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A method of evaluating image-recovery algorithms is presented that is based on the numerical computation of how 
well a specified visual task can be performed on the basis of the reconstructed images. A Monte Carlo technique is 
used to simulate the complete imaging process including generation of scenes appropriate to the desired application, 
subsequent data taking, image recovery, and performance of the stated task based on the final image. The pseudo- 
random-simulation process permits one to assess the response of an image-recovery algorithm to many different 
realizations of the same type of scene. The usefulness of this method is demonstrated through a study of the 
algebraic reconstruction technique (ART), a tomographic reconstruction algorithm that reconstructs images from 
their projections. The task chosen for this study is the detection of disks of known size and position. Task 
performance is rated on the basis of the detectability index derived from the area under the receiver operating 
characteristic curve. In the imaging situations explored, the use of the nonnegativity constraint in the ART 
dramatically increases the detectability of objects in some instances, particularly when the data consist of a limited 
number of noiseless projections. Conversely, the nonnegativity constraint does not improve detectability when the 
data are complete but noisy. 

INTRODUCTION 

In every indirect imaging application it is necessary to 
choose an image-recovery algorithm to obtain a final image. 
This choice becomes critically important when the available 
data are limited and/or are noisy. Several classes of mea- 
sures on which to base image-recovery algorithms have been 
employed in the past.l There are those based on how close 
the reconstructed image is to the original one, such as the 
conventional measure of minimum rms difference between 
the reconstruction and the original image. Experience 
teaches us that this does not always seem to be correlated 
with the usefulness of images and so does not help one to 
choose an algorithm. There are measures based on how 
closely the estimated reconstruction reproduces the input 
data. The most popular of these measures, based on least- 
squares residual (or minimum chi squared), is known often 
to be ill conditioned or, even worse, ill p0sed.l To  make the 
problem more tractable, it is often proposed to constrain the 
least-squares objective in some way. Further, there are 
measures that combine the foregoing measures, such as max- 
imum a posteriori reconstruction, which balances the agree- 
ment with the data against the relationship of the recon- 
struction to the known ensemble probability  distribution^.^ 

The fundamental tenet adopted in this paper is that the 
overall purpose of the imaging procedure is to provide cer- 
tain specific information about the object or scene under 
investigation. Consequently, in the approach to algorithm 
evaluation presented here, an algorithm is to be judged on 
the basis of how well one can perform stated visual tasks, 
using the reconstructed images. 

The method presented can help one to answer the peren- 
nial question asked of tomographers: How many projec- 
tions are needed? The proper response to such a question is 
the following: needed to do what? The answer depends on 
the type of scene that  one is dealing with, the magnitude of 

the noise in the data, and the kind of information that one 
desires from the reconstruction, to wit, the visual task to be 
performed. 

For linear imaging systems the effects of image noise on 
task performance can be predicted for a variety of tasks, as, 
for example, treated in Ref. 3. The masking effects of mea- 
surement noise are truly random in nature. The random- 
noise process makes each set of measurements different, 
even when the scene being imaged does not change. Con- 
trarily, the effects of artifacts on task performance are not so 
easily predicted. Some kinds of artifact appear as fixed 
patterns and do not often behave like stationary noise. 
However, those created by an insufficient number of mea- 
surements can manifest themselves as seemingly unpredict- 
able irregularities that  look like noise, but, in a strict sense, 
they are not. These patterns are determined by the scene 
being imaged. Therefore it is necessary to deal with realistic 
scenes to test how well an algorithm dispenses with artifacts. 
For example, the objects in the scene are typically randomly 
placed relative to the discretely sampled measurements as 
well as to the reconstruction grid. Both of these position- 
i n g ~  can affect the reconstruction. Thus a single realization 
of a simple scene is completely inadequate for judging a 
reconstruction algorithm. I t  is necessary to obtain a statis- 
tically meaningful average of the response of an algorithm to 
many realizations of the ensemble of scenes with which it 
must cope. I t  is unclear whether such a global approach to 
task performance is amenable to theoretical treatment. 
The implied averaging over discrete samplings is difficult to 
handle analytically although some results can be d e r i ~ e d . ~  
It  is not properly taken into account by the assumption of an 
effective modulation transfer function to characterize sam- 
pling, as is so often employed. Furthermore, it would be 
difficult to deal with nonlinear reconstruction or task per- 
formance algorithms. To  overcome these deficiencies, the 
proposed method is based on computer simulation of scenes 
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appropriate to the desired application, the subsequent data 
taking, and the analysis of the data. A Monte Carlo tech- 
nique, one employing pseudorandom numbers to generate 
its results, is used in this simulation process because it can 
readily provide the above-noted variations within the en- 
semble. Furthermore, any new source of uncertainty can 
easily be incorporated into the simulation by simply select- 
ing the appropriate variable by means of a pseudorandom 
number. 

METHOD OF EVALUATING TASK 
PERFORMANCE 
The proposed method of evaluating image-recovery algo- 
rithms5 employs a Monte Carlo technique6 to simulate the 
entire imaging process from the beginning to the final task 
performance. To begin, one randomly generates represen- 
tative scenes and the corresponding sets of measurements. 
The specified tasks are then performed, using the recon- 
structed scenes. Finally, the accuracy of the task perform- 
ance is evaluated. The advantage of this numerical ap- 
proach is that it readily handles complex imaging situations, 
nonstationary imaging characteristics, and nonlinear recon- 
struction algorithms. Its major disadvantage is that it pro- 
vides an evaluation that is valid only for the specific imaging 
situation investigation. 

Figure 1 shows the basic steps of the proposed method of 
evaluating the task performance based on an ensemble of 
images. The proposed method proceeds as follows. First, 
the whole problem must be completely specified: 

(a) Define the class of scenes to be imaged, including as 
much complexity as exists in the intended application. 
Variations in scene from one realization to another should be 
fully specified. 

(b) Define the geometry of the measurements. The defi- 
ciencies in the measurements such as blur, uncertainties in 
the geometry, and uncertainties in the measurements 
(noise) should be specified. Variations of these uncertain- 
ties with position, as well as intercorrelations between them, 
could be included. 

(c) Define clearly the task that is to be performed. The 
task might be simple detection of a known object against a 

( Generate 1 [yy , 
Measurements 

Fig. 1. Diagram of the Monte Carlo procedure employed to evalu- 
ate numerically the performance of a visual task. 

known background, for example. Alternatively, it could be 
discrimination between two types of object, or something 
more complex, such as multiple discrimination or parameter 
estimation. The fundamental assumptions in effect must 
be explicitly stated. 

(d) Define the method of task performance. This should 
be consistent with the intended application. If the task is to 
be performed by computer, then the intended analysis algo- 
rithm may be used. If the task is to be performed by a 
human observer, some approximation to the way in which a 
human interprets an image should be used. Alternatively, a 
maximum-likelihood algorithm (ideal observer) may be em- 
ployed to define the best possible performance (under the 
prevailing assumptions made about the extent of auxillary 
information). 

The simulation procedure is then performed by doing the 
following: 

(e) Create a representative scene and the corresponding 
measurement data by means of a Monte Carlo simulation 
technique. All variations in scene content and uncertainties 
in the measurements are included by means of pseudoran- 
dom selection of the uncertain and variable parameters. 

(f) Recons t~c t  the scene with the algorithm being test- 
ed. 

(g) Perform the specified task, using the reconstructed 
image. 

(h) Repeat steps (e)-(g) a sufficient number of times to 
obtain the necessary statistics on the accuracy of the task 
performance. 

Finally, determine how well the task has been performed, 
on the average: 

(i) Evaluate the task performance. For binary discrimi- 
nation tasks (of the yes or no variety), a receiver operating 
characteristic (ROC) curve7 may be generated. The proper 
measure of how well the task is performed should be based 
on what is important in the intended application. In a 
precise treatment, one might use Bayes's method to estimate 
the total risk, incorporating the relative costs of making false 
or true conclusions.7~8 For parameter estimation tasks, the 
standard measure of rms error might be appropriate. 

ALGEBRAIC RECONSTRUCTION TECHNIQUE 
The algebraic reconstruction techniques (ART) is an itera- 
tive algorithm that reconstructs a function from its projec- 
tions. I t  has proved to be a successful tomographic recon- 
struction algorithm, particularly when there is a limited 
number of projections available. Assume that N individual 
projection measurements are made of the unknown function 
f, which is considered a vector. The ith measurement is 
written as 

where Hi is the corresponding row of the measurement ma- 
trix. It should be realized that the originally suggested 
choices of 0 and 1 for the elements of H is unwise.1° The 
precise weights used are not intrinsic to the algorithm. In 
modern practice the elements of H are calculated as line or 
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strip integrals of the reconstruction by interpolating be- 
tween the discretely sampled grid points.11J2 

The ART algorithm proceeds as follows. An initial guess 
is made, for example, f  O = 0. Then the estimate is updated 
by iterating on the individual measurements taken in turn: 

where f k  is the kth estimate of the image vector f ,  i = k 
mod(N) + 1, and hk is a relaxation factor for the kth update. 
In constrained ART algorithms a nonnegativity constraint is 
enforced by setting any component of fh+' to zero that has 
been made negative by the above updating procedure. We 
use the index K to indicate the iteration number [K = int(k1 
N)], which in the standard nomenclature corresponds to one 
pass through all N measurements. We express the relax- 
ation factor as 

There is little guidance on the choice of the relaxation 
factor in the literature. A value of unity is often suggested 
and used. In the absence of constraints, such a choice forces 
the reconstruction to agree with the last measurement used 
for updating. I t  is known1" that if a unique solution to the 
measurement equations exists, the ART algorithm con- 
verges to it in the limit of an infinite number of iterations, 
provided that 2 > h > 0. If many solutions exist, the ART 
algorithm converges to the one with minimum norm. Cen- 
sor et al.I4 have shown that the unconstrained ART algo- 
rithm ultimately converges to a minimum-norm least- 
squares solution, which is desirable for inconsistent (noisy) 
data, if the relaxation factor approaches zero slowly enough. 
In this research we will investigate the ART algorithm, em- 
ploying 10 iterations. Although 10 iterations are not enough 
to ensure complete convergence to the solution, this choice is 

in the range of the number of iterations often employed with 
the ART a l g ~ r i t h m . ~  We will use 1.0 and 0.8 as nominal 
values for Xo and rh for problems involving a limited number 
of views or projection sets and 0.2 and 0.8 for problems 
involving many (-100) views. These choices are fairly rep- 
resentative for unconstrained ART reconstructions and will 
suffice for the present demonstration of the proposed meth- 
od of evaluation. I t  is possible to use this evaluation method 
to find the best choice of relaxation parameters for a specific 
problem.15 

APPLICATION TO THE EVALUATION OF THE 
NONNEGATIVITY CONSTRAINT 

The usefulness of the nonnegativity constraint in the ART 
algorithm will now be explored to demonstrate how the pro- 
posed method can be used. I t  should be noted that such a 
constraint makes the response of the reconstruction algo- 
rithm nonlinear. As such, the task performance in the pres- 
ence of either noise or artifacts is not amenable to linear 
analysis. By way of introduction to the choice of properties 
for the scenes to be studied here, Fig. 2 shows how the simple 
streak artifacts that  arise in the tomographic reconstruction 
of a single disk from a limited number of projections super- 
impose to form a complex background pattern when several 
objects are present. In one sense the seemingly random 
fluctuations in the background are not truly noise because 
they would be exactly reproduced if another set of projec- 
tions was obtained with the objects in the same place. How- 
ever, the pattern changes with the positions of the objects. 
So, in another sense, the artifacts are stochastic if the objects 
are randomly placed in the scene. This simple observation 
points to the need to consider many realizations of the kind 
of scene in order to adequately evaluate task performance in 
the presence of artifacts. 

For the present example, each scene is assumed to consist 

Fig. 2. Reconstructions of one (left) and three (right) dots from 12 noiseless parallel projections covering 180 deg obtained with the 
unconstrained ART algorithm. The incoherent sum of simple streak artifacts from three dots produces noise-like fluctuations in the 
background. 
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Fig. 3. The first randomly generated scene consisting of 10 high- 
contrast and 10 low-contrast disks. The present estimation of de- 
tectability is based on an average over 10 similar scenes. 

of a number of nonoverlapping disks placed on a zero back- 
ground. T o  maximize the problems caused by artifacts in 
this study, we assume that each scene contains 10 high- 
contrast disks of amplitude 1.0 and 10 low-contrast disks 
with amplitude 0.1. The task to be performed is the detec- 
tion of the low-contrast disks. In limited data-taking cir- 
cumstances, the high-contrast disks produce serious arti- 
facts in the reconstructions, making it difficult to detect the 
low-contrast ones. The disks are randomly placed within 
the circle of reconstruction, which has a diameter of 128 

pixels in the reconstructed image. The diameter of each 
disk is 8 pixels. T o  guarantee that  the disks do not touch 
one another in the reconstruction, a 3-pixel-wide buffer re- 
gion surrounds each disk. The first of the series of images 
generated for these tests is shown in Fig. 3. In this comput- 
ed tomographic problem, the measurements are assumed to 
consist of a specified number of parallel projections, each 
containing 128 samples. The above choice for the kind of 
scene to be studied provides a situation in which the nonneg- 
ativity constraint is likely to have a substantial effect. In 
some of the test cases described below, random noise is 
added to the projection measurements. For these, a Gauss- 
ian-distributed random number generator with zero mean is 
used. This means that negative values for the projections 
are possible, even though the object itself is nonnegative. 
While this may seem absurd to theoreticians, it is not at  
variance with many experimental situations. For example, 
in transmission tomography in which the projections are 
measured through the attenuation of x rays, the path length 
is derived from the ratio of a measured x-ray intensity to 
that expected for no object. The measured intensity values 
will vary, a t  least because of counting statistics, about less 
than the expected intensity, yielding path lengths that fluc- 
tuate about and below zero. 

The results of reconstructing Fig. 3 from 12 noiseless views 
spanning 180 deg by using 10 iterations of the ART algo- 
rithm are shown in Fig. 4. The seemingly random fluctua- 
tions in the background are artifacts produced by the limit- 
ed number of projections. At first sight, it appears that the 
nonnegativity constraint improves the reconstruction con- 
siderably by reducing the confusion caused by the fluctua- 
tions in the background. However, some of the low-contrast 
disks have not been reproduced. Also, there remain many 
fluctuations in the background that may mislead one to 
suspect the presence of disks where none exist in reality. 
Thus, on the basis of this single reconstructed scene, one 

Fig. 4. Reconstructions of Fig. 3 from 12 noiseless parallel projections subtending 180 deg obtained with 10 iterations of the ART algorithm 
with (right) and without (left) the nonnegativity constraint. These images are displayed with high contrast to reveal the low-contrast disks of 
interest. 
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cannot say with certainty whether the nonnegativity con- 
straint improves the detection of the low-contrast disks. 
The question is basically a statistical one. A statistically 
significant comparison between reconstructions with and 
without the constraint must be made to assess its value. 

We now present some basic elements of signal-detection 
theory7 to facilitate the analysis of the binary discrimination 
task, namely, is the disk present or not? To make the 
detection task as simple as possible, it will be assumed that 
the position of a possible disk and the background is com- 
pletely known beforehand. The first step is to define a 
scalar decision variable, which is to be used to make the 
decision. The likelihood ratio between the two alternatives 
yields an optimum decision variable. When the image is 
corrupted by additive uncorrelated Gaussian noise, the opti- 
mum decision variable is the inner product between the 
expected signal shape and the actual data, which is, of 
course, identical to using a matched filter.: Then the detec- 
tion task is performed by stating that a disk is present when 
the value of the decision variable is above a chosen threshold 
value. Consider the frequency distribution of the decision 
variables obtained at locations at which the objects of inter- 
est are known to be present. The probability that the pres- 
ence of a disk is correctly detected, called the true-positive 
probability, is estimated by the area that is under this fre- 
quency distribution and above the threshold. The probabil- 
ity of falsely stating that a disk is present, the false-positive 
probability, is the area that is above the threshold and under 
the corresponding frequency distribution for locations at 
which no object exists. As the threshold is lowered, both the 
true-positive rate and the false-positive rate increase. The 
resulting variation sweeps out the ROC curve,s which is a 
plot of the true-positive probability versus the false-positive 
probability. The ROC curve completely summarizes binary 
discrimination task performance. According to Bayes, an 
optimum value of the threshold value, one that minimizes 
the overall risk or cost, can be chosen on the basis of the 
relative costs associated with correctly and incorrectly de- 
tecting disks. When one is dealing with human observers, 
these frequency distributions are not explicitly observable; 
the choice of the threshold is implicitly made by the observ- 
er. The access to the frequency distributions afforded by 
the present computational approach is advantageous be- 
cause these distributions represent the fundamental data. 
The full ROC curve is easily generated once the frequency 
distributions are calculated. 

To perform the stated task of detection in the present 
study, we assumed that the average of the reconstruction 
over the area of the disk is an appropriate decision variable. 
This average is a good approximation to the optimal 
matched filter. However, it ignores the blurring effects of 
the finite resolution of the discretely sampled reconstruc- 
tion. I t  also does not take into account the known correla- 
tion in the noise in computed tomographic reconstr~ctions~~ 
that have been derived from projections containing uncorre- 
lated noise. Nor does it take into account the effects of the 
nonnegativity constraint on the characteristics of the noise. 
After reconstruction, the average is calculated over each 
region in which a low-contrast disk is known to exist. The 
result of doing this for the reconstructions of 10 different 
scenes, each containing 10 low-contrast disks and approxi- 
mately 30 separate disk regions that are taken from the 

background, is displayed as a frequency graph in this deci- 
sion variable IC/ in Fig. 5(a). The graph for the averages over 
each region for which no disk exists is plotted as well. 

Figure 6 shows the ROC curve generated directly from the 
frequency graphs in Fig. 5. Comparison between the ROC 
curves produced by the unconstrained ART algorithm and 
by the constrained ART algorithm shows that the nonnega- 
tivity constraint has dramatically enhanced the perform- 
ance of this detection task. We will base our summary 
measure of the detectability on the area under the ROC 
curve A, which is known to be the same as the fraction of 
correct scores that would be obtained in a two-alternative 
forced-choice experiment.17 As is characteristic of all sum- 
mary measures, however, i t  ignores the details of the shape 
of the ROC curve, which might be important if different 
costs were involved in making false-positive responses than 
in making false-negative ones. The area is estimated here 
by applying the trapezoidal rule to the ROC curve generated 
with medium to finely binned histograms. The areas under 
the ROC curves in Fig. 6 are 0.738 with no constraint com- 
pared with 0.930 with the constraint. The area under the 
ROC curve may be expressed in terms of an effective index 
for detectability dA: 

-0.2 -0.1 0.0 0.1 0.2 0.3 
DECISION VARIABLE 

20 - 
NOT PRESENT 

PRESENT .................. 
n 

-0.2 -0.1 0.0 0.1 0.2 0.3 
DECISION VARIABLE 

Fig. 5. Frequency graphs of the decision variable (the average over 
a circular region) evaluated at positions where a low-contrast disk is 
known to exist (dashed curve) and where none exists (solid curve) 
for ART reconstructions (a) without the nonnegativity constraint 
and (b) with the constraint. These results summarize the perform- 
ance obtained from reconstructions from 12 views for 10 randomly 
generated scenes. 
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Fig. 6. ROC curves derived from the frequency graphs that are 
shown in Fig. 5 for unconstrained ART (solid curve) and for con- 
strained reconstructions (dashed curve). The nonnegativity con- 
straint is seen to improve detectability markedly, as its ROC curve is 
always significantly above that for no constraints. 

d, = 2 erf c-'[2(1 - A)], (4) 

where erf c-I is the inverse of the complement of the error 
function erf c(x) = 1 - (2/,?r)jb e ~ p ( - t ~ ) d t . ~ 8 J g  In Ref. 19 
this index is designated by z ( A )  and the area under the ROC 
curve by P(A) .  For Fig. 6 a value for dA of 0.901 is obtained 
for the reconstructions without the constraint and 2.092 
with the constraint. Thus the use of the nonnegativity con- 
straint has increased the detectability by 132%, in this case 
of a limited number of views. The nonnegativity constraint 
decidedly improves this measure of detectability. 

An alternative index of detectability can be derived di- 
rectly from the frequency distributions. For one to be able 
to distinguish between the ensemble of low-contrast disks 
and the background, it is clearly desirable for these two 
frequency distributions to be separated as much as possible. 
The degree of separation between the two distributions is 
often characterized by the detectability index df (called d, in 
Ref. 19), given by 

where $1 and ul are the mean and the rms deviation of the 
frequency distribution, respectively, when the object is 
present and those with subscript 0 are the values when the 
object is not present. This index is sometimes called the 
detection signal-to-noise ratio. Equation (5) is normalized 
to be the same as dA for Gaussian-shaped frequency distri- 
butions. For the frequency graphs that are shown in Fig. 
5(a) corresponding to the unconstrained reconstructions, d' 
is 0.871. The corresponding frequency graphs for con- 
strained reconstructions are presented in Fig. 5(b). I t  is 
seen that, owing to the nonnegativity constraint, the fre- 
quency graph for the background regions piles up against 
zero. Both frequency graphs are narrower than those for the 
unconstrained reconstructions. In fact, the rms widths of 
the two frequency graphs are quite different. The detect- 
ability index d' for the constrained reconstructions is 2.054. 

Care should be exercised in using this measure of detectabil- 
ity,lg as it is equivalent to dA only when the two underlying 
frequency distributions are  Gaussian. So if the stated task 
is binary discrimination between the disks and the back- 
ground and the area under the ROC curve is deemed to be 
the appropriate performance index, then d' should not be 
employed in place of dA without verification of the Gaussian 
shape of the distributions in the decision variable. Despite 
the rather non-Gaussian distributions observed in Fig. 5(b), 
d' is close to d ~ .  Note that the average reconstruction value 
over a disk provides an estimate of the amplitude of the disk. 
The relative accuracy of such an  estimate is 01/$~. Thus 
there is an intimate connection between the detection task 
considered here and the task of amplitude  estimation."^'^ 

The relative accuracy of the two indices of detection is 
worth mentioning. The statistical accuracy of results ob- 
tained by the Monte Carlo method must always be consid- 
ered because these results are calculated by averaging over a 
finite number of discrete occurrences called events. Of the 
two measures of detectability presented above, d' has better 
statistical accuracy, as it is calculated by using all the events 
in the two frequency distributions. By the usual method of 
propagating errors the rms uncertainty in df is easily esti- 
mated to be approximately 

where n is the number of events in each graph, which is 
assumed here to be the same for both. The only events that 
contribute to the ROC curve are those that lie in the range of 
the decision variable that is common to both frequency 
graphs that are to be distinguished. Thus the calculation of 
A, and therefore of dA, is based on only a fraction of the n 
events. The rms uncertainty in d A  given by Simpson and 
Fitterlg is 

The accuracy of dA is only slightly worse than that of d' for 
small df. But as d' grows, the accuracy of dA soon becomes 
much worse because the number of events in the region 
common to both frequency distributions diminishes eventu- 
ally to zero, as the frequency distributions ultimately be- 
come completely disjoint. Even though it is not so accurate 
as d', dA is the relevant measure for the simple binary detec- 
tion task, also known as the signal-known-exactly detection 
task. Clearly for this task the only range of $ for which there 
is any confusion in detection is the region common to the two 
frequency distributions. What happens outside that region 
is unimportant for this particular task. 

The above estimates are those of the rms deviation in the 
results that would be observed for many repeated realiza- 
tions of the same imaging situation. However, they may not 
properly gauge the significance of the change in detectability 
index that might be observed when two different algorithms 
are compared on the basis of exactly the same data sets. I t  is 
observed that a high degree of correlation often exists be- 
tween the reconstructions obtained with different algo- 
rithms when one starts from exactly the same data. This 
correlation is advantageous because it increases the signifi- 
cance of an intercomparison made between two algorithms 
for a given number of trials. However, the significance of 
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Fig. 7. Reconstructions of Fig. 3 from 100 noisy parallel projections subtending 180 deg obtained with 10 iterations of the ART algorithm with 
(right) and without (left) the nonnegativity constraint. The added noise is Gaussian distributed with arms deviation of 8. 

the difference may be determined only by a detailed statisti- 
cal analysis of the data as, for example, provided by the ROC 
analysis code CORROC developed by Metz21 or by the tech- 
nique suggested by Hanley and McNeileZ2 

Figure 7 shows the reconstructions obtained for an essen- 
tially complete set of data, 100 projections covering 180 deg 
but with noise added to the projection data. The rms value 
of the noise is 8. For comparison, the peak projection value 
of a low-contrast disk is 0.80. Again it appears that the 
nonnegativity constraint produces a visible improvement in 
the reconstructions by almost completely eliminating the 
noise in the background. However, a disk-by-disk visual 
comparison between the constrained reconstruction and the 
known original scene (Fig. 3) indicates that the ability to 
detect each disk is questionable. There is clearly a need to 
accumulate statistics on many objects and scenes to deter- 
mine whether the constraint has improved detectability. 
The frequency graphs in Fig. 8 provide the desired statistical 
summary. For the unconstrained reconstructions, the fre- 
quency graphs for both regions appear to be Gaussian 
shaped with essentially identical rms widths, as expected, 
since the unconstrained reconstruction algorithm is a sta- 
tionary linear process. The characteristics of the frequency 
graphs in Fig. 8 are much the same as those discussed above. 
The detectability index d' obtained from the frequency 
graphs for the unconstrained reconstructions is 1.995, and 
d.s derived from the corresponding ROC curve is 1.964. The 
detectability in this situation can be calculated on the basis 

o f  the rms noise in the projection data under the assumption 
that  the background is k n o w n . V h e  resulting d' is approxi- 
mately 2.3. This is slightly larger than the value obtained 
above, which one expects because no account is taken of the 
correlations intrinsic to noise in computed tomographic re- 
c o n s t r ~ c t i o n s . ~ ~ h u s ,  in this case of complete and noisy 
data, the ART algorithm achieves nearly full statistical effi- 
ciency, as is expected of the filtered backprojection algo- 
~-ithm.~" 

-0.2 -0 1 0.0 0.1 0.2 0.3 

DECISION VARIABLE 

-0 2 -0.1 0.0 0.1 0.2 0.3 

DECISION VARIABLE 

Fig. 8. Frequency graphs of the decision variable (the average over 
a circular region) evaluated where a low-contrast disk is known to 
exist (dashed curve) and where none exists (solid curve) for ART 
reconstructions (a) without the nonnegativity constraint and (b) 
with the constraint. These results summarize the performance 
obtained from reconstructions of 10 randomly generated scenes 
from 100 views with an rms noise value of 8. 
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Fig. 9. The ROC curves derived from the frequency graphs that are 
shown in Fig. 8 for unconstrained ART (solid curve) and for con- 
strained reconstructions (dashed curve). The nonnegativity con- 
straint does not alter detectability in a statistically significant way. 

The nonnegativity constraint has a profound effect on the 
frequency graphs in Fig. 8. Negative values for the decision 
variable are not possible, so the frequency graph for the 
background region becomes spiked a t  zero. The mean value 
of the decision variable of the frequency graph for the low- 
contrast disk regions is reduced by almost a factor of 2. 
However, the ROC curves (Fig. 9) for the unconstrained and 
constrained cases are essentially identical, indicating that 
there is no change in discrimination between the back- 
ground and the low-contrast disks. The implication is that, 
under an appropriate transformation of the decision vari- 
able, the two frequency graphs are essentially unchanged in 
their region of commonality, despite the obvious changes in 
gross graph shapes. From the frequency graphs of the con- 
strained reconstructions, d' is 1.825 and dA derived from the 
area under the ROC curve is 1.985. The statistical uncer- 
tainty in these values for df is approximately 0.141 by the 
more general form of Eq. (6) for an unequal number of 
events in the two frequency graphs, and the statistical uncer- 

tainty in dA is approximately 0.206. The difference between 
these two indices of detectability is almost statistically sig- 
nificant. 

Summarizing the above discussion, the dA values for the 
ROC curves are 1.964 and 1.985, without and with the con- 
straint, respectively, each with an estimated statistical un- 
certainty of 0.206. Thus we might conclude that the non- 
negativity constraint increases the detectability by no more 
than 25%, based on a 1.65 standard-deviation limit for a 
confidence level of 5%. However we expect the statistical 
accuracy in the comparison between these two values to be 
much better than this because of the strong correlation be- 
tween the unconstrained and the constrained reconstruc- 
tions mentioned above. I t  is found that the frequency 
graphs of the differences of the decision variables for the two 
reconstruction sets, taken region by region, have rms widths 
that are almost half those for the individual frequency 
graphs. One concludes that the nonnegativity constraint 
does not increase the detectability by more than approxi- 
mately 13%. This conclusion is perhaps contrary to what we 
might be led to believe on the basis of the improved visual 
appearance of Fig. 7(b). As this result is counterintuitive, it 
deserves closer investigation in future research. 

Table 1 tabulates the detectability indices obtained under 
various data-taking conditions. The estimated accuracies 
of d A  take into account the fact that the number of events in 
the frequency graphs are 100 and nearly 300. The nonnega- 
tivity constraint is seen to be generally useful. The con- 
straint is particularly helpful when the data are limited by 
deficiencies in the measurement geometry. I t  has little ef- 
fect when the data are complete but noisy. The CPU time 
required to calculate the entries in the table look as long as 1 
h on a VAX 8700, which is about four times faster than a 
VAX 785. 

Table 2 summarizes other results obtained for the same 
conditions. As noted above, df has better statistical accura- 
cy than dA, ranging from 0.114 to 0.196 for the entries in the 
table, assuming 100 and 300 events in the two frequency 
graphs. The rms error is the rms difference between the 10 
reconstructions and their corresponding original images. 

Table 1. Summary of the Effect of the Nonnegativity Constraint on the Detectability Index dA Determined from 
the Area under the ROC Curve for Various Kinds of Projection Dataa 

d~ 
Relative 

No. A0 RMS Without With Improvement 
Projections (Deg) Noise Constraint Constraint in d A  

100 180 8 1.964 f 0.205 1.985 f 0.206 +I% 
100 180 4 4.113 f 0.826 4.514 f 1.223 +lo% 

" These results were obtained from tests made on the computed tomographic reconstructions of 10 randomly generated scenes for various kinds of deficiency in 
the data. In all cases 10 iterations of the ART algorithm were used with nominal relaxation factors, as explained in the text. 
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Table 2. Summary of the Effect of the Nonnegativity Constraint on Other Measures of Reconstruction Quality for 
the Same Situations Tabulated in Table 1 

d' RMS Error L1 Error RMS Residual 
No. A8 RMS Without With Without With Without With Without With 

Projections (Deg) Noise Constraint Constraint Constraint Constraint Constraint Constraint Constraint Constraint 

The L1 error is similar but is calculated as the average of the 
absolute value of the differences. I t  is concluded from this 
table that  the nonnegativity constraint enhances detectabil- 
ity when the data are incomplete. An equally fundamental 
result is that  the detectability for complete, but noisy, data 
is not improved by the nonnegativity constraint. An oppo- 
site conclusion would be drawn from the rms and the L1 
norm errors, both of which indicate that the constrained 
reconstructions are significantly closer to the original im- 
ages. These measures probably fail to be indicative of task 
performance because the fluctuations in the constrained re- 
constructions are no longer position invariant, that is, sta- 
tionary. Another reason to distrust such summary mea- 
sures of reconstruction fidelity is that they do not distin- 
guish between different spatial frequencies. As such they 
cannot be indicative of the performance of specific tasks." 

I t  is noted that  d' is not much different from d A  in most of 
the situations tested, even though the frequency distribu- 
tions for the constrained reconstructions never possess 
Gaussian shapes. This is encouraging because d' has better 
statistical accuracy than d A ,  particularly for large d', and is 
more likely to be a continuous function of the parameters 
that  can be varied in the reconstruction procedure. Thus d' 
is a desirable performance index for the purpose of optimiz- 
ing a reconstruction technique, if one bears in mind the 
caveats, stated above, concerning the connection between d' 
and dA. If d A  is deemed the appropriate performance index, 
good relative accuracy in its estimation can be easily ob- 
tained only when i t  falls in the range from approximately 1 
to 3. Thus the design of the imaging situation must be 
carefully adjusted to keep d A  within that range. Although 
the relative accuracy of d' keeps getting better as d' gets 
larger, a t  some point its relevance might be questioned, 
because discrimination becomes virtually certain. Further- 
more, systematic effects of the simulation procedure become 
more relevant as the statistical errors decrease. 

DISCUSSION 

We have presented a method to test the effectiveness of 
reconstruction algorithms. This method is based on a Mon- 
te Carlo simulation of the complete imaging process from the 
composition of the original scene to the final interpretation 

of the reconstructed image. The goal of the simulation is to 
estimate the accuracy with which a specified task can be 
performed on the basis of the reconstructions. This method 
accords with the notion that  an algorithm can be properly 
evaluated only by trying it out on a statistically meaningful 
sample of trials. A major benefit of the Monte Carlo tech- 
nique is that new effects may be easily added. On the other 
hand, only the overall effect of all the conditions is observed. 
I t  may be difficult to determine the relative contributions of 
individual effects. The Monte Carlo simulation technique 
is particularly useful in situations that do not lend them- 
selves to an analytic approach. I t  can provide a good statis- 
tical sampling over all the uncontrollable variables in the 
problem. An example is the typical case of the effect of 
discrete sampling on signal analysis, as in the problem of the 
detection of small objects. In this example it is desirable to 
average the detectability over all possible positions of the 
object relative to the discrete measurements and the recon- 
struction grid.4 The Monte Carlo method is perfect for this. 

We have seen that the nonnegativity constraint is often 
beneficial for the specific problem addressed here-detec- 
tion of low-contrast disks in computed tomographic recon- 
structions. This constraint is particularly helpful when the 
data consist of a limited number of noiseless projections. 
However, when the data are complete but degraded by addi- 
tive noise, the nonnegativity constraint does not improve 
detectability. Some improvement is attained in intermedi- 
ate circumstances when the data are both incomplete and 
noisy. One can abstract these results by concluding that the 
use of prior knowledge (that the image must be nonnegative) 
improves the usefulness of reconstructions containing arti- 
facts created by the null space associated with a lack of 
 measurement^.^ On the other hand, when the defects in the 
reconstruction are a consequence of noise in the measure- 
ments, the nonnegativity constraint is of no help. We hy- 
pothesize that  the value of the nonnegativity constraint will 
generally depend on which of these characterizes the defi- 
ciency in the data. In previous research, we found that the 
effectiveness of the nonnegativity constraint can be signifi- 
cantly enhanced by choosing the relaxation parameters used 
in the ART algorithm to optimize the detectability.15 

It  is possible to obtain misleading results by assuming too 
simple a task. For example, by consideration of the binary- 
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singlet discrimination (Rayleigh) task applied directly to the 
acquired quantum-limited data, Wagner et ~ l . ~ % a m e  to the 
puzzling conclusion that  a large square aperture is prefera- 
ble to a coded aperture. A subsequent study2%orroborated 
and extended the original analysis. The rub is the simulta- 
neous assumption of only a single object, which can have just 
two configurations, and a known background. Under these 
assumptions, binary discrimination can logically be made by 
comparing the raw data against the two alternative signal 
shapes. This task can be performed without the necessity of 
reconstructing the scene. I t  has been shownx that the pres- 
ence of an unknown, slowly varying background reduces 
both the detectability and the Rayleigh discriminability for 
large apertures substantially more than for apertures that 
are approximately the size of the object. The smaller aper- 
ture is preferred because it reduces the mixture of unknown 
background with the signal. The latter analysis was also 
performed solely on the basis of the measurement data. I t  is 
conjectured that coded apertures will prove to provide bet- 
ter performance than the simple square aperture as more 
variability and corresponding uncertainty is introduced into 
the problem. Examples of such increased complexity for 
the Rayleigh task are unknown position and orientation of 
the binary object and the presence of other unknown objects 
in the scene. With the Monte Carlo evaluation method, one 
can easily accommodate such additional complications by 
numerically estimating task performance in many recon- 
structed images. I t  is anticipated that the presence of arti- 
facts in the reconstructions will reveal a major hole in the 
"grand gaping aperture" argument.25 

From the above we see that  a fundamental distinction 
exists between performing binary discrimination tasks on 
the basis of directly measured data as opposed to using 
reconstructed images. An analysis based on the raw data 
amounts to a calculation of the propagation of random errors 
for the particular measurement matrix. This analysis 
places an upper limit on the accuracy of binary discrimina- 
tion. This upper limit can be attained in situations in which 
a complete set of data is available, for which the nasty null 
space and, hence, artifacts in the reconstructions are elimi- 
nated. Logically speaking, it is also applicable in the rare 
situations in which the signal and the background are com- 
pletely known a priori, as assumed in the above-mentioned 
studies. In cases involving noiseless data, such an analysis 
always implies perfect discriminability. In the present 
study we have observed the contrary; detectability based on 
reconstructions from noiseless data can be far from perfect 
because of the artifacts produced by the (unknown) collec- 
tion of objects in the scene in conjunction with a limited 
number of projections. The appearance of these artifacts is 
equivalent to the lack of knowledge of the background in the 
projection data for such a problem. Although the recon- 
struction procedure is supposed to separate the objects in 
the reconstructed scene, it can do so only if enough projec- 
tion data are available. 

As the detection task specified in the present example is 
truly simple and not closely related to many real problems, it 
would be worthwhile to explore more complex and interest- 
ing tasks.20,2T~28 Clearly, the definition of the task and the 
method used to perform it are extremely important for a 
reliable conclusion. But it may be difficult to define pre- 
cisely many interesting real-life tasks. For example, how 

does one approach the problem of detection of a lesion in a 
radiograph? Another aspect of real imaging systems is that 
they almost invariably must handle multiple types of tasks 
in many types of images. The solution in terms of the 
Monte Carlo method is to invoke a performance index that 
takes a weighted average over as many different types of 
tasks and images as necessary to produce a relevant measure 
of efficacy. 

The use of a nonnegativity constraint leads to a bias in 
reconstructed images. Thus there is probably a need to 
acknowledge a lack of information about the background 
surrounding an object. Inclusion of an unknown back- 
ground leads to a weighting function composed of a positive 
central region surrounded by a negative annulus, a so-called 
center--surround mask. An alternative way to handle an 
unknown background is to employ a more general, least- 
squares fitting approach in which the reconstructed image 
data are fitted to an assumed object signal plus a constant or 
slowly varying b a c k g r o ~ n d . ~ ~  The fitting approach can be 
used to estimate many other object parameters, for example, 
its position.20 

A worthwhile extension of the present research would be 
to pursue alternative choices for the decision variables for 
the purpose of improving performance. For example, one 
might consider a weighted average of the reconstruction 
values over a local region, much the same as the simple 
circular weight function used here but with considerably 
more flexibility. The optimal weights might be determined 
by using half the simulated reconstructions as a training set 
and the second half to estimate the task performance index. 
I t  would probably be too difficult to handle completely gen- 
eral weight assignments, but, with suitable restrictions on 
the number of variables used to specify the weights, it might 
be feasible. The optimal choice of decision variable might 
depend on the reconstruction procedure. If this line of 
research were pursued, it would be reasonable to compare 
the performance of one algorithm against another only on 
the basis of the best-decision procedure that could be 
achieved with each. If a human observer is to be the final 
interpreter of the images, the method used to perform the 
visual task must be correctly modeled to mimic the human 
observer, which might not be so easy to accomplish numeri- 
 ally.^^ I t  is interesting to note that the human observer 
probably cannot take into account a known background val- 
ue in an absolute way. Thus it does not make sense to build 
this prior knowledge into the task. In principle, it is of 
course feasible to incorporate a human observer directly into 
the present method, that is, to entreat a human interpreter 
to make the required decision on the basis of a sequence of 
reconstructed images that have been generated by the com- 
puter. However, it should be realized that reliable results 
can be achieved only through careful preparation and pains- 
taking training of the  observer^.^^" The latter aspect of 
dealing with human observers must be taken seriously be- 
cause artifacts keep changing character as the algorithm 
changes. 

Clearly, this approach of random simulation is generally 
applicable to testing and evaluating any or all aspects of the 
entire imaging chain from scene generation to the final 
method of task performance. Possibly a fruitful line of 
research that  can be addressed by using this approach is the 
optimization of the imaging system, either in terms of its 
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individual par ts  or in  its entirety. If many parameters are t o  
be  varied i n  the  optimization, one mus t  be concerned about 
t h e  stability of t h e  optimization procedure. Regularization 
mav be  reauired in  order t o  stabilize t h e  search for t h e  
optimum. For  example, t h e  optimization function could be  
augmented by  a sum of squares of t h e  deviations of t h e  
parameters from some standard values. 
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