
Experimental Techniques 25, pp. 50-55 (2001)                 LA-UR-01-3575 
 

A FRAMEWORK FOR ASSESSING CONFIDENCE IN 
COMPUTATIONAL PREDICTIONS 

Kenneth M. Hanson1 and François M. Hemez2 

Los Alamos National Laboratory 
Los Alamos, NM 87545 

INTRODUCTION 

This article is the third in a series of papers concerning the importance of simulation code 
validation to the US Department of Energy Accelerated Strategic Computing Initiative 
(ASCI) program [1].  The series started with a review by John Garcia of the critical need for 
advanced validation techniques in the ASCI program, which was created to make up for the 
absence of nuclear testing through the use of simulation codes.  Without testing, the 
simulation codes must be able to answer critical questions about the reliability of our aging 
stockpile of weapons.  In the second paper, Bill Oberkampf gave an overview of validation 
concepts and described the requirements for a well-executed validation experiment.  In this 
article we discuss the analysis of data obtained from validation experiments and motivate the 
use of uncertainties to quantify the accuracy of predictions made by simulation codes.  This 
work represents merely a small fraction of the numerous verification and validation projects 
currently being conducted at the DOE National Laboratories and at several universities under 
the auspices of the ASCI program. 
 
Engineers routinely use simulation codes to analyze and design critical structures and devices.  
Because public safety is often involved, confidence in the predictions made by simulation 
codes is clearly of paramount interest.  An engineer needs to be confident that when used in 
an appropriate way, a simulation code will predict the behavior of the system under study to a 
specified degree of accuracy.  The goal in validating a simulation code is to determine the 
degree to which the output of the code agrees with the actual behavior of a physical system in 
a specified situation. Because the criterion is real-world behavior, validation must involve 
comparison of the simulation code’s output to experimental results. 
 
Uncertainties in a quantity are described in terms of a probability density function (pdf) that 
specifies the probability of all possible values of that quantify.  In this context, probability is 
used as the quantitative measure of our degree of belief, which summarizes our knowledge 
about a particular situation [2].  We use the Monte Carlo technique to make this kind of 
probabilistic analysis more tangible as well as to obtain quantitative estimates of 
uncertainties.   
 
We will discuss the analysis of validation experiments, the role of uncertainties in material 
models, and in experimental conditions.  From the viewpoint of uncertainties, inference about 
how well a simulation code can predict physical phenomena is limited not only by the 
uncertainties in the relevant measurements, but also by how well the conditions of the 
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experiment are controlled, measured, and documented. We mention the possibilities for 
inferring unmeasured quantities, including the parameters in material models from 
comparisons to experiment.  The ultimate goal of validation might be to have a simulation 
code assign uncertainties to its output. 

MONTE CARLO CALCULATIONS 

The basis of the Monte Carlo technique is to represent a defined probability density function 
(pdf) in terms of random samples drawn from the pdf.  The underlying idea is to randomly 
pick values of a parameter such that the histogram of chosen values approximates the pdf.  
Suppose that a pdf is specified as a normal (Gaussian) distribution with a mean value of 100 
and rms deviation of 10.  Using a standard algorithm for drawing random numbers from such 
a distribution, we might get the following sequence of numbers, 104, 97, 89, 112, 94, etc.  
Figure 1 shows the histogram of the values from such a random sequence.  As the number of 
random numbers increases, the histogram looks more and more like the specified normal 
distribution. 

 
 
Figure 1.  The frequency histogram of a set of 100 random numbers drawn from a normal 
pdf, shown as the dashed line. 
 
 
In Monte Carlo, the degree of variability in the values of a set of random numbers reflects the 
width of the underlying pdf.  Since the random samples mimic the pdf, its characteristics may 
be estimated from the samples. Thus, the mean and rms deviation of the pdf are 
approximately given by the mean and rms deviation of the set of random samples. 
 
As we shall see in the next section, the pdf that describes the uncertainty in the quantity of 
interest may not be explicitly known.  In fact, the real power of the Monte Carlo technique is 
that it can provide quantitative estimates of the uncertainties in a complex function of 
uncertain variables, so long as the function can be computed. 



UNCERTAINTIES IN SIMULATION PREDICTIONS  

Figure 2 shows how we think about simulations of dynamic phenomena.  The simulation code 
requires that the situation be fully and explicitly specified.  Thus, the code requires as input 
the properties of the materials involved over the range of conditions encountered in the 
experiment and the initial state of the system.  Even though the diagram shows input from 
only one model of material behavior, more complicated situations could obviously require the 
input of models for several materials.  Boundary conditions may be thought of as being 
included in the initial-state specification.  The goal of the simulation code is to predict the 
behavior of the system at later times.   
 
For simplicity, we consider only deterministic phenomena in which the state of the system at 
later times is uniquely determined by the initial state and material behavior.  However, chaotic 
or stochastic phenomena can also be handled by the present approach.      
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Figure 2.  The purpose of a simulation code is to calculate the dynamic state of a system from 
a specified initial state and the defined behavior of the materials involved, represented by the 
parameter vector α.  Uncertainties in the initial state and material models, signified here by 
braces, may be propagated through the simulation code to obtain uncertainties in the code 
predictions. 
 
 
Validation is based on comparing the experimental measurements with the predictions made 
by a simulation code for that specific experiment.  If we think about the experimental 
counterpart to the simulation depicted in Fig. 2, we realize that each input to the code is to 
some degree uncertain.  Therefore, we should associate with each input variable a pdf that 
describes our uncertainty in its value. The properties of the material may be uncertain for a 
number of reasons, for example, because the exact composition and preparation of the 
material used in the experiment are not known.  Uncertainties can also arise because of 
variability in the material characteristics, such as variations in grain structure that arise in 
specimen preparation, which may not be adequately controlled or measured.  Also important 
in specifying an experimental set up is the degree of uncertainty in the initial state, described 
in terms of its geometry, initial velocities, materials, etc.   
 



The Monte Carlo technique provides a way to estimate the uncertainties in the simulation 
output that arise from uncertainties in the inputs to the simulation code. To do this, the 
parameters that describe the initial conditions and the material behavior are drawn from the 
pdfs that describe our uncertainties in them.  Braces are used in Fig. 2 to indicate that the 
quantities are uncertain.  The variability in the output states of the simulation obtained for the 
set of random input values represents the uncertainty in simulation predictions.  In this way, it 
is relatively easy to propagate uncertainties in inputs through a simulation code, a process that 
is called forward propagation of uncertainties.   

EXAMPLE – THE TAYLOR IMPACT TEST 

The Taylor impact test consists of impacting a cylindrical sample of material against a fixed, 
rigid surface, as depicted in Fig. 3.  Taylor tests are often performed to investigate material 
behavior at high stress and high strain rates.  Extremely high plastic strains develop at the 
crushed end of the rod, resulting in severe local deformation.  The type of experimental 
measurements typically performed range from simply measuring the initial and final radii or 
lengths of the deformed cylinder, to a full specification of its profile.  When the cylinder is 
composed of an anisotropic medium, the deformation may not be axially symmetric and these 
measurements would be made at several polar angles.  In some cases, the strain on the surface 
of the deformed cylinder might be measured.  These measurements can be used for validating 
material and fracture models developed by physicists and material scientists [3, 4]. 
 
 

 
Figure 3. In the Taylor impact test, a cylinder is thrown with high velocity into a fixed, rigid 
plate (left) producing a significant permanent deformation in the rebounded cylinder (right).   
 
 



For our numerical example, the cylinder is assumed to be made of a high-strength steel, 15 
mm in diameter and 38-mm long.  The impact velocity is 350 meters-per-second.  Because 
large plastic deformations and strain rates in excess of 10+5 second-1 are expected, plasticity 
and strain-rate dependence must be included in the stress-strain model.  We use the Johnson-
Cook model for rate-dependent plasticity: 
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where εp and σ denote the equivalent plastic strain and resulting stress, respectively.  The 
parameters α1, α2, α3, and N are material specific.  For simplicity, we are not including 
anisotropies in the material behavior and have assumed that the test is conducted at ambient 
temperature.  Furthermore, although the Johnson-Cook model can incorporate fracture, that is 
not included in this simulation. 
 
Our analysis is performed with Abaqus, a general-purpose finite-element modeling and 
analysis package, which employs explicit time integration [5].  The nominal material 
constants are chosen to be α1 = 760 MPa, α2 = 400 MPa, α3 = 0.011, and N = 0.26, 
representative of a high-strength steel.  The modulus of elasticity is E = 310 GPa and the 
material density, ρ = 7,750 kg/m3.   Under these conditions, Abaqus predicts the shape and 
strain values shown in Fig. 4.  The result at 50 microseconds represents the final deformed 
state of the cylinder. 
 



 
 
Figure 4.  Simulation of the Taylor test described in the text.  The figures show the half-
cylinder shapes at times of 0 µs, 17 µs, 33 µs, and 50 µs after impact (from left to right). 
Their equivalent-strain patterns vary from 0% (dark blue) to maximum strains of 83%, 165%, 
and 248% (red) for the last three shapes, respectively. 
 

UNCERTAINTIES IN THE SIMULATION OF THE TAYLOR TEST 

We use the Monte Carlo technique to illustrate the forward propagation of uncertainty 
through the simulation code.  We consider a hypothetical situation in which the only 
parameters that are uncertain are those in the above stress-strain model (1).  We assume that 
the uncertainty distribution in each parameter is given by a normal distribution with the mean 
values set equal to the nominal values given above.  We arbitrarily choose the relative 
standard deviations in α1, α2, α3, and N to be 20%, 20%, 30%, and 40%, respectively.   
 
As indicated above, the Monte Carlo process consists of sampling parameter values from the 
assumed uncertainty distributions and running the simulation code for each set of values.  
This procedure for uncertainty propagation can therefore be viewed as nothing more than 
multiple runs of a deterministic computer program.  Figure 5 shows the results of employing 
this process to generate six final profiles.  The results from only six Monte Carlo runs are 



shown to avoid the confusion of plotting too many profiles on the same figure.  The observed 
variation in shape can be interpreted as indicative of the uncertainty in profile that is produced 
by the assumed uncertainty in the plastic stress-strain relation.  We observe that the largest 
variability in radius, and hence largest uncertainty, seems to occur at the contact end of the 
cylinder.  Of course, a quantitatively accurate characterization of the uncertainties in 
simulation output requires many more than six realizations. 

 
Figure 5.  Six representative Taylor-test profiles for the steel cylinder predicted in a short 
Monte Carlo run in which there is a high degree of uncertainty in its plastic behavior.  The 
variability in these profiles indicates the degree of their uncertainty arising from the 
uncertainties in the stress-strain curve for the material. 
 
 
To illustrate the ability of the Monte Carlo technique to obtain quantitative uncertainty 
estimates, we extend the above Monte Carlo calculation to include 1,000 simulation runs.  We 
assume that the only measurement made is the radius at the base of the deformed cylinder. 
Figure 6 shows the histogram of the ratio of the final radius to initial radius, R/Ro.    The mean 
value of this distribution is 2.06.  Because the distribution in Fig. 6 represents the uncertainty 
in R/Ro in our hypothetical situation, the rms deviation of the distribution, 0.14, is our 
estimate of the standard deviation in the uncertainty of our prediction for R/Ro.  We observe 
that this histogram does not appear to be normally distributed, which should come as no 
surprise because the numerical simulation of this phenomenon is highly nonlinear.    
 



 
 
Figure 6.  Histogram of the ratio of the radius at the base of the deformed cylinder to its 
initial value obtained from a Monte Carlo run of 1,000 simulations.  This histogram represents 
the uncertainty in R/Ro coming from the assumed uncertainties in the plastic stress-strain 
behavior. 
 
 
By restricting our attention to a scalar quantity, R/Ro, we have greatly simplified how we 
display and quote the uncertainties involved.  The same 1,000 simulations have associated 
with them uncertainties in every aspect of their time-dependent predictions.  Thus, we could 
have chosen to measure the deformed cylinder profiles.  Then the prediction uncertainties 
would be similar to those presented in Fig. 5, but now for 1,000 samples.  The uncertainties in 
the profile could be presented in terms of the mean values and rms deviation in radius as a 
function of distance along the axis, z.  A new complication is introduced, however, because 
the uncertainties at one z position are statistically correlated with those at another position.  
The underlying statistical correlation is evidenced by the smoothness in the profiles in Fig. 5, 
which essentially indicates that the predicted radius cannot change abruptly from one z value 
to the next.  It is critically important to take into account this correlation in the statistical 
analysis of this experiment [6].  Even more difficult would be to try to characterize the 
uncertainties in the full strain field, which is predicted by the simulation, as shown in Fig. 4.   
 
Despite these complications, the Monte Carlo technique provides an easy way to visualize the 
nature of the uncertainties in the code predictions.  One only has to view the relevant features 
in the code output for a sequence of Monte Carlo simulations. 
 



These considerations, as well as practical issues, have led researchers to try to reduce the 
number of variables that need to be considered, both in terms of inputs and outputs from a 
simulation code.  The use of metamodels or response surfaces represents this approach, which 
is often useful in dealing with complex modeling situations [7, 8].  However, as we will 
discuss below, it may be useful in some situations to think about uncertainties in the broader 
context of the full simulation. 
 
We have ignored the potential uncertainties in the experimental set up.  These are readily 
included in the Monte Carlo technique.  For example, to include the uncertainty in the impact 
velocity, a fifth random variable v representing the impact velocity can be included in the 
input parameter vector (α1, α2, α3, N, v).  By drawing random samples for v from its pdf, the 
effects of uncertainties in v can easily be included in the Monte Carlo uncertainty calculation.  
Other uncertainties in the experimental situation can be similarly incorporated. This approach 
to assessing the consequences of uncertainties in the experimental conditions provides a good 
basis for designing validation experiments, for example, as discussed in Ref. [9] for structural 
dynamics applications. 
 
There are other sources of uncertainties regarding the material that ought to be kept in mind.  
For example, the material properties might not be uniform.  If the density were thought to be 
variable throughout a specimen, that uncertainty could be included in the Monte Carlo 
calculation.  We assumed the material properties to be isotropic, which may not be the case.  
For a new material for which we have no information about its anisotropic characteristics, this 
uncertainty ought to be included in the Monte Carlo calculations, if indeed the simulation 
code can take them into account.   
 
Another source of uncertainty in the output from a simulation code is the inadequacy of the 
code to include certain kinds of details in the experimental situation.  For example, the finite 
elements may not be small enough to permit the engineer to include features such as welds or 
fasteners in the computer representation of the structure being modeled.  These details might 
be approximated in the model or neglected all together.  Mesh size is often thought of as an 
issue of verification, that is, the degree to which the code solves the physics equations 
correctly.  However, since this, and other verification issues can be an important source of 
uncertainties in code predictions, their effects need to be considered and accounted for in the 
validation process.  
 
For this example, the Monte Carlo calculation is handled using a scripting language that 
allows one to run a simulation code (such as Abaqus) with controlled input parameters and to 
summarize the output data.  The scripting language used here is Python [10].  Another 
possibility would be to use a commercial code such as NESSUS [11], which has been 
developed for reliability analysis of structural mechanics applications.  Other general-purpose 
applications are being developed for the forward propagation of uncertainty, characterization 
of output probability information, and inference concerning the parameter values.  One 
example is the DAKOTA toolkit under development at the Sandia National Laboratories [12].   
 
 



COMPARISON OF SIMULATION CODE WITH EXPERIMENT 

The basis of validation is the comparison of experimental measurements with a simulation 
code.  In that comparison, it is important that the conditions put into the simulation code 
accurately match those of the experiment.  The degree of accuracy that one can quote for the 
simulation is limited by the combined uncertainties in the measurements and the uncertainties 
in the predictions made by the code that arise from uncertainties in the experimental set up.  If 
the prediction matches the measurements to within this combined uncertainty, we can say the 
simulation code has been validated to the combined uncertainty.  The fact that the 
uncertainties in the experimental conditions are important was alluded to by Oberkampf in the 
previous article in this series [1].  In his Guideline 2 he cautioned that in a properly conducted 
validation experiment, the experimental conditions should be well controlled and 
documented.   
 
Because the goal to determine the degree to which the output of the code agrees with reality, 
the comparison of the simulation code results to experimental measurements needs to be done 
in a quantitative manner.  The first question to be answered is, “How well does the prediction 
agree with the measurements?”  Then we want to state to what degree the accuracy of the 
code prediction has been confirmed.  Both of these questions can be addressed in a 
quantitative way with the t test or some other appropriate statistical means for comparing two 
probability distributions [13].  As indicated in the preceding paragraph, the uncertainties in 
code output that arise from uncertainties in the experimental conditions and set up must be 
included in this comparison. 
 
The t test is valid only then the pdfs are normal distributions.  We saw in Fig. 6 that the 
uncertainty in simulation output may not be normally distributed.  In that case the t test cannot 
be legitimately used and a suitable alternative needs to be employed.  As mentioned before, 
another issue to be considered when there are two or more measurements is whether there are 
correlations among the uncertainties in the simulation predictions for those measurements.  
Correlations may also exist among the experimental measurements, for example, through 
systematic uncertainties.  These would also have to be quantified and accounted for [13].  
These caveats indicate that one must carefully assess the appropriateness of the t test in any 
specific application. 
 
Under suitable conditions, it should be possible to use the comparison of the experimental 
results of a validation experiment with the output from a simulation code to gain information 
about the models used in the code.  When this process is employed to set the values of the 
model parameters, it is often called calibration, which is different from how we are using the 
term validation [1].  In that case, it is questionable whether the same experiments may be 
employed to subsequently validate the code, in the sense of assessing the accuracy of its 
predictions.  However, if a full uncertainty analysis is employed in this parameter-updating 
process, the process becomes one of inference [14].  In a sense the Monte Carlo technique for 
estimating uncertainties in simulation-code output described above is reversed and the 
uncertainties in the parameters are determined from the combined uncertainties in the 
measurements and the effects on the simulation of uncertainties in experimental set up.  Since 
the inference process involves determining the uncertainties in model parameters, we contend 
that it offers the possibility of predicting the uncertainty in simulation output.  Thus, inference 
brings us closer to reaching the ultimate goal of validation.  
 



INFERENCE ABOUT PHYSICS MODELS FROM EXPERIMENTS 

If a simulation code has been validated with a series of experiments, how much can we say 
about the physical variables predicted by the simulation that have not been directly measured?  
For example, in the Taylor test, how well can we rely on the maximum stress predicted by the 
simulation?  Since we have not directly measured the stress, we might conclude that the 
simulation could not be relied on.  On the other hand, if the code did predict the final shape to 
some degree of accuracy, it seems reasonable that the predicted stress might also be 
believable to some degree.  It is clearly important to understand to what extent this type of 
inference can be made.  Structural engineers need to know how much they can rely on the 
stresses calculated by FEM codes in order to be confident in the integrity of their designs. 
These concerns may be addressed using a model-based approach to understanding simulation 
uncertainty. 
 
Model-based simulation codes are based on our view of how things work.  Such codes are 
usually constructed on the basis of physical principles or laws and incorporate the behavior of 
materials through constitutive models.  When experimental data are found to agree with code 
predictions, we tend to view that as a confirmation that we understand the phenomenon 
involved.  Our hope is that the simulation code is robust to changes in the experimental 
conditions with respect to changes in geometry, materials, and operating conditions.  This 
hope forms the foundation of simulation science, but is perhaps the most difficult aspect with 
which to come to grips and say anything about quantitatively. 
 
Consider the hierarchy of experiments shown in Fig. 7.  The level of integration is based on 
the number of physics models needed to describe each experiment.  The nomenclature is 
slightly different from that used by Oberkampf [1], but the intent is similar.  Ideally, one 
learns about the individual physics models used in a simulation code through basic 
experiments, which are designed to isolate and characterize each physics model.  Then by 
doing more and more complicated experiments, one can learn more about the physics models 
by extending the range of physical conditions probed and also about possible interactions 
between different individual models, e.g., involving different materials.  Experiments 1, 3, 
and 4 are considered to be basic experiments because they involve only the individual 
material models represented by the parameter vectors α, γ, and δ, respectively. Experiment 2 
is partially integrated because it involves two models, represented by α and β.  Experiment 5 
is fully integrated in this scenario because it involves all four models [6]. 
 
Figure 7 is meant to capture the way knowledge about the physics models flows from the 
analysis of experiments at one level to the next.  Reference [6] suggests that this knowledge 
may be quantitatively specified by the uncertainty distributions in the parameter vectors α, β, 
γ, and δ.  Furthermore, Bayes law may be used in each bubble to update our knowledge of the 
physics models.  Thus, Fig. 7 is a probabilistic network in which probabilities flow between 
nodes and are updated in each node on the basis of new experimental information.  From this 
perspective, it appears feasible to systematically incorporate the information from all the 
experiments into a consistent set of parameters for the models involved.  Because this 
approach is grounded in quantitative uncertainty assessment, the uncertainties in simulation 
predictions may be calculated through the Monte Carlo procedure described above.  
Additionally, we should be able to effectively address concerns about the uncertainties in 
inferred quantities that not been directly measured.  
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Figure 7.  Diagram of the conceptual process for combining information from several 
experiments conducted for a hierarchy of experiments involving various levels of integration.  
Four underlying physics models, represented here by the parameter vectors α, β, γ, and δ, are 
required to account for the behavior of the fully integrated system. 
 

CONCLUSION 

We have presented the viewpoint that uncertainties in predictions made by simulation codes 
should be the basis for code validation.  The first place to look for uncertainties in simulation 
code output are the uncertainties in the physics models that are incorporated in the simulation 
code.  The Monte Carlo technique may be used to propagate uncertainties in the models into 
uncertainties in the code’s predictions.  Other sources of output uncertainties to consider 
include the numerical implementation of the physics models, especially the finite size of the 
finite elements, and aspects of the physics that are not accounted for.  We point out that 
validation experiments may be used in an inference process to improve our understanding of 
the physics models, which is legitimately captured in terms of model-parameter uncertainties.  
This line of reasoning underscores the importance of conducting validation experiments that 
are thoughtfully designed to provide results that can be quantitatively compared to simulation 
codes. 
 
These kinds of validation issues have been raised by the ASCI program, which was created to 
make up for the absence of nuclear testing through the use of computational models.  
However, they apply to all application areas in which people rely on simulations for decisions 
or design.  
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