional on
θ, ỹ and y are independent. Any quantity of interest, e.g. prediction intervals, about future
observables can be obtained from p(ỹ |y).

To implement a Bayesian analysis of model (2) we need to specify a likelihood and a prior
distribution. In our work below we assume that ξ1 = · · · = ξK = ξ0 and that η0 and ξ0

are independent. The parameters in the PTW model are constrained to lie in some set C
(c.f. Table 1) and we incorporate these constraints into the prior distribution for η0. For
the common model the likelihood and prior, with constraints, are

p(yi |η0, ξ0 ) ∼ N ( gi(η0) ,Σi(ξ0) ), i = 1, . . . , K

p(η0, ξ0) ∝ N ( b0 ,V
−1
0 ) I(η0 ∈ C) p(ξ0) .

This notation indicates that conditional on η0 and ξ0, the yis have independent normal
distributions with mean vector gi(η0) and covariance matrix Σi(ξ0). The prior distribution
for η0 is a normal distribution with known mean vector b0 and known covariance matrix V −1

0 .
To account for the constraints on η0 the normal distribution is multiplied by the indicator
function I(η0 ∈ C). The function I(η0 ∈ C) takes the value 1 if η0 ∈ C and 0 otherwise.
In the applications of this paper, we take ξ0 = λ and Σi(ξ0) = (σ2

i /λ) Ini
, where σ2

i is the
measurement error for the i-th experimental data set and Ini

is the ni × ni identity matrix.
The prior distribution for λ is gamma with known shape parameter a and rate parameter
b. Because the PTW model is non-linear, we cannot derive an analytical expression for the
posterior distribution of η0 and ξ0 . Therefore, we use Markov-Chain Monte Carlo (MCMC)
techniques to obtain samples from the joint posterior distribution, p(η0, λ|y), see [6].

In our initial modeling effort, forcing the ηis to be equal and fitting the common model,
led to results that appeared inadequate. This led us to consider fitting a hierarchical model.
The hierarchical model we propose allows each data set to be fit with a possibly different ηi

term while still controlling the extent to which the ηis are allowed to differ from each other.
The hierarchical model, with constraints, is:

p(yi |ηi, ξi ) ∼ N ( gi(ηi) ,Σi(ξi) ), i = 1, . . . , K

p(ηi |η0,V η ) ∝ N (η0 ,V
−1
η

) I(ηi ∈ C)

p(η0 ) ∝ N ( b0 ,V
−1
0 ) I(η0 ∈ C)

p(V η ) ∼ W ( (νΩ)−1, ν ) . (4)

This notation indicates that conditional on the random variables ηi and ξi, the yis have
independent normal distributions with mean vectors gi(ηi) and covariance matrices Σi(ξi).
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Similarly, conditional on η0 and V η, the ηis have independent normal distributions with
mean vector η0 and covariance matrix V −1

η
, subject to the constraints ηi ∈ C, i = 1, . . . , K.

The extent to which the ηis differ from each other will depend on the structure of the
covariance matrix V −1

η
. It is frequently more convenient to work with precision matrices

instead of covariance matrices. A precision matrix is simply the inverse of a covariance
matrix; for example, the precision matrix for ηi is V η.

The prior distribution for η0 is normal with known mean vector b0 and known covariance
matrix V −1

0 , subject to the constraint η0 ∈ C. The prior distribution for V η is the Wishart
distribution with positive definite scale matrix Ω and ν degrees of freedom. The quantities
b0, V 0, Ω and ν are all specified and discussed in more detail in the appendix. In the
discussion that follows we will not explicitly write down the constraint conditions but the
reader should keep in mind that the support of all conditional distributions involving the η is
and η0 depend on C. The prior distributions specified in lines 2–4 of (4) are chosen mainly for
mathematical convenience in that they facilitate a Gibbs sampling MCMC implementation
as described below and in the appendix. There is flexibility to implement a wide variety of
prior beliefs through proper choice of b0, V 0, Ω and ν. Closely related model specifications
have been examined in the statistical literature (e.g. [7] and the references therein).

The posterior distribution of all the parameters given the observed data is,

p(η, ξ,η0,V η |y ) ∝ p(y |η, ξ ) p(η |η0,V η ) p( ξ ) p(η0 ) p(V η ).

This formulation assumes that η0 and V η are independent and that ξ is independent of
η, η0, and V η. Because this posterior distribution is not analytically tractable we use
the Gibbs sampler ([10]) to generate samples from this distribution. With samples from
the posterior distribution we can determine interval and point estimates for quantities of
interest. The Gibbs sampler requires the full conditional distribution for each parameter.
The full conditionals are:

p(η |y, ξ,η0,V η ) ∝ p(y |η, ξ ) p(η |η0,V η )

p( ξ |y,η,η0,V η ) ∝ p(y |η, ξ ) p( ξ )

p(η0 |y,η, ξ,V η ) ∝ p(η |η0,V η ) p(η0 )

p(V η |y,η, ξ,η0 ) ∝ p(η |η0,V η ) p(V η ). (5)

Explicit expressions for these components are derived in the appendix. The Gibbs algo-
rithm provides samples from the joint posterior distribution that are used for uncertainty
quantification.

Inference for individual ηi parameters is based on the posterior distribution p(η |y).
This distribution conveys the uncertainty in the parameter estimates associated with the K
experiments used to fit the hierarchical model.

Let ηK+1 represent the PTW model parameters corresponding to experimental conditions
covering the strain, strain rate, and temperature range seen in the data used to estimate the
hierarchical model. In general, there will be more uncertainty in the estimate of ηK+1 than
in any of the individual ηis. Inferences about ηK+1 are based on the posterior distribution
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p(ηK+1 |y ), which is

p(ηK+1 |y) =

∫
p(ηK+1 |η0,V η) p(η0,V η |y) dη0 dV η

≈
1

N

N∑

j=1

p(ηK+1 |η0,j ,V η,j) . (6)

The Gibbs algorithm provides realizations η0,j and V η,j from p(η0,V η |y) and the integral
is approximated with a sample average over N MCMC realizations.

Inference about η0 is made through the posterior distribution p(η0 |y ), which is

p(η0 |y) =

∫
p(η0 |y,η,V η) p(η,V η |y) dη dV η

≈
1

N

N∑

j=1

p(η0 |y,ηj,V η,j) (7)

where ηj and V η,j are samples from p(η,V η |y). In the appendix we show that p(η0 |y,η,V η)
is equal to the full conditional distribution p(η0 |y,η,V η, ξ), facilitating computation of (7).

Posterior predictive samples of PTW model output are generated by evaluating the PTW
model at specified strains x for each of N posterior samples ηP

k . Specified quantiles of these
curves at strain value xj are computed from the N realizations { g(xj,η

P
1 ), . . . , g(xj,η

P
N) }.

For example, the curves in the right-hand panels of Figures 1 and 2 were generated for data
set i by setting ηP

k = ηi,k, where ηi,k is the kth posterior sample of ηi, the PTW model
parameters corresponding to data set i. The curves in Figure 3 and in both panels of Figure 4
are derived from setting ηP

k = ηK+1,k, where ηK+1,k is the kth posterior sample generated
according to (6).

The hierarchical model of equation (4) can be reduced to the common parameter model (2)
by taking ξ1 = · · · = ξK = ξ0 and by letting Ω → 0 and ν → ∞ in equation (4). These
limits in Ω and ν result in precision matrices V η that diverge to infinity, or covariance
matrices that converge to the zero matrix, so that the ηis are degenerate random variables
that equal their mean value of η0. This suggests that the common model is adequate if the
posterior distributions for ηK+1 and η0 are nearly the same.
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5 Analysis of Material Characterization Experiments

We now outline the analysis of the data from the material characterization experiments.
Results from the following materials are presented in this section: aluminum (Al), beryllium
(Be), depleted uranium (DU), tantalum (Ta), and uranium 6 wt% niobium (U-6Nb).

Basic stress-strain data at moderate strain rates (about 103 s−1) are typically obtained in
a Hopkinson-bar experiment in which an elastic wave is passed through a thin cylinder of
the material under investigation. Strain gauges mounted on the support cylinders measure
strain as a function of time. From these measurements, the stress-strain behavior of the
material is inferred. The data from a Hopkinson-bar experiment on tantalum done at room
temperature (298K) and a strain rate of 1300/s are shown in Figure 6.
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Figure 6: Plot of data obtained from Hopkinson-bar experiment done on tantalum at room temperature and
a strain rate of 1300 s−1.

This figure shows a well-known feature of Hopkinson-bar experiments, the presence of
wiggles in the measured stress as a function of strain, which are particularly evident at
strains of 0.02 and below but also observable at higher strains. These oscillations, caused
by elastic wave dispersion within the sample and apparatus, tend to reduce the accuracy
of Hopkinson-bar data. The data below strains of 0.017 seem unreliable because of their
higher amplitude of oscillations and the fact that the stress rises as the strain approaches
zero instead of falling. Likewise, the data above a strain of 0.1 seem to be corrupted by
an artifact. In the present analysis, the data in these two end regions are excluded. To
make use of the data between 0.017 and 0.1, their uncertainties need to be quantitatively
characterized.

For the materials beryllium and tantalum, we refer the reader to [8] for a explanation
of how the data was thinned before our analysis. For each data set of the remaining ma-
terials, we sub-sampled observations at constant frequency throughout the data set and
fit a quadratic function to the thinned data, computed the residuals and then examined
the autocorrelation of the residuals. The number of points to thin was chosen so that the
autocorrelation in the residuals was nearly 0.
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Tables 3, 4, and 5 give a brief description of the PTW parameters to estimate, the fixed
PTW parameters, and physical constants, respectively. In each subsection we provide the
values used in model fitting.

Parameter Description

θ Initial strain hardening rate

κ Constant relates to temperature dependence

−log(γ) Constant relates to strain dependence

y0 Maximum yield stress (at 0K)

y∞ Minimum yield stress (melting)

s0 Maximum saturation stress (at 0K)

s∞ Minimum saturation stress (melting)

Table 3: PTW parameters to estimate. All parameters are dimensionless.

Parameter Description

p Constant modifying Voce hardening law

y1 Constant in high strain rate regime

y2 Constant in high strain rate regime

β Constant in high strain rate regime

Table 4: Fixed PTW parameters. All parameters are dimensionless.

Parameter Description Units

Tm Melting temperature K

G0 Shear modulus (at 0K) kilobars

α Constant in G(T ) equation dimensionless

Cv Heat Capacity J/Kg/K

A Atomic weight dalton

ρ Density g/cm
3

Table 5: Empirically determined constants or physical constants.
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5.1 Aluminum

In this section we discuss fitting the PTW model to data from Hopkinson-bar experiments
on aluminum. There are four aluminum data sets. Table 6 lists the data sets used along
with some of the experimental conditions for each data set. In the table, ni is the number
of observations after thinning and σi is the root mean square error (RMSE) from fitting a
quadratic model to the thinned data.

Data Set ni Temp (K) Strain Rate (s−1) σi

A6.077.1e-3.p.txt 16 77 0.001 10.0

A6.298.2500.p.txt 19 298 2500 6.0

A6.298.1e-1.p.txt 13 298 0.1 6.0

A6.298.1e-3.p.txt 12 298 0.001 4.0

Table 6: Al: Experimental conditions.

Table 7 gives the values we used for the fixed parameters in the PTW model. These
values are from [2].

Parameter Nominal Value Parameter Nominal Value

p 3.0 G0 299.2

y1 0.0142 α 0.475

y2 0.40 Cv 898.7

β 0.23 A 27.0836

Tm 932 ρ 2.710

Table 7: Al: Fixed PTW parameters.

Table 8 gives the values we used for b0 and V 0. The values of b0 are from [2]. This
table also gives the prior values we used for Ω. The appendix describes the method used to
determine these values.

Parameter b0 V 0,ii Ωii

θ 0.0184 1069 1.713× 10−5

κ 0.2 14 0.002736

−log(γ) 9.903 0.10055 2.658

y0 0.00898 52488 3.222× 10−6

y∞ 0.00596 197531 1.587× 10−8

s0 0.0142 4221 5.172× 10−5

s∞ 0.00856 84061 4.347× 10−8

Table 8: Al: Values for η0 and V η prior distributions.

Table 9 shows the posterior mean and standard deviation for each parameter and each
data set. These were calculated from the MCMC output by taking every other observation
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after discarding the first 100,000 samples. Therefore, these estimates are based on 250,000
samples.

Data Set θ κ −log(γ) y0 y∞ s0 s∞

A6.077.1e-3.p.txt 0.0529 0.494 8.79 0.00942 0.00566 0.032 0.00791
77K 0.001/s (0.00676) (0.124) (4.61) (0.00304) (0.000237) (0.0125) (0.00055)

A6.298.2500.p.txt 0.0254 0.362 11.6 0.0129 0.0059 0.0285 0.00777
298K 2500/s (0.00391) (0.124) (3.65) (0.00281) (0.000236) (0.00994) (0.000391)

A6.298.1e-1.p.txt 0.0364 0.417 10.3 0.0112 0.00581 0.028 0.00785

298K 0.1/s (0.00461) (0.119) (3.66) (0.00293) (7.84× 10−5) (0.011) (0.000121)

A6.298.1e-3.p.txt 0.0331 0.41 10.5 0.0114 0.0058 0.0275 0.0077

298K 0.001/s (0.00411) (0.119) (3.66) (0.00302) (6.37× 10−5) (0.0113) (7.85× 10−5)

Table 9: Al: Posterior mean (standard deviation).

Figure 7 is a plot of the thinned aluminum data along with ± 1σ error bars.
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Figure 7: Al: Sampled data with ±1σ error bars.

Figure 8 shows point-wise posterior prediction intervals derived from fitting the common
model and the hierarchical model. In both plots these intervals correspond to the 0.05, 0.50,
and 0.95 quantiles of the MCMC output. The common and hierarchical models provide
comparable fits to the individual data sets.

Figure 9 shows approximate 95% posterior probability regions. The blue ellipses corre-
spond to the individual data sets. The broken black ellipses correspond to η0 and the solid
black ellipses correspond to ηK+1. The cyan ellipses are derived from fitting the common
model to all the data. Fitting the common model gives a somewhat optimistic picture of our
knowledge about the parameters. Based on these plots, fitting a single nonlinear regression
model to all the experimental conditions under-represents the amount of uncertainty present
in the PTW parameters. For the plots in the lower triangle the points labeled with a “c”
are point estimates given in [2]. Note that this plot was constructed by assuming bivariate
normality for the marginal posterior distributions, not accounting for constraints on the in-
dividual parameters. Therefore, this plot should be viewed merely as a heuristic for assessing
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bivariate relationships among the parameter distributions represented.
Figure 10 shows 0.05, 0.50, and 0.95 point-wise posterior prediction intervals based on

ηK+1 and η0 from the hierarchical model. This plot shows how additional posterior un-
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Figure 8: Al: Point-wise posterior prediction intervals from the common model fit, left-hand plot, and the
hierarchical model fit, right-hand plot. The curves are 0.05, 0.50, and 0.95 point-wise quantiles from the
MCMC output. The curves in the right-hand plot are based on the ηis.
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Figure 9: Al: Approximate 95% posterior probability regions. The blue ellipses in the upper right correspond
to the ηis, one for each data set. The broken black ellipses and the solid black ellipses correspond to η0 and
ηK+1, respectively, from the hierarchical model fit. The cyan ellipses in the lower left correspond to η0 from
the common model fit.
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certainty in ηK+1 relative to η0 translates into increased posterior prediction uncertainty.
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Figure 10: Al: Posterior prediction intervals from the hierarchical model. The left-hand plot is based on
ηK+1 and the right-hand plot is based on η0. The curves are 0.05, 0.50, and 0.95 point-wise quantiles from
the MCMC output.
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5.2 Beryllium

In this section we discuss fitting the PTWmodel to data from Hopkinson-bar and quasi-static
experiments on beryllium. There are twelve beryllium data sets.

Table 10 lists the data sets used along with some of the experimental conditions for each
data set. In the table, ni is the number of observations after thinning and σi is the root
mean square error (RMSE) obtained from applying the fitting method of [8] to the thinned
data.

Data Set ni Temp (K) Strain Rate (s−1) σi

BeHP-196303.txt 6 77 3000 11.0

Bed-50353.txt 9 223 3500 12.0

Bef0203500.x.txt 23 298 3500 6.4

Bed20373.txt 11 473 3700 8.9

Bed30393.txt 11 573 3900 7.0

Bef300c1.txt 12 573 1.0 2.3

Bef200c1e-3.txt 12 473 0.001 2.1

BeMon020203.txt 3 293 2000 10.0

BeMon020952.txt 4 293 950 10.0

BeMon020200.txt 5 293 2.0 5.0

BeMon02020-2.txt 6 293 0.02 5.0

BeMon02020-4.txt 8 293 0.0001 5.0

Table 10: Beryllium data sets.

Table 11 lists the values we used for the fixed PTW parameters.

Parameter Nominal Value Parameter Nominal Value

p 2.0 G0 1524

y1 0.0077 α 0.32

y2 0.40 Cv 1820

β 0.25 A 9.013

Tm 1560 ρ 1.85

Table 11: Be: Fixed PTW parameters.

Table 12 gives the values we used for b0 and V 0. This table also gives the prior values
we used for Ω. The appendix describes the method used to determine these values.

Table 13 gives posterior means and standard deviations for each parameter and data
set. These were calculated from the MCMC output by taking every other realization after
discarding the first 100,000 samples. Therefore, these estimates are based on 250,000 samples.

Figure 11 is a plot of the data used in fitting along with ± 1σ error bars.
Figure 12 shows point-wise posterior prediction intervals derived from fitting the common

model and the hierarchical model. In both plots these intervals correspond to the 0.05, 0.50,
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Parameter b0 V 0,ii Ωii

θ 0.0394 0.0 4.341× 10−6

κ 0.145 0.0 0.000426

−log(γ) 13.8155 0.0 2.6461

y0 0.0018 0.0 1.201× 10−8

y∞ 0.0004 0.0 1.846× 10−8

s0 0.0077 0.0 4.014× 10−6

s∞ 0.0006 0.0 3.44× 10−7

Table 12: Be: Values for η0 and V η prior distributions.

Data Set θ κ −log(γ) y0 y∞ s0 s∞

BeHP-196303.txt 0.0357 0.218 9.33 0.00172 0.00103 0.0231 0.00396
77K 3000/s (0.00346) (0.117) (6.09) (0.000127) (0.000315) (0.0099) (0.00157)

Bed-50353.txt 0.0309 0.203 10.1 0.00157 0.000943 0.0224 0.00378
223K 3500/s (0.00266) (0.112) (5.27) (0.000168) (0.000266) (0.00752) (0.00157)

Bef0203500.x.txt 0.0259 0.164 12.0 0.00144 0.000893 0.0303 0.00408
298K 3500/s (0.00101) (0.12) (5.83) (0.000169) (0.000286) (0.00737) (0.00223)

Bed20373.txt 0.0255 0.196 11.3 0.00162 0.000922 0.0156 0.00322
473K 3700/s (0.00218) (0.0996) (4.28) (0.000208) (0.000226) (0.00631) (0.00108)

Bed30393.txt 0.0207 0.171 13.4 0.00166 0.000973 0.015 0.00315
573K 3900/s (0.00206) (0.106) (4.52) (0.000191) (0.00028) (0.00533) (0.00123)

Bef300c1.txt 0.0154 0.18 13.7 0.00164 0.000825 0.00259 0.00202
573K 1.0/s (0.00169) (0.11) (6.28) (0.000327) (0.000198) (0.000579) (0.000284)

Bef200c1e-3.txt 0.0132 0.172 14.2 0.00162 0.000771 0.00221 0.00192
473K 0.001/s (0.00149) (0.117) (6.43) (0.000349) (0.000216) (0.000386) (0.000188)

BeMon020203.txt 0.0296 0.199 10.8 0.00164 0.000978 0.0208 0.00365
293K 2000/s (0.00275) (0.11) (5.12) (0.000177) (0.000264) (0.00784) (0.00141)

BeMon020952.txt 0.0275 0.195 11.5 0.00169 0.000991 0.0167 0.00341
293K 950/s (0.00247) (0.105) (4.78) (0.000172) (0.000271) (0.0058) (0.0012)

BeMon020200.txt 0.0356 0.247 8.77 0.00174 0.00103 0.0138 0.00295
293K 2.0/s (0.00401) (0.104) (5.84) (0.000259) (0.000242) (0.00955) (0.000831)

BeMon02020-2.txt 0.0244 0.19 12.1 0.00169 0.000969 0.00904 0.00307
293K 0.02/s (0.00252) (0.0964) (5.48) (0.000238) (0.000245) (0.00532) (0.000848)

BeMon02020-4.txt 0.0271 0.207 11.6 0.00168 0.000884 0.00776 0.00314
293K 0.0001/s (0.00422) (0.103) (5.67) (0.000268) (0.000207) (0.005) (0.000641)

Table 13: Be: Posterior mean (standard deviation).

and 0.95 quantiles of the MCMC output. The hierarchical model provides a much better fit
to the individual data sets than does the common model.

Figure 13 shows approximate 95% posterior probability regions. The blue and red ellipses
correspond to the individual data sets; the blue ellipses are from strain rates below 3000/s
and the red ellipses are from strain rates at or above 3000/s. The broken black ellipses
correspond to η0 and the solid black ellipses correspond to ηK+1. The cyan ellipses are
derived from fitting a common model to all the data. Fitting the common model gives a
very optimistic picture of our knowledge about the parameters. Based on these plots, fitting
a single nonlinear regression model to all the experimental conditions under-represents the
amount of uncertainty present in the PTW parameters. For the plots in the lower triangle,
the points labeled with a “p” are point estimates given in [1], “c” are point estimates given
in [2], and “b” are point estimates given by Blumenthal and reported in [2]. This plot
was constructed by assuming bivariate normality for the marginal posterior distributions,
not accounting for constraints on the individual parameters. Therefore, this plot should
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be viewed merely as a heuristic for assessing bivariate relationships among the parameter
distributions represented.

Figure 14 shows 0.05, 0.50, and 0.95 point-wise posterior prediction intervals based on
ηK+1 and η0 from the hierarchical model. This plot shows how additional posterior un-
certainty in ηK+1 relative to η0 translates into increased posterior prediction uncertainty.
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Figure 11: Be: Sampled data with ± 1σ error bars.
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Figure 12: Be: Point-wise posterior prediction intervals from the common model fit, left-hand plot, and the
hierarchical model fit, right-hand plot. The curves are 0.05, 0.50, and 0.95 point-wise quantiles from the
MCMC output. The curves in the right-hand plot are based on the ηis.
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Figure 13: Be: Approximate 95% posterior probability regions. The blue and red ellipses in the upper right
correspond to the ηis, one for each data set; the blue ellipses are from data sets with strain rates below
3000/s and the red ellipses are from data sets with strain rates above 3000/s. The broken black ellipses and
the solid black ellipses correspond to η0 and ηK+1, respectively, from the hierarchical model fit. The cyan
ellipses in the lower left correspond to η0 from the common model fit.
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Figure 14: Be: Posterior prediction intervals from the hierarchical model. The left-hand plot is based on
ηK+1 and the right-hand plot is based on η0. The curves are 0.05, 0.50, and 0.95 point-wise quantiles from
the MCMC output.
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5.3 Depleted Uranium

In this section we discuss fitting the PTW model to data from Hopkinson-bar experiments
on depleted uranium. There are nine depleted uranium data sets.

Table 14 lists the data sets used along with some of the experimental conditions for each
data set. In the table, ni is the number of observations after thinning and σi is the root
mean square error (RMSE) from fitting a quadratic model to the thinned data.

Data Set ni Temp (K) Strain Rate (s−1) σi

DUtt-67223.p.txt 11 206 2200 7.0

DUtt-7510-1.p.txt 6 198 0.1 27.0

DUtt023343.p.txt 11 296 3400 15.0

DUtt023283r.p.txt 11 296 2800 16.0

DUtt023100.p.txt 12 296 1.0 31.0

DUtt02310-3b.p.txt 12 296 0.001 22.0

DUtt02310-3br.p.txt 10 296 0.001 32.0

DUtt15010-1.p.txt 12 423 0.1 10.0

DUtt30010-1.p.txt 13 573 0.1 7.0

Table 14: Depleted uranium data sets.

Table 15 gives the values we used for the fixed parameters in the PTW model. These
values are from [2].

Parameter Nominal Value Parameter Nominal Value

p 1.0 G0 938.9

y1 0.03 α 0.56

y2 0.27 Cv 118

β 0.27 A 238.1494

Tm 1405 ρ 19.05

Table 15: DU: Fixed PTW parameters.

Table 16 gives the values we used for b0 and V 0. The values of b0 are from [2]. This
table also gives the prior values we used for Ω. The appendix describes the method used to
determine these values.

Table 17 gives posterior means and standard deviations for each variable and data set.
These were calculated from the MCMC output by taking every other realization after dis-
carding the first 100,000 samples. Therefore, these estimates are based on 250,000 samples.

Figure 15 is a plot of the observed data from one of the Hopkinson-bar experiments. The
data for all of the experimental conditions along with ±1σ error bars is shown in Figure 16.

Figure 17 shows point-wise posterior prediction intervals derived from fitting the common
model and the hierarchical model. In both plots these intervals correspond to the 0.05, 0.50,
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Parameter b0 V 0,ii Ωii

θ 0.088 1069 3.384× 10−5

κ 0.1 14 0.000267

−log(γ) 16.1181 0.10055 0.808

y0 0.004 52488 4.462× 10−8

y∞ 0.002 197531 8.092× 10−8

s0 0.0115 4221 8.45× 10−7

s∞ 0.002 84061 3.066× 10−7

Table 16: DU: Values for η0 and V η prior distributions.

Data Set θ κ −log(γ) y0 y∞ s0 s∞

DUtt-67223.p.txt 0.0589 0.13 14.7 0.00519 0.00248 0.0121 0.00529
206K 2200/s (0.00711) (0.0635) (2.58) (0.000404) (0.000956) (0.00143) (0.0016)

DUtt-7510-1.p.txt 0.058 0.135 14.9 0.00513 0.00243 0.0119 0.00525
198K 0.1/s (0.00853) (0.0612) (2.79) (0.000558) (0.000885) (0.00165) (0.00153)

DUtt023343.p.txt 0.0664 0.136 14.6 0.00532 0.0026 0.0104 0.00521
296K 3400/s (0.0122) (0.0657) (2.78) (0.000578) (0.00103) (0.00139) (0.00159)

DUtt023283r.p.txt 0.0399 0.117 15.0 0.00518 0.00231 0.0144 0.00521
296K 2800/s (0.0141) (0.0654) (2.77) (0.000768) (0.000931) (0.00323) (0.00194)

DUtt023100.p.txt 0.0669 0.14 14.8 0.00525 0.0026 0.0099 0.00498
296K 1.0/s (0.0111) (0.0637) (3.15) (0.000641) (0.000953) (0.00179) (0.00139)

DUtt02310-3b.p.txt 0.0435 0.129 15.0 0.00536 0.00255 0.0119 0.00493
296K 0.001/s (0.00613) (0.0558) (2.76) (0.000628) (0.000835) (0.00246) (0.00136)

DUtt02310-3br.p.txt 0.0275 0.119 15.0 0.0053 0.00214 0.0145 0.00503
296K 0.001/s (0.00852) (0.0543) (3.39) (0.000808) (0.000878) (0.00329) (0.00173)

DUtt15010-1.p.txt 0.0181 0.141 14.5 0.0057 0.00248 0.0125 0.00385
423K 0.1/s (0.0024) (0.0577) (3.71) (0.000875) (0.000842) (0.00389) (0.00109)

DUtt30010-1.p.txt 0.00878 0.17 13.6 0.00576 0.00179 0.0134 0.00273
573K 0.1/s (0.00125) (0.0536) (3.95) (0.00112) (0.000489) (0.00541) (0.000703)

Table 17: DU: Posterior mean (standard deviation).

and 0.95 quantiles of the MCMC output. The hierarchical model provides a much better fit
to the individual data sets than does the common model.

Figure 18 shows 95% posterior probability regions for pairs of parameters. The blue
ellipses correspond to the individual data sets. The broken black ellipse and the solid black
ellipse correspond to η0 and ηK+1, respectively, from the hierarchical model fit. The cyan
ellipse are derived from fitting a common model to all the data. Fitting the common model
gives a very optimistic picture of our knowledge about the parameters. Based on these plots,
fitting a single nonlinear regression model to all the experimental conditions under-represents
the amount of uncertainty present in the PTW parameters. For the plots in the lower triangle
the points labeled with a “p” are values given in [1] and the points labeled “c” are given in
[2]. This plot was constructed by assuming bivariate normality for the marginal posterior
distributions, not accounting for constraints on the individual parameters. Therefore, this
plot should be viewed merely as a heuristic for assessing bivariate relationships among the
parameter distributions represented.

Figure 19 shows 0.05, 0.50, and 0.95 point-wise posterior prediction intervals based on
ηK+1 and η0 from the hierarchical model fit. This plot shows how additional posterior
uncertainty in ηK+1 relative to η0 translates into increased posterior prediction uncertainty.
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Figure 15: Plot of data obtained from Hopkinson-bar experiment with depleted uranium at 206K and a
strain rate of 2200/s.
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Figure 16: DU: Sampled data with ± 1σ error bars.
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Figure 17: DU: Point-wise posterior prediction intervals from the common model fit, left-hand plot, and the
hierarchical model fit, right-hand plot. The curves are 0.05, 0.50, and 0.95 point-wise quantiles from the
MCMC output. The curves in the right-hand plot are based on the ηis.
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Figure 18: DU: Approximate 95% posterior probability regions. The blue ellipses in the upper right corre-
spond to the ηis, one for each data set. The broken black ellipses and the solid black ellipses correspond to
η0 and ηK+1, respectively, from the hierarchical model fit. The cyan ellipses in the lower left correspond to
η0 from the common model fit.
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Figure 19: DU: Posterior prediction intervals from the hierarchical model. The left-hand plot is based on
ηK+1 and the right-hand plot is based on η0. The curves are 0.05, 0.50, and 0.95 point-wise quantiles from
the MCMC output.
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5.4 Tantalum

In this section we discuss fitting the PTW model to data from Hopkinson-bar experiments
on tantalum. There are six tantalum data sets.

Table 18 lists the data sets used along with some of the experimental conditions for each
data set. In the table, ni is the number of observations after thinning and σi is the root
mean square error (RMSE) from fitting a quadratic model to the thinned data.

Data Set ni Temp (K) Strain Rate (s−1) σi

TaRT133.p.t.txt 29 298 1300 5.8

TaRT10-3.LE.txt 32 298 0.001 10

TaRT10-1.p.txt 10 298 0.1 2

Ta40263.p.t.txt 27 673 2600 6.1

Ta80393.p.t.txt 31 1073 3900 6.3

TaLN10-3.p.txt 13 77 0.001 5

Table 18: Ta: Experimental conditions.

Table 19 gives the values we used for the fixed parameters in the PTW model. These
values were provided by [8].

Parameter Nominal Value Parameter Nominal Value

p 4 G0 722

y1 0.012 α 0.48

y2 0.4 Cv 145.5

β 0.23 A 180.95

Tm 3290 ρ 16.6

Table 19: Ta: Fixed PTW parameters.

Table 20 gives the values we used for b0 and V 0. The values of b0 were provided by [8].
This table also gives the prior values we used for Ω. The appendix describes the method
used to determine these values.

Parameter b0 V 0,ii Ωii

θ 0.01 0.0 2.583× 10−6

κ 0.6 0.0 0.000576

−log(γ) 10.127 0.0 0.0941

y0 0.00925 0.0 5.241× 10−8

y∞ 0.00123 0.0 3.843× 10−9

s0 0.0122 0.0 7.263× 10−6

s∞ 0.00375 0.0 2.642× 10−8

Table 20: Ta: Values for η0 and V η prior distributions.
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Table 21 shows the posterior mean and standard deviation for each parameter and each
data set. These were calculated from the MCMC output by taking every other realization
after discarding the first 100,000 samples. Therefore, these estimates are based on 250,000
samples.

Data Set θ κ −log(γ) y0 y∞ s0 s∞

TaRT133.p.t.txt 0.0122 0.724 11.5 0.0094 0.00138 0.0151 0.00295
298K 1300/s (0.00225) (0.144) (1.52) (0.00112) (0.000261) (0.00411) (0.000513)

TaRT10-3.LE.txt 0.00666 0.695 11.8 0.00929 0.00139 0.0185 0.00347
298K 0.001/s (0.00127) (0.168) (1.76) (0.0014) (0.000289) (0.00578) (0.000585)

TaRT10-1.p.txt 0.0127 0.725 11.4 0.00939 0.00138 0.0134 0.0027
298K 0.1/s (0.000965) (0.123) (1.6) (0.00113) (0.000229) (0.00383) (0.000354)

Ta40263.p.t.txt 0.00802 0.692 11.8 0.00934 0.00146 0.0154 0.00309
673K 2600/s (0.00104) (0.164) (1.52) (0.00124) (0.000298) (0.00478) (0.000466)

Ta80393.p.t.txt 0.0202 0.723 11.3 0.00947 0.0012 0.0165 0.00259
1073K 3900/s (0.00281) (0.148) (1.82) (0.00137) (0.000106) (0.00508) (0.000347)

TaLN10-3.p.txt 0.0135 0.71 11.5 0.00949 0.00135 0.0137 0.00288
77K 0.001/s (0.00231) (0.135) (1.63) (0.000837) (0.000234) (0.00158) (0.000504)

Table 21: Ta: Posterior mean (standard deviation).

Figure 20 is a plot of the thinned tantalum data along with ±1σ error bars.
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Figure 20: Ta: Sampled data along with ± 1σ error bars.

Figure 21 shows point-wise posterior prediction intervals derived from fitting the common
model and the hierarchical model. In both plots these intervals correspond to the 0.05, 0.50,
and 0.95 quantiles of the MCMC output. The intervals from the hierarchical model fit are
based on the ηis. The common and hierarchical models provide comparable fits to the
individual data sets.

Figure 22 shows approximate 95% posterior probability regions. The blue ellipses cor-
respond to the individual data sets. The broken black ellipses correspond to η0 and the
solid black ellipses correspond to ηK+1. The cyan ellipses are derived from fitting a common
parameter model to all the data. Fitting the common model gives a somewhat optimistic
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Figure 21: Ta: Point-wise posterior prediction intervals from the common model fit, left-hand plot, and the
hierarchical model fit, right-hand plot. The curves are 0.05, 0.50, and 0.95 point-wise quantiles from the
MCMC output. The curves in the right-hand plot are based on the ηis.

picture of our knowledge about the parameters. Based on these plots, fitting a single non-
linear regression model to all the experimental conditions under-represents the amount of
uncertainty present in the PTW parameters. For the plots in the lower triangle the points
labeled with a “p” are point estimates given in [1] and points labeled with a “c” are point
estimates given in [2]. Note that all of the ellipse plots were constructed by assuming bi-
variate normality for the marginal posterior distributions, not accounting for constraints on
the individual parameters. Therefore, this plot should be viewed merely as a heuristic for
assessing bivariate relationships among the parameter distributions represented.

Also included in this plot are point estimates with a label “h” and approximate 95%
posterior probability ellipses (colored green), taken from the analysis of [8]. The model used
in [8] is identical to the common model we fit except [8] included an additive systematic
bias term for each experimental condition and used non-linear least squares to estimate the
PTW parameters and their associated uncertainties. The analysis in [8] used data from three
tantalum experiments not incorporated in the analysis of this paper, and this analysis used
data from one tantalum experiment not used by [8].

Figure 23 shows 0.05, 0.50, and 0.95 point-wise posterior prediction intervals for ηK+1 and
for η0 from the hierarchical model fit. This plot shows how additional posterior uncertainty
in ηK+1 relative to η0 translates into increased posterior prediction uncertainty.

30



θ0

0.4 0.8 0.006 0.010 0.014 0.005 0.020

0.
00

0
0.

01
5

0.
4

0.
8

pc

h

κ

pc

h

pc

h
−log(γ)

8
10

14

0.
00

6
0.

01
0

0.
01

4

p
c

h

p
c

h

p
c

h

y0

pc

h

pc

h

pc

h

pc

h y∞

0.
00

10
0.

00
20

0.
00

5
0.

02
0

pc
h

pc
h

pc
h

pc
h

pc
h s0

0.000 0.015

p
c

h
p
c

h

8 10 14

p
c

h
p

c

h

0.0010 0.0020

p
c

h
p
c

h

0.0015 0.0035

0.
00

15
0.

00
35

s∞

Figure 22: Ta: Approximate 95% posterior probability regions. The blue ellipses in the upper right corre-
spond to the ηis, one for each data set. The broken black ellipses and the solid black ellipses correspond to
η0 and ηK+1, respectively, from the hierarchical model fit. The cyan ellipses in the lower left correspond
to η0 from the common model fit. The green ellipses in the lower left correspond to approximate 95%
posterior probability regions from fitting the common model with an additive systematic bias term for each
experimental condition, as described in [8].
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Figure 23: Ta: Posterior prediction intervals from the hierarchical model. The left-hand plot is based on
ηK+1 and the right-hand plot is based on η0. The curves are 0.05, 0.50, and 0.95 point-wise quantiles from
the MCMC output.
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5.5 Uranium 6 wt% Niobium

In this section we discuss fitting the PTW model to data from Hopkinson-bar experiments
on uranium 6 wt% niobium. There are ten U-6Nb data sets.

Table 22 lists the data sets used along with some of the experimental conditions for each
data set. In the table, ni is the number of observations after thinning and σi is the root
mean square error (RMSE) from fitting a quadratic model to the thinned data.

Data Set ni Temp (K) Strain Rate (s−1) σi

U6LN10-3.p.txt 8 77 0.001 81.0

U6b.173.1300.txt 29 173 1300 58.0

U6.173.1e-3.LE.p.txt 21 173 0.001 57.0

U6b.233.1e0.LE.p.txt 14 233 1.0 57.0

U6b.298.1400.txt 29 298 1400 58.0

U620253.txt 19 473 2500 40.0

U6rt10-3c.txt 13 298 0.001 43.0

U630303.txt 12 573 3000 45.0

U640303.txt 15 673 3000 13.0

U660323.txt 14 873 3200 11.0

Table 22: U-6Nb: Experimental conditions.

Table 23 gives the values we used for the fixed parameters in the PTW model. These
values were provided by [2].

Parameter Nominal Value Parameter Nominal Value

p 5.0 G0 1018

y1 0.0515 α 0.8057

y2 0.27 Cv 117.5

β 0.27 A 218.4542

Tm 1475 ρ 17.38

Table 23: U-6Nb: Fixed PTW parameters.

Table 24 gives the values we used for b0 and V 0. The values of b0 were provided by [2].
This table also gives the values we used for Ω. The appendix describes the method used to
determine these values.

Table 25 shows the posterior mean and standard deviation for each parameter and each
data set. These were calculated from the MCMC output by taking every other realization
after discarding the first 100,000 samples. Therefore, these estimates are based on 250,000
samples.

Figure 24 is a plot of the thinned data used for fitting along with ±1σ error bars.
Figure 25 shows point-wise posterior prediction intervals derived from fitting the common

model and the hierarchical model. In both plots these intervals correspond to the 0.05, 0.50,
and 0.95 quantiles of the MCMC output. The hierarchical model provides a much better fit
to the individual data sets than does the common model.
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Parameter b0 V 0,ii Ωii

θ 0.08 1069 0.000149

κ 0.40 14 0.00157

−log(γ) 5.809 0.10055 1.544

y0 0.00519 52488 2.204× 10−6

y∞ 0.00186 197531 1.105× 10−7

s0 0.0515 4221 5.515× 10−5

s∞ 0.0105 84061 3.578× 10−8

Table 24: U-6Nb: Values for η0 and V η prior distributions.

Data Set θ κ −log(γ) y0 y∞ s0 s∞

U6LN10-3.p.txt 0.166 0.61 1.87 0.00619 0.000655 0.0749 0.00614
77K 0.001/s (0.0528) (0.125) (4.73) (0.00339) (0.000485) (0.0328) (0.000553)

U6b.173.1300.txt 0.136 0.525 3.9 0.00391 0.000308 0.0838 0.00633
173K 1300/s (0.0118) (0.077) (2.67) (0.00218) (0.000234) (0.0197) (0.000346)

U6.173.1e-3.LE.p.txt 0.0744 0.447 8.27 0.00682 0.00071 0.0705 0.00662
173K 0.001/s (0.00803) (0.0488) (2.48) (0.00318) (0.000283) (0.0171) (0.000406)

U6b.233.1e0.LE.p.txt 0.119 0.53 4.71 0.0058 0.000346 0.0776 0.0064
233K 1.0/s (0.013) (0.0781) (2.69) (0.00284) (0.000249) (0.0192) (0.000275)

U6b.298.1400.txt 0.165 0.53 2.58 0.00507 0.000384 0.0865 0.00615
298K 1400/s (0.0214) (0.121) (3.63) (0.00303) (0.000276) (0.0258) (0.000295)

U620253.txt 0.113 0.514 4.15 0.00598 0.000453 0.0754 0.00621
473K 2500/s (0.0156) (0.0915) (2.52) (0.00292) (0.000282) (0.0201) (0.000153)

U6rt10-3c.txt 0.0844 0.49 7.02 0.00652 0.00033 0.0725 0.00659
298K 0.001/s (0.00924) (0.0876) (2.61) (0.00316) (0.000239) (0.0175) (0.000232)

U630303.txt 0.127 0.526 4.78 0.00612 0.000759 0.073 0.00605
573K 3000/s (0.0376) (0.104) (4.06) (0.00319) (0.000462) (0.0231) (0.000239)

U640303.txt 0.0177 0.453 11.2 0.00821 0.000984 0.0608 0.00684
673K 3000/s (0.0022) (0.11) (1.96) (0.00449) (0.000743) (0.0229) (0.000513)

U660323.txt 0.0313 0.45 10.6 0.00792 0.000913 0.0633 0.0069
873K 3200/s (0.00725) (0.113) (1.83) (0.00424) (0.000685) (0.0211) (0.000456)

Table 25: U-6Nb: Posterior mean (standard deviation).

Figure 26 shows approximate 95% posterior probability regions. The blue ellipses cor-
respond to the individual data sets. The broken black ellipses and the solib black ellipses
correspond to η0 and ηK+1, respectively, from the hierarchical model fit. The cyan ellipses
are derived from fitting the common model to all the data. Fitting the common model gives a
very optimistic picture of our knowledge about the parameters. Based on these plots, fitting
a single nonlinear regression model to all the experimental conditions under-represents the
amount of uncertainty present in the PTW parameters. For the plots in the lower triangle
the three points labeled with “c” represent three distinct sets of point estimates given in
[2]. This plot was constructed by assuming bivariate normality for the marginal posterior
distributions, not accounting for constraints on the individual parameters. Therefore, this
plot should be viewed merely as a heuristic for assessing bivariate relationships among the
parameter distributions represented.

Figure 27 shows 0.05, 0.50, and 0.95 point-wise posterior prediction intervals for ηK+1 and
for η0 from the hierarchical model fit. This plot shows how additional posterior uncertainty
in ηK+1 relative to η0 translates into increased posterior prediction uncertainty.
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Figure 24: U-6Nb: Sampled data along with ± 1σ error bars.
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Figure 25: U-6Nb: Point-wise posterior prediction intervals from the common model fit, left-hand plot, and
the hierarchical model fit, right-hand plot. The curves are 0.05, 0.50, and 0.95 point-wise quantiles from the
MCMC output. The curves in the right-hand plot are based on the ηis.
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Figure 26: U-6Nb: Approximate 95% posterior probability regions. The blue ellipses in the upper right
correspond to the ηis, one for each data set. The broken black ellipses and the solid black ellipses correspond
to η0 and ηK+1, respectively, from the hierarchical model fit. The cyan ellipses in the lower left correspond
to η0 from the common model fit.
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Figure 27: U-6Nb: Posterior prediction intervals from the hierarchical model. The left-hand plot is based
on ηK+1 and the right-hand plot is based on η0. The curves are 0.05, 0.50, and 0.95 point-wise quantiles
from the MCMC output.
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6 Discussion

The uncertainty analysis for the PTWmodel parameters presented in this paper is directed at
obtaining a realistic quantification of the uncertainty in these parameters for several materials
across a range of temperatures and strain rates representative of data currently available
from Hopkinson-bar and quasi-static-compression experiments. The relevant uncertainty is
summarized by the posterior predictive distribution p(ηK+1 |y) of equation (6). Section 3
explains the relevance of this uncertainty quantification to dynamic experiments in which
strain rates and temperatures vary over a potentially wide range of values. However, this
distribution will likely over-represent the uncertainty in the PTW model parameters, if
prediction is to be specialized to a particular temperature and strain rate environment.
One possible revision to equation (6) for uncertainty quantification in this setting involves

specifying a set of weights {wi}, i = 1, . . . , N , for which
∑N

i=1wi = 1, and computing

p(ηwK+1 |y) ∼
N∑

i=1

wi p(ηK+1 |η0,i,V η,i) .

Methodology for determining the weights is required. As a general principle, the relative
ordering of the weights would be determined by the degree to which the corresponding
samples of η0 are consistent with the temperature and strain rate at which prediction is
desired.

These uncertainties should serve as a starting point for using data from Taylor cylinder
or flyer plate tests to further constrain parameter uncertainties. Such an analysis will likely
have to be coupled with detailed simulation code to obtain the resulting inference. See [5]
for such an example.
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A Appendix

In this appendix we discuss more fully the MCMC algorithm used to generate samples from
the posterior distribution of the parameters, assuming the model and prior distributions
given in (4). This posterior distribution is not analytically tractable. Therefore, we use
the Gibbs sampler ([10]) to generate samples from this posterior distribution. The Gibbs
sampler requires the full conditional distribution for each parameter. The full conditionals
that we need are given in (5).

The full conditional posterior distribution of η is proportional to the data likelihood
times a prior and is written as p(η |y, ξ,η0,V η ) ∝ p(y |η, ξ ) p(η |η0,V η ). For the prior
distributions given in equation (4) we have:

p(η |y, ξ,η0,V η ) ∝

K∏

i=1

exp

{
−
1

2

[
(yi − gi(ηi))

>Σi(ξi)
−1(yi − gi(ηi))+

(ηi − η0)
>V η(ηi − η0)

]}
I(ηi ∈ C) .

To sample this posterior distribution we use a Metropolis step ([11], [12]).
The covariance matrix of the data depends on the vector ξ, which is typically un-

known. The full conditional posterior distribution of ξ is written as p( ξ |y,η,η0,V η ) ∝
p(y |η, ξ ) p( ξ ), which is again the data likelihood times a prior. Using the distributions
given in equation (4) and denoting the prior distribution of ξi as p(ξi), the full conditional
posterior is

p( ξ |y,η,η0,V η ) ∝

K∏

i=1

p(ξi)√
det[Σi(ξi) ]

exp

{
−
1

2
(yi − gi(ηi))

>Σi(ξi)
−1(yi − gi(ηi))

}
,

where det[ · ] denotes the determinant of the matrix argument. The results presented in
subsequent sections assume the measurement error model (1), corresponding to setting ξi =
λi and Σi(ξi) = 1

λi
Diag(σ2

i ; ni). The notation Diag(σ2
i ; ni) indicates a ni × ni diagonal

matrix with σ2
i on the diagonal.

Assuming a Gamma(ai, bi) prior distribution for λi, we have p(λi) ∝ λai−1
i exp{−biλi}.

The full conditional posterior distribution of λi is proportional to the data likelihood times
this prior and we write p(λi |yi,ηi,η0,V η ) ∝ p(yi |ηi, λi ) p(λi ). Collecting terms we have

p(λi |yi,ηi,η0,V η ) ∼

Gamma

(
ai +

ni
2
, bi +

1

2
(yi − gi(ηi))

>Diag(σ2
i ; ni)

−1(yi − gi(ηi))

)
.

A Gibbs update is used to sample λi from this conditional posterior distribution.
The fixed quantity σ2

i is estimated by fitting a quadratic model to the (sub-sampled) data
from experiment i and then computing the mean square error (MSE) of the residuals. This
MSE is then used for σ2

i . The parameter λi controls the amount of allowable deviation from
the estimated data error σ2

i . The Gamma(ai, bi) prior distribution for λi will generally be
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chosen to satisfy ai = bi, having mean 1 and variance 1/ai, so that increasing ai results in a
smaller allowable deviation from σ2

i .
The full conditional posterior distribution of η0 is again proportional to a likelihood times

a prior but now the likelihood is p(η |η0,V η ). Combining this likelihood with the prior for
η0 gives p(η0 |y,η, ξ,V η ) ∝ p(η |η0,V η ) p(η0 ). Collecting terms we have

p(η0 |y,η, ξ,V η ) ∼

N ( (KV η + V 0)
−1(KV ηη + V 0b0) , (KV η + V 0)

−1 ) I(η0 ∈ C) . (8)

Here η = 1
K

∑K

i=1 ηi. We use a Gibbs update to sample this conditional posterior distribu-
tion.

The full conditional posterior distribution of V η is proportional to the η likelihood times
the prior for V η and we write p(V η |y,η, ξ,η0 ) ∝ p(η |η0,V η ) p(V η ). Combining terms
we have

p(V η |y,η, ξ,η0 ) ∼

W



(

K∑

i=1

(ηi − η0)(ηi − η0)
> + νΩ

)−1

, ν +K


 .

A Gibbs update is used to sample this conditional posterior distribution.
The MCMC algorithm is completed with a decorrelating Metropolis step, implemented

as follows:

1. set j = 1

2. generate zj from a symmetric distribution

3. propose the candidate {η0 + zjej,η1 + zjej, . . . ,ηK + zjej }, where ej denotes the unit
vector with 1 in the jth element

4. evaluate the candidate with respect to the joint conditional posterior

p(η0,η |y, ξ,V η ) ∝

K∏

i=1

exp

{
−
1

2
(yi − gi(ηi))

>Σi(ξi)
−1(yi − gi(ηi))

}
×

K∏

i=1

exp

{
−
1

2
(ηi − η0)

>V η(ηi − η0)

}
I(ηi ∈ C)×

exp

{
−
1

2
(η0 − b0)

>V 0(η0 − b0)

}
I(η0 ∈ C)

5. scan through j = 2, . . . , |η0|, where |η0| denotes the number of elements in η0

This step improves the mixing of components in η0 and ηi, i = 1, . . . , K, that are subject to a
high degree of shrinkage (i.e., components of ηi that are nearly identical to the corresponding
components of η0 in a probabilistic sense).
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Inferences about a new parameter vector ηK+1 are drawn from the posterior distribution
p(ηK+1 |y ), which is

p(ηK+1 |y) =

∫
p(ηK+1 |η0,V η) p(η0,V η |y) dη0 dV η

≈
1

N

N∑

j=1

p(ηK+1 |η0,j ,V η,j) . (9)

The unconstrained version of distribution (9) has mean vector η0 = 1
N

∑N

j=1 η0,j and
covariance matrix

1

N

N∑

j=1

[
V −1

η,j + (η0,j − η0)(η0,j − η0)
>] .

The summation is over the MCMC samples. The structure of this covariance matrix indi-
cates two sources of uncertainty: variability in parameter vector samples across individual
data sets represented by V −1

η
, and variability in estimating the population mean η0. This

posterior distribution gives us information about values of η that are representative of the
population uncertainty in the PTW parameters across the range of strain rates and temper-
atures observed in the experimental data used to train the hierarchical model.

We can also draw inference about the population mean η0 through its posterior distribu-
tion p(η0 |y ),

p(η0 |y) ≈
1

N

N∑

j=1

p(η0 |y,ηj,V η,j) . (10)

Applying the assumptions of (4), it can be shown that

p(η0 |y,η,V η) =
p(η |η0,V η) p(η0) p(V η)

p(η,V η)
= p(η0 |y,η, ξ,V η) .

The full conditional distribution p(η0 |y,η, ξ,V η) is given in (8). Let η̃ = (KV η +
V 0)

−1(KV ηη+V 0b0). The unconstrained version of the distribution (10) has mean vector

η̃ = 1
N

∑N

j=1 η̃j and covariance matrix

1

N

N∑

j=1

[
(KV η,j + V 0)

−1 + (η̃j − η̃)(η̃j − η̃)>
]
.

Posterior uncertainty in η0 arises from two sources: between sample and prior variability
represented by (KV η + V 0)

−1, and variability in estimating the mean of η0.
Initial values for the ηis are required to start the MCMC. For a given material, these

values were obtained by adding a small amount of white noise to the nominal values b0 for
that material. We chose the prior distribution of η0 to be normal with mean b0 and precision
matrix V 0, subject to the constraint η0 ∈ C. The values of b0 for each material were taken
from [2]. For Ta and Be, V 0 was taken to be the zero matrix. For DU, Al and U-6Nb, V 0

was a diagonal matrix with the sample precisions calculated from the values of b0 for all five
materials.

We chose the prior distribution for the precision matrix V η to be Wishart with parameters
ν and Ω. For every material but Al, the parameter ν was set to the smallest possible value
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ensuring a proper prior distribution, the number of free PTW parameters, which is 7. For
Al, ν took the value 10 to strengthen prior information about V η as only four data sets
were available for analysis. For Al, DU, and U-6Nb, the Ω matrix was obtained using the
following procedure: Let ΣKH denote the estimated covariance matrix from the common
model fit of the PTW model ([8]) to Beryllium experiments. Let D1 be the diagonal matrix
with elements equal to the diagonal elements of ΣKH . Run a pilot MCMC on the complete
hierarchical model for 10,000 iterations with Ω taken to be D1. From this pilot run we
compute the sample covariance matrix of the 10,000 η0s and call it S1. We then set Ω to be

Ω = 0.5 ∗Diag(S1)

where Diag(S1) is the diagonal matrix consisting of the diagonal elements of S1. The matrix
S1 is material dependent. For Ta and Be, we use the same procedure where the material
specific ΣKH is obtained from the common model fit of [8]. The Wishart distribution of
equation (4) has E(V η) = Ω

−1 and Var(V η,ij) = ((Ωij)2 +ΩiiΩjj), where Ωij denotes the
(i, j) entry of Ω−1. Therefore, the coefficient 0.5 in the definition of Ω imposes additional
prior shrinkage of the ηis and inflates the prior variance of each element in V η by a factor
of 4 relative to using a coefficient of unity, which builds in some vagueness to the prior
specification of V η.
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