
Adjoint Differentiation of Hydrodynamic Codes

Maria L. J. Rightley, Rudolph J. Henninger and Kenneth M. Hanson

XNH, XHM, and DX-3

MS F664, MS D413, and MS P940

Los Alamos National Laboratory
Los Alamos, NM 87545

Abstract

Many problems in physics and modern computing are inverse problems { problems where
the desired output is known, and the task is to �nd the set of input parameters that will best
reproduce that output in a hydrodynamics code (hydrocode). Optimization methods tackle this
type of problem, and a central task in applying optimization methods is to be able to deter-
mine the gradient of the output with respect to the input parameters that are being adjusted.
Presented here is the authors' progress (through the use of adjoint di�erentiation) in obtaining
those gradients in the case of some relatively simple hydrocodes.

1 Introduction

When a program simulates a physical system, it does so through the use of a set of equations
and mathematical relationships known as a physical model. This model will generally contain a
number of parameters that in
uence the system. Depending on the problem of interest, there may
be several situations that arise. One such situation is the inverse problem, where the output (or at
least the desired output) is known and it is the input parameters that need to be determined.

An example of an inverse problem is the
yer-plate experiment. The
yer-plate experiment is
conducted to help determine material properties. It can be used to help determine many material
properties, but let us consider one speci�c regime or behavior: spall. When a material is subjected
to certain forces, it will begin to accrue defects or breakage { this is the phenomenon known as spall.
A schematic of the process is shown in Figure 1. There are two plates involved, the
yer-plate and
the target plate. The target is initially stationary and generally thicker than the
yer-plate (but
other dimensions are the same), and the
yer-plate is sent toward the target plate at high velocity,
usually propelled by either a gas gun or high explosives { this is shown in the �rst \line" of the
�gure. The
yer-plate impacts the target plate and begins to push the target plate (second line).
When they impact, a shock wave is sent out from the impact plane into both materials (denoted
by the thicker lines, with the small arrows indicating direction of movement, not relative velocity).
These shock waves eventually reach the other (non-impact) boundaries of these two plates, at
which point the shock wave re
ects back into the two plates as rarefaction waves (the third line
is supposed to represent a time just after this has occurred, and one can see that the direction of

1

2

wave movement has now reversed in both materials). These rarefaction waves will continue until
they meet in the target plate (due to the relative widths of the plates that was discussed above).
The fourth line of the �gure is a time just before this has occurred. When they meet, they act
to pull the material apart at the intersection plane. Depending on the material strength and the
original conditions present, this will happen to varying degrees. When the interest is not in spall
behavior, lower pressures and velocities are used, and spall does not occur.

Flyer Target

Figure 1: Flyer Plate Experiment Setup

Experimentally, the velocity of the leading edge of the target plate (the rightmost edge in
Figure 1) is measured, for example, by a method of interferometry such as VISAR. A window
material is usually added at the leading edge of the target plate, and a laser beam is shined
through the window material and re
ects from that leading edge. How that beam has been altered
when it reaches the receiving optics allows the velocity to be determined. When conditions are
changing within the material (i.e., the initial impact, the spallation { especially if the material
breaks), it is understandable that that leading edge velocity will change. So we end up with a

3

velocity trace at the leading edge, and we want to determine material parameters. We also have
a program (CHARADE[1], for example) that will simulate the experiment, given certain material
input parameters, and produce a calculated velocity trace. The task is then to adjust the material
input parameters to get the best match of the calculated velocity trace to the experimental velocity
trace.

That is a problem of the sort described above as an inverse problem. It is for problems just like
this (among others) that optimizationmethods are found to be very useful, because they perform the
process of optimizing the parameters for the user. Given an initial guess for the input parameters,
the optimization algorithm with iterate, adjusting the parameters until some criterion is satis�ed,
usually some cost function that is minimized until the cost function falls below some speci�ed
value. There are many optimization algorithms available, although a popular and useful method
of optimization is the Bayesian method[2-6], which has had considerable success in reconstructing
radiographic data[7,8]. The most e�cient optimization algorithms (including the Bayesian method)
make use of the gradient(s) of the output with respect to the input parameters. In most cases,
the output of interest is a cost function as just described { for the example cited above, it would
be probably be a �2-type cost function comparing the experimental and calculated velocity traces.
The input parameters of interest for the example given would be the material parameters relating
to spall). Therefore, a primary component in optimization of an inverse problem is determination
of those gradients; various common methods of obtaining those gradients are discussed in the next
section.

2 Gradient Methods

2.1 Perturbation/Direct Method

One straightforward method is to simply run the program twice, with di�erent values of the pa-
rameter (i.e., perturbing the value of the parameter). Dividing the di�erence in the output by
the di�erence in the parameter gives an approximate derivative, or sensitivity. Problems with this
include the fact that it is di�cult to determine a priori what the appropriate di�erence in the
parameter should be; these sensitivity values may thus vary with the parameter di�erence in some
regimes of parameter values, necessitating multiple runs to determine convergence of the sensi-
tivities. In addition, at least two program runs are necessary to calculate each sensitivity; for n

parameters, this leads to at least n + 1 runs of the program (more if one cannot magically divine
the proper perturbation to use) { this is, therefore, a computationally expensive method, especially
for long-running, complicated programs.

2.2 Equation-based Methods

Another method is to di�erentiate the equations (di�erential, for example) that make up the phys-
ical model, then combine them to de�ne the needed sensitivities. A concern with this model is
that the sensitivities found do not necessarily represent the gradients of the quantities calculated
in the program; if �nite-di�erence equations are used in the program, this method doesn't produce
sensitivities of �nite-di�erence equations, it produces the sensitivities of the di�erential equations.
Why this would be of great concern can be seen if one considers that this is part of a larger task,

4

which is to optimize the parameters of the system. If the adjustments to the parameters are based
on something other than what is in the code, it is possible that convergence to the optimum pa-
rameter set (i.e. those that produce the best calculated �t to the experimental output) would never
be achieved, because the adjustments don't �t the computational system. Whether this mis�t
has a signi�cant impact on the sensitivities or convergence to them is di�cult to determine, but
at any rate, one can not necessarily assume that the values obtained are the sensitivities of the
model/code. The DST method[9-14] is an example of this type of method, where the di�erential
equations associated with a problem are di�erentiated. A closely related method, DSA[12-14], dif-
ferentiates the di�erence equations instead of the di�erential equations and is more closely linked
to the code-based methods discussed below. Work with these methods by the second author and
others on the MESA2D code has had mixed success[15-17], and that is one of the reasons that the
straightforwardly code-based methods were considered and attempted, as a check and counterpoint
to the DSA/DST methods.

2.3 Code-Based Methods

The method of interest in this study was to di�erentiate the code itself in order to determine the
sensitivities that are of interest, thereby avoiding the di�culties that the equation-based methods
can have. There are two ways to do this { manually, by examining the code and producing
appropriately programmed derivatives; or automatically, using a tool that will look at each line
of code and produce derivative values automatically. The �rst of these two ways is bound to be
more e�cient, because the concern of the automatic tools is not e�ciency, it is overall applicability.
Both automatic and manual methods were implemented in this study.

3 Forward vs. Adjoint Modes of Di�erentiation

Both the code- and equation-based methods can ideally operate in both the forward and adjoint
modes. By forward and adjoint, we mean the direction through the code in which the derivative
values are obtained. A forward mode of di�erentiation would involve determining the necessary
derivatives by following the code's logic in the forward direction (top to bottom, front to back),
while for the adjoint mode, the derivatives are determined by following the code's logic in the
reverse direction (bottom to top, back to front). Which of these is more useful depends on the
relative numbers of input parameters of interest and output variables of interest. The forward mode
is more e�cient for determining the sensitivity of many outputs to one or a few input parameters,
while the adjoint mode is better suited for sensitivities of one or a few outputs with respect to
many input parameters.

As was mentioned earlier, it is common to provide a cost function that computes the relative
di�erence between a calculated and experimental data set for the problem of optimization. If that is
done, we have provided ourselves with just one output of interest, although there are obviously a lot
of other variables that contribute. As was also mentioned above, there may be several parameters
of interest (in the example cited, these would the material parameters related to spall). This points
us in the direction of the adjoint mode, which was most e�cient for one or a few outputs and many
input parameters. More is discussed about the adjoint mode below, but it should be pointed out
that with many of the automatic di�erentiation tools, both modes are available and were easily

5

implemented, so that these modes were also used. Given that both modes produced the same
results, results will not be listed independently for each mode.

4 Mechanics of Adjoint Di�erentiation

Consider that a program could be represented in terms of a
ow diagram such as that shown in
Figure 2 below. Granted, this is a simpli�cation, but the principle should still stand for more
complex situations. x is the input, � is the output, presumably the scalar cost function, and A, B
and C are the processes or transforms to which the input is subjected, and the output of process
A is y, and that of B is z, and thus obviously � is the output of C. That sequence of processes is
what is considered the forward calculation.

 A B C ϕx y z

Figure 2: Data Flow Diagram of the Forward Calculation

x, y and z are general data structures; they can consist of mixed types of data structures.
Some of the data may even be parameters that a�ect the transformations or processes themselves.
There is no loss in generality if they are thought of as being carried along in the sequence of data
structures up to the module at which they are used. In fact, it is necessary that the input to a
process must be all that is required in order to determine the output of that process, so one could
almost consider that the data structures are all of the data, and the only changes are in variables
from input to output of the process is in variables a�ected by that particular process. With that
in mind, these structures can have high dimensionality. We also do not place any restrictions on
the processes, other than that they be di�erentiable (and functions not obviously di�erentiable can
often be handled, also). By requiring that the input to a process be all that is necessary to produce
the output, we have thus required that each transformation or process is self-contained.

Considering the possibly high dimensionality of the data structures, storing the sensitivity
matrices of the transformations, such as

@yj
@xi

for all i and j, is likely to be extremely costly, because
one is multiplying the dimensionalities of x and y, which may already be large. The chain rule,
however, allows the calculation of the output � with respect to the ith component of x {

@�

@xi
=
X

jk

@�

@zk

@zk

@yj

@yj

@xi
:

Even if a process is nonlinear, the expression above amounts to a product of matrices, each
element of which speci�es the di�erential response of an output variable with respect to a di�erential
change of an input variable. The order of summations can be done two ways, either over j �rst or
over k �rst. If the summation is done over j �rst, one is going in the same direction as the forward

6

calculation and is therefore in the forward mode discussed above. The data-
ow diagram in Figure
3 illustrates the forward mode process (where the derivative notation is that the subscript is what
the derivative is taken with respect to, so that yx is the derivative of y with respect to x, and
by studying the data
ow diagram this, one can see how the forward mode is not optimum for a
situation with many input parameters and one output of interest. If x is large, then the results
of the �rst summation (@y

@x
) can be very large (dimensionality = dimensionality of x times the

dimensionality of y), and so on through the process until the last step, which reduces just to @�
@x
. �

is a scalar, so that our �nal result has just the dimensionality of x, while the intermediate results
had the dimensionality of either x � y or x � z. As these data structures can be very large, this
can result in extremely large intermediate results that need to be stored.

 A B C
ϕ

ϕx x x

x
y z

y z

Figure 3: Data Flow Diagram of the Forward Derivative Calculation

Summing over k �rst, on the other hand, yields the adjoint mode, and the sequence of events
goes backwards from �. Figure 4 illustrates this sequence in a data-
ow diagram. The notation
for the derivatives is given in the same way that it was for the forward mode. The adjoint mode
of di�erentiation can be seen to be useful; since � (a scalar) is what is always being di�erentiated,
the dimensionality of the possibly large data structures are never multiplied together as they are
in the forward mode. Instead of storing the matrix of the adjoint of each process (@�

@z
, @z
@y
, and @y

@x
),

only the intermediate data structures given in the previous sentence are formed and stored. Thus
the requirement for storing these data structures is only about double that required to store the
structures for the forward calculation (the forward calculation structures might also be required for
the sensitivity calculation if the processes are non-linear).

 A B Cϕ ϕ ϕ ϕ
x y z

x y z

Figure 4: Data Flow Diagram of the Adjoint Derivative Calculation

This is the basic adjoint di�erentiation technique, and it is the method that is followed in
the manual implementations, but it might not necessarily be exactly the way that the automatic
di�erentiation programs do things. The automatic di�erentiation tools are discussed below.

7

5 Automatic Di�erentiation Tools

Although all of these tools vary, there are some things that they all have in common. All have
two stages involved to get from the original code to an executable code with derivative coding
included. The �rst step is to submit the original code to a precompiler. This precompiler analyzes
the code and modi�es it to include code that calculates the derivatives of interest. The output of
this step is enhanced code, with some calls to external subroutines. The second step in the process
is to compile this enhanced code, including run-time libraries that satisfy the external subroutine
calls (for storage and memory manipulation, usually). In addition, all the codes considered in this
exercise have been written in FORTRAN, and automatic di�erentiation tools that I have used work
on FORTRAN code. ADIFOR has a version for C, known as ADIC, but TAMC and GRESS, to
the authors' knowledge, are only available for FORTRAN programs.

5.1 ADIFOR

The Automatic DI�erentiation of FORtran (ADIFOR) program was developed jointly by the Math-
ematics and Computer Science Division of Argonne National Laboratory (Christian Bischof, Pey-
vand Khademi, and Andrew Mauer) and Alan Carle of the Center for Research on Parallel Com-
putation at Rice University[18]. ADIFOR has limited platform availability for the precompiler
stage, and only provides executables. For the libraries, you get source code that is given for several
platforms, and it may be possible to extend use beyond those platforms by modifying some of the
�les. Additionally, ADIFOR currently runs in forward mode; there is no adjoint mode available.

As for speci�cs of use, ADIFOR has a very speci�c set-up that must be followed. There are
companion �les (to the code to be enhanced) that have to have a speci�c format and content.
ADIFOR requires that the bulk of the problem be in a subroutine. All of the parameters and
outputs of interest must be passed from the main program to the subroutine, and the activity
relating the parameters to the responses must be in the subroutines. Other variables can be passed
to the subroutine, but the parameters and responses must be. This means that the values of the
parameters must be set in the main program. The main program and major subroutine should also
be in separate �les, because of the way that the precompiling operation works. There are changes
to the main program that must be done manually by the user, in order to seed the gradient values
(essentially setting up the identity matrix mentioned in the mechanics section). The enhanced
code is retrieved from a newly-created subdirectory and compiled with the proper subdirectories.
ADIFOR does not automatically output the gradients { the user needs to do that manually.

5.2 GRESS

The GRadient Enhanced Software System (GRESS) was developed at Oak Ridge National Labora-
tory, and is one of the many codes in the Radiation Shielding Information Center's RSIC Peripheral
Shielding Routine Collection[19]. Jim Hordewel was the primary author, but is no longer directly
involved with GRESS. GRESS provides source for both the precompiler and the libraries; although
it is apparently platform-speci�c code, it could conceivably be expanded beyond the speci�c plat-
forms provided. Both forward and adjoint modes are available.

GRESS, unlike ADIFOR, does not require external �les to give its precompiler command infor-
mation. It also does not require splitting the program a certain way. With GRESS you simply put

8

two kinds of additional programming into the code; precompiler directives and subroutine calls.
Precompiler directives tell the precompiler certain general things, such as whether to pass comments
to the enhanced codes or not (*comments on/o�) or whether this implementation is to be a CHAIN
implementation (*chain). Subroutine calls are used to tell the precompiler which variables are to
be considered parameters and outputs, or to de�ne this implementation as an adjoint (ADGEN)
one (which works di�erently than when it is a chain implementation, and doesn't really explain
why). In the interests of space, speci�c commands beyond these will not be discussed. Su�ce
to say that many of the subroutine calls vary depending on whether adjoint for forward mode is
being used, which implies that switching from one subroutine to another merely involves changing
subroutine calls. GRESS does require the user to move �les around because of its oddities in input
and output �le names, but a short script �le can simplify the process greatly. As with ADIFOR, it
is necessary to compile the enhanced code with libraries. Unlike ADIFOR, in all versions of GRESS
implementation, the gradients and sensitivities are automatically output.

5.3 TAMC

TAMC's acronym comes from Tangent-linear and Adjoint Model Compiler[20,21]. It was developed
by Ralf Giering while a graduate student at the Max Planck Institute for Meteorology, where the
primary interest was in applying it to oceanographic simulation codes. He is currently a postdoc
at MIT, and has been successful in applying The precompiler stage is actually run by sending the
forward code by email to Ralf's computer in Germany, so platform availability for that stage is
unlimited. The source for the libraries is available for several platforms. The Tangent-linear part
of the acronym denotes the forward mode, so that both modes are available.

In terms of use peculiarities, TAMC is like ADIFOR in that it does require you split the main
program from the subroutine. However, instead of giving the program information through external
�les, TAMC uses Make�les, and information is put in the Make�le. TAMC is also di�erent in that it
does a dependency analysis to determine on which variables the gradients of interest are dependent,
and it only determines adjoint code for those variables. It is also di�erent in its implementation
of the enhanced code. Rather than just adding code to the forward code, TAMC develops its own
forward code and adjoint code separately, and puts them in two subroutines (presumably of the
main code).

As mentioned in Section 4, if any of the processes are non-linear, information from the forward
calculation is needed in the adjoint calculation. TAMC will also inform the user when a variable
from the forward calculation is needed for the adjoint calculation in its output with a RECOM-
PUTATION WARNING; these warnings can be Level 1 or Level 2, depending on the amount of
recomputation necessary. The need for this information can be satis�ed one of two ways: by recom-
putation of forward results in the adjoint calculation, or by independent storage. TAMC defaults
to recomputation, but the user can also choose to store the variables independently (via dynamic
memory, static memory, common blocks, or disk �les). The command to initialize these storage
methods and the actual storage commands are about the only modi�cations that the user ever
makes to his code. The main code, then, to calculate the adjoints, should call �rst the TAMC-
generated forward code, then the TAMC-generated adjoint code, and like ADIFOR, the output of
the gradients is the responsibility of the user.

9

6 Implementation and Results

For the �rst two codes listed below, the input problem that was considered was a 1-D
yer-like
problem. An instantaneous decrease in the velocity at one boundary (simulating a reduced
ow)
causes a shock, resulting in a 1-D shock problem. The
yer is a metal (copper-like) that uses
simpli�ed EOS descriptions and parameters. The premise was to consider a reasonably physical
problem, but to simplify where possible for ease of evaluating the results.

The output of interest for this problem is an average pressure value (integrated over all space
and time). The parameters of interest are as follows:

gamma Gruneisen coe�cient
c0 nominal sound speed
rho0 nominal density
s slope in linear us-up plot

rhobc boundary condition on density
cq quadratic arti�cial viscosity constant
clq linear arti�cial viscosity constant
vic1 initial condition of velocity
vtbc boundary condition of velocity (unchanged boundary)
vbbc boundary condition of velocity (decreased velocity boundary)
rhoic initial condition of density

6.1 Simple, 1-D Code

It was decided that this work should begin on a code with simple mechanics and basic materials
considerations. The code chosen was written to mimic the actions of the popular code MESA2D
in a one-dimensional, much simpli�ed framework. It was approximately 300 lines long. It was
submitted to each of the automatic di�erentiators and to the manual method, and the results for
a speci�c set of initial conditions is given below. Much of this work was done for conditions both
with and without energy evolution included in the code. Because the manual implementation was
done only with the energy evolution not included, those are the results shown here.

Variable GRESS-A GRESS-F ADIFOR TAMC Manual

gamma -2.54358E+06 -2.543585E+06 -2543585. -2.54358E+06 -2543584.

c0 1.53903E+05 1.539026E+05 153902.6 153903. 153902.5

rho0 -1.60778E+07 -1.607773E+07 -1.6077732E+07 -1.60778E+07 -1.6077755E+07

s 1.02751E+07 1.027515E+07 1.0275147E+07 1.02751E+07 1.0275145E+07

rhobc 1.99000E+05 1.990000E+05 199000.0 199000. 199000.1

cq 4.22026E+06 4.220258E+06 4220258. 4.22026E+06 4220262.

clq 7.98268E+04 7.982673E+04 79826.73 79826.8 79826.79

vic1 1.48481E+05 1.484787E+05 148478.7 148481. 148482.0

vtbc -4.01215E+06 -4.012142E+06 -4012143. -4.01215E+06 -4012149.

vbbc 3.82401E+06 3.824008E+06 3824008. 3.82401E+06 3824007.

rhoic 1.59265E+07 1.592650E+07 1.5926500E+07 1.59265E+07 1.5926487E+07

10

As one can see from looking at the numbers in the table, all of the methods agree exceptionally
well, the only di�erence really being the number of signi�cant digits output by the various methods.

6.2 MESA1D

Once full implementation of the methods was accomplished on the code mentioned above, work
shifted to a one-dimensional version of MESA2D, referred to as MESA1D. Initial e�orts (including
the results posted here) included the further simpli�cation of the strength being turned o� within
the code, but current work by one of the co-authors is very close to proper operation with the
strength model activated. MESA1D is approximately 5000 lines long. The work with MESA1D
was somewhat of a side project, and so there was also a decision made to not implement the
manual method on this particular code, because on a complicated code (as opposed to the simple
one-dimensional code that was 300 lines long and took about a week to adjoint code) this can be a
very time-consuming endeavor, and not to be undertaken without considerable forethought. That
is one of the reasons that we have been so interested in the automatic di�erentiation programs and
have been searching for one that will e�ciently handle the kinds of codes that one runs into on a
daily basis at a national laboratory. The problem described in Section 6 was again considered for
this work with MESA1D, and the values of input parameters used with the simple, 1-D code were
used again here. However, it should be noted that all MESA1D results include energy evolution
and will not therefore agree with the results in the above table, but provide an opportunity to see
what a small change in physics can make to the gradient/sensitivity values. The products of this
e�ort are as follows, where the GRESS results are not listed independently for forward and adjoint
mode:

Table 1: Results for MESA1D

Variable GRESS TAMC ADIFOR

gamma 1.18086E+06 1.19352E+06 1.19272E+06

c0 1.57567E+05 156086. 156015.

rho0 -7.8636E+07 -1.59544E+07 -1.59544E+07

s 1.03009E+07 1.01880E+07 1.01828E+07

rhobc 3.0268E+05 0. 0.286909

cq 4.31418E+06 4.30264E+06 4.29965E+06

clq 8.19983E+04 81621.7 81586.5

vic1 2.72885E+05 268964. 272518.

vtbc -4.18944E+06 -4.14965E+06 -4.15325E+06

vbbc 3.87530E+06 3.84001E+06 3.84002E+06

rhoic 1.27794E+07 1.60032E+07 1.60031E+07

e0 1.59549E+04 15876.6 15876.5

ebc 2.01001E+02 0.0 0.

The results for the automatic di�erentiators do not agree as well with each other for MESA1D as
they did for the simple, 1D code. The GRESS results are much older (and obtained from a slightly

11

modi�ed version of the code) than the TAMC and ADIFOR results. The TAMC and ADIFOR
results are, in fact, very recent, and the authors have not had time to certify that all three are trying
to solve the same problem. For example, for ebc, GRESS disagrees with the other two; however, the
value is low, and it is possible that numerical roundo� is coming in to play with GRESS, but not
in TAMC and ADIFOR. Similarly, the rho values (rhoic, rho0, rhobc) di�er between GRESS and
the other two. The most likely reason for this is that the setting up of the problem di�ers between
GRESS and the other two, but there has not been time to test this. For a more de�nite indication
of method di�erences for the same version of MESA1D, compare the TAMC and ADIFOR results.
There is much better agreement within those two sets of results, although one can observe that
the results are still not as close together as they were for the simple, 1D code. In rhobc, for
example, there is a discrepancy between the values, but although the ADIFOR result is not zero, it
is de�nitely a small number. Additional work needs to be done to determine if GRESS is working
on the correct problem, and it also remains to be seen whether these sort of di�erences would cause
signi�cant problems for optimization routines.

6.3 CHARADE

Progress with CHARADE has not been as fast as with the codes listed above; there are several
reasons for this. First, while CHARADE is only about 3000 lines to MESA1D's 5000, its logic
is signi�cantly less straightforward than MESA1D's. Part of this may be involved with the fact
that MESA1D is a �nite-di�erence code, while CHARADE is a method of characteristics code {
CHARADE avoids introducing numerical viscosity at the cost of some contortions in programming.
Second, CHARADE has three large, two-dimensional arrays that are very necessary to the adjoint
calculation and thus are saved (at least by the automatic di�erentiators) en masse in more places
than one would like. And, �nally, the �rst author was a postdoc for the duration of most of the
work, and is now a sta� member in another division; this limits the available time left to work on
this project. As it is, both GRESS and ADIFOR have been tried on CHARADE and have failed
due to the memory requirements placed on a system by the enhanced code. Work with TAMC is
still in progress and shows some hope of being able to handle everything with appropriate help;
TAMC has more
exibility of use than either GRESS or ADIFOR. As for manual implementation,
it was and is de�nitely a possibility, but the change in job by the �rst author means that there
is basically no one presently available to complete that task; the manual coding would require a
signi�cant time investment and can not really be accomplished on a part-time basis.

7 Conclusions

This paper has described the e�orts by the �rst author and others to apply code-based adjoint
di�erentiation techniques to a few simple hydrocodes. With e�ciently written code, the automatic
di�erentiators are able to perform well and quickly produce accurate results. When the code is less
e�ciently written, or when the size of the program becomes very large, the automatic di�erentiators
can have problems that are not always solvable. Of the three, TAMC seems the most sophisticated
and
exible, and the authors believe that is has a promising future in producing adjoint derivatives
in realistic codes. It has yet to be determined if the kinds of di�erences observed between ADIFOR
and TAMC for MESA1D are large enough to have a signi�cant impact on the optimization process.

12

As for manual implementation, with proper care, it can be implemented on any code, whether
written well or not. The variable of import is the time that is required to set up and code the adjoint
part of the problem. If the code is written systematically, and possibly with adjointing in mind, the
procedure can be made much less painful. In addition, while the automatic di�erentiators might
ultimately fail because of memory considerations, they are often useful in producing derivative
code that can then be used to simplify the process of manually coding the derivatives (that is, the
AD-produced code can be used, at least in some part, in the manual coding).

References

1 J. N. Johnson and D. L. Tonks, "CHARADE: A Characteristic Code for Calculating Rate-
Dependent Shock-Wave Response," Los Alamos National Laboratory Report, LA-11893-MS, UC-
701, January 1991.

2 K. M. Hanson, "Bayesian Reconstruction Based on Flexible Prior Models," J. Opt. Soc.

Amer. A, 10, p. 997, 1993
3 S. J. Press, Bayesian Statistics: Principles, Models, and Applications, Wiley, New York, 1989.
4 G. S. Cunningham, K. M. Hanson, G. R. Jennings, Jr., and D. R. Wolf, "An Interactive Tool

for Bayesian Inference," in Review of Progress in Quantitative Nondestructive Evaluation, D. O.
Thompson and D. E. Chimenti, Eds., 14A, p. 747, Plenum, New York, 1995.

5 K. M. Hanson and G. S. Cunningham, "The Hard Truth," in MaximumEntropy and Bayesian
Methods, J. Skilling, Ed., Kluwer Academic, Dordrecht, 1994.

6 K. M. Hanson and G. S. Cunningham, "Exploring the Reliability of Bayesian Reconstructions,"
in Image Processing, M. H. Loew, Ed., Proc. SPIE, 2434, p. 416, 1995.

7 K. M. Hanson, "Method to Evaluate Image-Recovery AlgorithmsBased on Task Performance,"
J. Opr. Soc. Amer. A, 7, p. 45, 1990.

8 K. M. Hanson, "Introduction to Bayesian Image Analysis," in Image Processing, M. H. Loew,
Ed., Proc. SPIE, 1898, p. 716, 1993.

9 E. M. Oblow, "Sensitivity Theory for Reactor Thermal-Hydraulics Problems," Nucl. Sci.

Eng., 68, p. 322 (1978).
10 D. G. Cacuci, C. F. Weber, E. M. Oblow and J. H. Marable, "Sensitivity Theory for General

Systems of Nonlinear Equations," Nucl. Sci. Eng., 75, p. 88 (1980).
11 D. G. Cacuci, P. J. Maudlin and C. V. Parks, "Adjoint Sensitivity Analysis of Extremum-

Type Responses in Reactor Safety," Nucl. Sci. Eng., 83, p. 112 (1983).
12 P. J. Maudlin, C. V. Parks and C. F. Weber, "Thermal-Hydraulic Di�erential Sensitivity

Theory," ASME paper No. 80-WA/HT-56, presented at the ASME Annual Winter Conference
(1980).

13 C. V. Parks and P. J. Maudlin, "Application of Di�erential Sensitivity Theory to a Neu-
tronic/Thermal Hydraulic Reactor Safety Code," Nucl. Technol., 54, p. 38 (1981).

14 C. V. Parks, "Adjoint-Based SensitivityAnalysis for Reactor Applications," ORNL/CSD/TM-
231, Oak Ridge National Laboratory, 1986.

15 R. J. Henninger, P. J. Maudlin, and E. N. Harstad, "Di�erential Sensitivity Theory Applied
to the MESA Code, " Proceedings of the Joint AIRAPT/APS Meeting on High Pressure Science
and Technology, p. 1781, Colorado Springs, CO (June 28-July 2, 1993).

13

16 P. J. Maudlin, R. J. Henninger, and E. N. Harstad, "Application of Di�erential Sensitivity
Theory to ContinuumMechanics," Proc. ASME Winter Annual Meeting 1993, p. 93, New Orleans,
Louisiana (November 28-December 3, 1993).

17 R. J. Henninger, P. J. Maudlin, and E. N. Harstad, "Di�erential Sensitivity Theory Applied
to the MESA2D Code for Multi-Material Problems, " Proceedings of the APS Meeting on Shock
Compression of Condensed Matter, p. 283, Seattle, WA, (August, 1995).

18 C. Bischof, A. Carle, P. Khademi, and A. Mauer, "The ADIFOR 2.0 System for the Automatic
Di�erentiation of Fortran 77 Programs," Argonne National Laboratory Report ANL-MCS-P481-
1194 (1995).

19 J. E. Horwedel, E. M. Oblow, B. A. Worley, and F. G. Pin, "GRESS 3.0 Gradient Enhanced
Software System," Oak Ridge National Laboratory RSIC Peripheral Shielding Routine Collection
Report PSR-231 (1994).

20 R. Giering, "Tangent Linear and Adjoint Model Compiler Users Manual," Manual Version
1.1, TAMC Version 4.76, 1997.

21 R. Giering and T. Kaminski, "Recipes for Adjoint Code Construction," Technical Report
212, Max-Planck-Institut for Meterologie.

