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A general probabilistic technique for estimating background contributions to measured spectra is presented. A Bayesian
model is used to capture the de�ning characteristics of the problem, namely that the background is smoother than the signal.
The signal is allowed to have positive and/or negative components. The background is represented in terms of a cubic spline
basis. A variable degree of smoothness of the background is attained by allowing the number of knots and the knot positions
to be adaptively chosen on the basis of the data. The fully Bayesian approach taken provides a natural way to handle knot
adaptivity and allows uncertainties in the background to be estimated. Our technique is demonstrated on a PIXE spectrum
from a geological sample and an Auger spectrum from iron, which contains signals with both positive and negative components.

I. INTRODUCTION

Quantitative spectral analysis often relies on being able
to subtract from the data the contribution from the back-
ground. In a previous paper, von der Linden et al. [1]
presented a general approach to estimating a background
contained in spectral data that was based on the assump-
tion that the signal varies much more rapidly than the
background. In that work the background was repre-
sented by a sequence of cubic splines with equally spaced
knots. The minimum knot spacing was determined by
the width of the signal structure that one wishes to ex-
clude from the background curve.
This paper extends the earlier work in two important

directions; �rst by employing adaptive splines to repre-
sent the background, which is achieved by allowing the
number of spline knots to vary in accordance with the re-
quirements of the data, and secondly, by handling bipolar
signals, i.e., signals with positive and negative compo-
nents. We also address several calculational issues, in-
cluding the improvement in the convergence procedure
to determine the spline amplitudes.
We motivate our improvements by referring to a graph

of the results from Ref. [1] showing a Particle Induced X-
ray Emission (PIXE) spectrum and the estimated back-
ground function. The data in Fig. 1 are displayed on a
logarithmic scale to exhibit a de�ciency in the previous
results, already pointed out in Ref. [2]. At the high-
energy end of the spectrum, which contains no apparent
signal structure, the estimated background has many os-
cillations. These oscillations do not appear to be
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FIG. 1. A PIXE spectrum for a geological sample with the
background estimate obtained in Ref. 1 using 35 evenly spaced
spline knots. The oscillations in the estimated background
above the energy of 0.25 seem unwarranted, given the large
uncertainties in the measurements in this region.

supported by the data, given their large uncertainties.
Although the wiggles in this tail region of the spectrum
do not pose a problem for interpreting this data set,
they demonstrate an inherent problem in the previous
approach, which could degrade its estimates underneath
signal peaks. Our primary goal here is to avoid this spuri-
ous behavior in the estimated background. The approach
we take is to allow the number of knots and their place-
ment to adapt to the requirements of the data, similar to
what was used before for deblurring [3].
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Another objective of this paper is to demonstrate that,
with a minor modi�cation to the method presented in
Ref. [1], it is possible to cope with signals with positive
and negative components. We demonstrate this capabil-
ity on an Auger spectrum.
We refer the reader to the earlier paper [1] for details

that we omit here.

II. BAYESIAN APPROACH TO BACKGROUND

ESTIMATION

The general idea that we wish to capture with our
Bayesian model is that a spectrum consists of a smooth
background with additive signal peaks that are relatively
compact. We seek a curve b(x), de�ned over an interval
from xmin to xmax, that describes the background un-
der a spectrum, which is discretely sampled at positions
xi over the same interval. The measured values of the
spectrum at these points are designated di, collectively
referred to as the vector d. To cover a wide range of ap-
plications, we identify the background by the fact that
it is smoother than the signal. More restrictive speci-
�cations are certainly possible for a restricted class of
problems and can be dealt with in a similar fashion. The
smoothness of the background is ensured by expanding
it in terms of a set of cubic spline functions

bi =
EX

�=1

�(xi; ��)c� =
EX
�=1

�i;�c� (1)

or in vector notation b = �c. The c� are the spline
values at the E knot positions �� . The transformation
�(xi; ��) depends on the vectors � and x and, hence,
the matrix � depends on these vectors. Without going
into detail, we use the results of spline theory [4{6] to
determine the elements of �. An implicit assumption
must be made about the curve at the endpoints. We
choose the natural spline condition, that is, assume that
the second derivatives of b(x) are zero at the ends of the
interval. Other possible boundary conditions are given
in [4,5]. Although the basis set that we consider consists
of cubic splines, our approach can be easily adopted to
other smooth basis functions.
In our Bayesian approach we focus on the probability

of the background having a value bi at each measurement
position xi represented by p(bijd;M; I). This probabil-
ity depends on the full data set d, an as-yet-unspeci�ed
model for the background, summarized here simply as
M, and all relevant information I concerning the nature
of the physical situation and knowledge of the experi-
ment. We will include in I knowledge of the noise in
the experimental measurements. Also included in I is
the knowledge of the signal structure that we wish to ex-
clude from background, summarized in our spline model
by the parameter �x, the minimum distance between
spline knots. Both of these speci�cations play a crucial

role since they provide the information that the model
uses to discriminate the signal from the background.
Equation (1) allows us to focus on the c as the fun-

damental set of parameters to be estimated. According
to Bayes law, [7{9] the desired probability for c can be
expressed as

p(cjd; �; E; I) = p(djc; �; E; I) p(cj�; E; I)
p(dj�; E; I) : (2)

The likelihood, p(djc; �; E; I), expresses the probabil-
ity of the measurements, given their uncertainties. The
prior, p(cj�; E; I), is a probabilistic statement of what
we know about the quantities of interest, c in this case,
independent of the experimental data. The denominator,
p(dj�; E; I) = R dEc p(djc; �; E; I) p(cj�; E; I), called the
evidence, guarantees that the posterior has the correct
normalization:

R
dEc p(cjd; �; E; I) = 1. As we shall

see, the evidence plays a central role in determining the
number of spline knots, E, in our adaptive model.

A. The Prior Probabilities

The distinguishing characteristic of the background
that we wish to exploit is its smoothness. In the earlier
work [1], the prior on the background used to express its
smoothness was based on the integral of the square of
the slope of the background. That prior is inconsistent
with the cubic splines used to represent the background,
which are known to minimize the integral of the square
of the second derivative. Therefore, we now use the more
appropriate prior

p(bj�; I) = 1

Z
exp

�
��

Z
dx jb00(x)j2

�
; (3)

where b00(x) is the second derivative of the background
function at x. This prior has the additional advantage
over the previous one that it does not penalize linear
backgrounds. The factor Z is included for normalization.
The positive parameter � controls the width of this prior
distribution.
The expansion in Eq. (1) yields for the prior

p(cj�; �; E; I) = ��E=2�E=2(fdetD)1=2 exp
���cTDc	 ;

(4)

where D�1;�2 =
R
dx �00�1(x) �

00
�2(x). The matrix D can

be evaluated analytically or numerically.
The determinant of D provides the volume factor

needed for the proper normalization of the Gaussian. The
tilde over the determinant symbol indicates the need for
a special treatment of the determinant evaluation. Be-
cause both constant and linear eigenvectors have zero
eigenvalue, D has two zero eigenvalues. Thus the actual
determinant of D is zero, which would make Eq. (4) use-
less. The proper interpretation is achieved through the

2



addition of ��� cTc to the exponent in (4), which adds a
very small � to the diagonal elements ofD. The modi�ed

determinant is detD = �2 �fdetD, with the understanding

that fdetD is the product of the E � 2 nonzero eigenval-
ues ofD. For parameter estimation, � is an unimportant
proportionality factor and for model comparison the term
drops out. Thus one obtains the same results as if one
had started with Eq. (4).
Since � is a nuisance parameter for our problem, ac-

cording to the rules of probability, it should be integrated
out, that is, p(cj�)=R d� p(� ; cj�) = R

d� p(cj� �) p(�j�).
The dot indicates any applicable conditionals that do not
need to be speci�ed. This parameter can be dealt with
straight away. The appropriate prior for a scale parame-
ter, such as �, is Je�reys' prior p(�jI) / 1=�, with the
usual caveats [1]. The integration yields the multivariate
Student's t distribution

p(cj�; E; I) = ��E=2(fdetD)1=2�(E=2)(cTDc)�E=2 : (5)

In this paper we allow the positions of spline knots
�� to vary, except for �1 and �E , which are �xed at
xmin and xmax, respectively. The objective is to al-
low a variable degree of smoothing for the background.
Since the �� are now parameters that are subject to a
probabilistic treatment, we need a prior for them. We
pick a general noncommittal prior by assuming it is
uniform over the phase space available to the �� [3].
For the interval from �1 � xmin to �E � xmax, tak-
ing into account the minimum spacing �x and the re-
quired ordering of the knot positions, that is �1 +�x �
�2; �2 + �x � �3; � � ��E�1 + �x � �E , the prior on �

is p(�jE; I) = Z�1
QE

k=2 �[�k�1 + �x � �k], where the
function � is unity when its argument conditions are met
and zero otherwise. The normalization integral

Z =

Z xmax�(E�2)�x

xmin+�x

d�2

Z xmax�(E�3)�x

�2+�x

d�3 � � �Z xmax��x

�E�2+�x

d�E�1

(6)

is easily done, resulting in

p(�jE; I) = (E � 2)!
QE

k=2 �[�k�1 +�x � �k]

[xmax � xmin � (E � 1)�x](E�2)
: (7)

The denominator is simply the total volume of the space
in which the (E�2) �� parameters can vary. The factorial
in the numerator accounts for the ordering requirement.
The number of spline knots E is also variable. The

prior on E is chosen to have a uniform value of [Emax �
Emin + 1]�1 for all integer values of E between the min-
imum number, Emin = 2, and the maximum number,
Emax = integer[(xmax�xmin)=�x]+1, where the output
of the integer function is the integral part of its argument.
It is zero elsewhere.

B. The Likelihood

The �rst factor in the numerator of Eq. (2),
p(djc; �; E; I), is the likelihood of the experimental data.
The data generally consist of the sum of signal and back-
ground components, plus a contribution from noise. The
innovative idea presented in Ref. [1] is to treat data points
containing contributions from the signal as outliers when
attempting to �t the background. By incorporating it
probabilistically and considering it to be a nuisance vari-
able, the signal is removed from the analysis by inte-
grating over it. This idea grew out of recent Bayesian
approaches to the treatment of outlying data in which it
was recognized that the presence of a wide nonGaussian
tail in the likelihood function e�ectively reduces the in-

uence of outliers [10{13].
We introduce the proposition Bi: `datum di is purely

background' and its complement Bi: `di contains some

signal contribution'. The likelihood is the probability dis-
tribution corresponding to the measurement uncertainty,
given the expected measurement, yi. When Bi is true,
the likelihood for the ith measurement is

p(dijBi; yi; I) =8><
>:
(2��2i )

� 1

2 exp
��(di � yi)2=2�2i

�
; Gaussian

ydii
di!

exp[�yi] ; (yi � 0) ; Poisson ;

(8)

where the expected value is just the background function
at xi, namely yi = bi. The parameters E and � do not
appear here because their dependence is implicitly con-
tained in bi. We allow for the two most common types
of measurement noise corresponding to the uncorrelated
Gaussian or Poisson distributions. When the measure-
ment contains a contribution from the signal, the likeli-
hood p(dijsi; Bi; bi; I) is given by the same formula, but
with yi = bi + si.
Similar to what was done in Ref. [1], rather than treat-

ing the signal as a variable to be estimated, we describe
the signal probabilistically in terms of a prior. We pro-
vide for the possibility of signals with both positive and
negative components by writing the prior as a two-sided
exponential function

p(sij�+; ��; I) =
8<
:
��1+ exp

h
� si
�+

i
; si � 0

��1� exp
h
+ si
��

i
; si < 0

(9)

with the restrictions �+ > 0 and �� > 0. In other
words, we introduce two di�erent scales for the signal,
dependent on its sign. According to the Maximum-
Entropy principle the exponential prior is the least in-
formative prior being constrained only to a given scale
length �+=� =< s+=� >.
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The likelihood for the case Bi is obtained by marginal-
izing over the signal

p(dijBi; bi; I) =Z 1

�1

dsi p(dijsi; Bi; bi; I) p(sij�+; ��; I) :
(10)

For the Poisson case, the lower limit must be set to �bi
to respect the nonnegativity constraint of the Poisson
likelihood. This integral can be evaluated analytically,
yielding for the positive part of the exponential of Eq. (9),
i.e., (� = �+)

p(dijBi; bi; �; I) =8>>>>>>>>>>><
>>>>>>>>>>>:

1
2j�j

�
1 + erf

�
�(di�bi)��

2

i

j�j
p
2�2

i

��
�

exp
h
��(di�bi)+�

2

i
=2

�2

i
; Gaussian

exp [bi=�]

j�j(1 + ��1)di+1
�

�[(di + 1); bi(1 + ��1)]
�(di + 1)

; Poisson ;

(11)

where �[a; x] =
R1
x e�t ta�1 dt (a > 0) is the incom-

plete Gamma-function and �[a] = �[a; 0] is the Gamma
function (�[n+ 1] = n!). For the combined positive and
negative signals in Eq. (9), the likelihood is the sum of
two contributions, one obtained by substituting �+ for �
in Eq. (11) and the other by substituting ���. In the
latter substitution for the Poisson case, one must replace
�[(di+1); bi(1+�

�1)] by �(di+1)��[(di+1); bi(1���1� )]
to account for the �nite lower limit of integration.
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FIG. 2. The likelihood functions for the cases that there
is no signal present, and for positive and negative signals of
scales �

�

= 10� and �+ = 100�. The relative contribution
of the later to the mixture model (12) for the likelihood is
weighted by 1 � �, and the former by �.

To complete the speci�cation of the likelihood, we em-
ploy a mixture model [9], which e�ectively combines the
probability distributions for the two possibilities, Bi and
Bi,

p(djc; �; E; �; �; I) =
Y
i

[ � p(dijBi; c; �; E; �; �; I) +

(1� �) p(dijBi; c; �; E; �; �; I)] ;
(12)

where � is the probability that a data point contains
no signal contribution. We will consider the parameters
E; �; �+, and �� as auxiliary parameters for the adaptive
spline problem, whose speci�cations will be addressed in
Sect. II C. The likelihood functions contributing to the
mixture model are plotted in Fig. 2. The sum of the two
types of likelihood in the mixture model for each datum
results in a likelihood function with a central peak plus a
long tail. The presence of such a long tail has the e�ect
of reducing the in
uence of outlying data points when
several data points are combined [10{13]. In the case of
background estimation, the result is to reduce the in
u-
ence of points that lie outside the uncertainty band of the
measurement errors, which presumably contain signi�-
cant signal contributions. Without this tail, the result-
ing curve would be drawn signi�cantly toward the signal
structure and not be representative of the background.

C. Determining Auxiliary Parameters

There are numerous parameters, �x, �, E, � and �'s,
that have so far been assumed to be �xed. These must be
speci�ed to perform the data analysis. It is our view that
as many of these parameters as possible should be deter-
mined from information about the experiment. Other
parameters may have preferred values, based on general
arguments, and still others are appropriately determined
from the data.
In the present background estimation situation, it is

imperative that the minimum knot spacing �x be deter-
mined from knowledge of the experimental situation or
by examination of the spectrum. This parameter should
be set on the basis of the physicist's experience with the
experiment and is certainly no less than the instrumen-
tal resolution. Similarly, the experimentalist must choose
between Poisson and Gaussian likelihood functions, and,
in the latter case, specify the rms deviation of the noise,
which may depend on the measured spectral amplitude.
The scale of the signal expressed by the �'s should also
be set by the physicist on the basis of the expected signal
amplitudes. If the signals are expected to be of one sign,
that information should obviously be incorporated. It is
important to specify all these parameters, because they
play a major role in helping the spline model distinguish
between background and signal.
The parameter �, which is the probability that a data

point contains just background, is one that can be spec-
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i�ed by a general argument. Clearly � = 0:5 is the
noncommittal value, stating that each datum is equally
likely to contain a signal contribution or not. This
choice can also be motivated by an argument given in
Ref. [12]. It was shown there that if a separate �i is
associated with each data point, marginalization over

the �s results in an integral of the form
R 1
0 d�1[(1 �

�1)p(d1jB1�) + �1p(d1jB1�)]
R 1
0 d�2[(1 � �2)p(d2jB2�) +

�2p(d2jB2�)] � � � . This integral can be done analyti-
cally to obtain [12p(d1jB1�) +

1
2p(d1jB1�)][

1
2p(d2jB2�) +

1
2
p(d2jB2�)] � � � . The e�ect is the same as setting all the

�i equal to
1
2 .

The last parameter to deal with is the number of spline
knots, E. This parameter obviously cannot be set be-
forehand, since we want the spline model to adapt to the
data. However, E is a nuisance parameter, that is, we
don't care what its value is, except to estimate the c and
� parameters. Probability theory requires that one in-
tegrates the joint distribution over nuisance parameters.
Beginning with the joint probability distribution in c; �,
and E, we integrate over the �rst two parameters to ob-
tain

p(Ejd; I) =
Z
dEc dE�2� p(c; �; Ejd; I)

/
Z
dEc dE�2� p(djc; �; E; I) p(c; �; EjI)

= p(EjI)
Z
dEc dE�2� p(djc; �; E; I) p(c; �jE; I) ;

(13)

where we have assumed that the priors on c and � are
logically independent from that on E. The leading factor
is the prior for E, given in Sect. II A. This integral is the
same as the denominator of Bayes law for estimating the
parameters, given in Eq. (2), which is called the evidence.
We de�ne the scalar

 (c; �) = � log[p(djc; �; E; I) p(c; �jE; I)] ; (14)

which is the minus-logarithm of the integrand in the pre-
vious equation.
We approximate  by expanding it to second order in

c around its maximum value at ĉ yielding a Gaussian
for its exponential. Because the Gaussian is restricted
to a narrow region, the integration can be extended to
�1 < c < 1, so that the integral over dEc can be
evaluated analytically. Equation (13) becomes

p(Ejd; I) � 1

Z
p(EjI)

Z
dE�2� p(djĉ; �; E; I)�

p(ĉ; �jE; I) (2�)E=2 det(Hc(�))
�1=2 :

(15)

The argument of the determinant is the Hessian,
Hc(�) = rcrc

T jĉ , the E by E matrix of second par-
tial derivatives of  with respect to c, evaluated at its
maximum with respect to c. Because  is a function of
both c and �, Hc is a function of �. We will use this
technique to approximate integrals several more times.

D. Variance in Background

The expectation value of the second moment matrix of
b is obtained by integrating over the posterior probability
of the parameters c and �,

<b bT > =

Z
dEc dE�2� �(�)c cT�T(�) p(c; �jd �)

=

Z
dEc dE�2� �(�)c cT�T(�) p(cj�;d �) p(�jd �)

=

Z
dE�2� �(�)

�Z
dEc c cTp(cj�;d �)

�
�
T(�) p(�jd �)

�
Z
dE�2� �(�)

h
H�1

c (�) + ĉ ĉ
T
i
�
T(�) p(�jd �)

=

Z
dE�2�

h
�(�)H�1

c (�)�T(�) + b̂(�)b̂
T
(�)
i
p(�jd �) ;

where ĉ is estimated as the mean value of p(cj�;d �) for
a �xed �. The covariance matrix expressing the uncer-
tainties in the estimated background is then

< �b�bT > = < b bT > � < b >< bT >

=

Z
dE�2� [�(�)H�1

c (�)�T(�) +

�b̂(�)�b̂
T
(�)]p(�jd �) ;

(16)

where �b = b� < b > and �b̂ = b̂(�)� < b >. We
have again introduced a Gaussian approximation for the
integrand to do part of the integral analytically. The �rst
term within the square brackets stems from the covari-
ances of c around ĉ given by Hc, the Hessian of  with
respect to c. The second term describes the covariance of
the b̂(�) due to the variation of �. Since the c integration
is treated analytically, only the � integration needs to be
done numerically, for example, by MCMC sampling [14]
from p(�jd), as explained in Sect. III C.

III. CALCULATIONAL PROCEDURE

We describe in this section the separate steps in a com-
plete calculation for any particular data set. In the inner-
most loop, we need to be able to �nd the spline values
that maximize the posterior (2), namely ĉ. The next
higher level involves �nding the best knot locations for a
�xed E and the highest level loop is over E to marginalize
over E.

A. Estimation of Spline Values

The most basic calculation is to �nd the spline val-
ues c that maximize the posterior (2), assuming partic-
ular values for the knot positions � and the auxiliary
parameters (E; �; �+; ��). The denominator in (2) can
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be ignored at this point because it does not depend on
c. What is actually done is to minimize  , de�ned in
Eq. (14), with respect to the knot values c, which is a
nonlinear optimization problem. To evaluate  , we use
the likelihood given in Eq. (12), inserting the appropriate
expression in Eq. (11) and the prior is given in Eq. (5).
Both the gradient (�rst derivative) and curvature matrix
(second derivative) of  are evaluated analytically. A
gradient-based quasi-Newton optimization algorithm is
employed to minimize  . The optimization algorithm we
use can impose a nonnegativity constraint of the back-
ground curve. We �nd that the optimization occasion-
ally stalls and the appropriate global minimum in c is
not reached because of the existence of local minima.
We have developed a new technique to enhance the

convergence behavior of the optimization algorithm. Our
technique is based on arti�cially broadening the back-
ground only part of the likelihood function during the
early part of the optimization process, which e�ectively
eliminates local minima by forcing all data points to be
belong to the background. This broadening is easily ac-
complished for the Gaussian likelihood by increasing the
value of the � in the likelihood for the background term
in Eq. (11). We do not �nd it necessary to resort to
this technique for our Poisson examples, the PIXE data.
However, a similar scheme might be used for the Poisson
case, e.g., by dividing the expected number of counts yi
and the measured counts di in the likelihood Eq. (8) by
a common factor. The e�ect of our approach is to in-
crease the reach of the function being minimized, which
is quadratic in the case of the Gaussian likelihood, and
promote larger steps in the Newton-type optimization
algorithm. In a little more detail, we begin the opti-
mization by multiplying � by a common factor, which is
chosen to make the rms value of � the same as �. After
convergence, � is divided by two and the optimization is
resumed from the last operating point. This process is
repeated until the nominal values for � are reached. We
�nd that this procedure, which resembles a multiscale ap-
proach used to solve geometrical optimization problems
[15], yields very robust and speedy convergence to the
global minimum.

B. Estimation of Knot Positions

The knot positions �̂ are to be found by minimizing
 , given in Eq. (14). This optimization problem is some-
what harder than the one associated with �nding ĉ. The
reason lies in the numerous constraints on the knot posi-
tions, namely that they must be ordered and they must
be no closer to each other than a speci�ed �x. Further-
more, there are many local minima in  . Therefore, we
use another optimization strategy, that of simulated an-
nealing [16], to �nd the most probable knot positions.
Throughout this process, the number of knots E is held
�xed.

The simulated annealing technique is based on a
Markov Chain Monte Carlo algorithm (MCMC) [14], de-
scribed in more detail in the next section. The widths of
the Cauchy distribution for calculating the Markov steps
are �xed throughout the cooling process. The probability
distribution is 
attened by dividing  by T , a �ctitious
temperature. The initial temperature is T = 500. When
a step is accepted, T is decreased by multiplying it by
0.95 if the new value of  is smaller than any previous
value, or by 0.995 if it is not. At the end of the full an-
nealing sequence, the estimated knot position vector �̂ is
the one that had the smallest value for  .

C. Marginalization over Number of Knots

In probability theory, as explained in Sect. II C, it is
proper to marginalize over nuisance parameters that we
don't care about knowing, such as E. The probability of
E is given in Eq. (15). Again the integrand is approxi-
mated as a Gaussian in �

p(Ejd; I) / p(EjI) p(djĉ; �̂; E; I) �
p(ĉjE; I) (2�)E=2 det(Hc)

�1=2 �Z
dE�2� p(�jE; I) exp[�1

2
(� � �̂)TH�(� � �̂)] ;

(17)

where H� is the (E � 2) by (E � 2) Hessian matrix for
 with respect to the variable �, calculated at the op-
timal knot positions �̂. The prior probability in (15)
p(c; �jE; I) has been replaced with the product of the
prior on c and the prior on �, which is valid because
these are logically independent priors. The integration
here is complicated by the ordering restrictions placed
on the �is by the prior on � given in Eq. (7). Thus, the
integration is over a restricted volume V de�ned by the
ordering requirement. The integral can not be evaluated
analytically because it is impossible to simply extend the
integration limits to in�nity. Therefore, H� is replaced
by an e�ective Hessian H�

�, which must re
ect the com-
plicated integration volume V ,

p(Ejd; I) � p(EjI) p(djĉ; �̂; E; I) �
p(ĉjE; I) (2�)E=2 det(Hc)

�1=2 �
p(�̂jE; I) (2�)(E�2)=2 det(H�

�)
�1=2 :

(18)

The e�ective Hessian H�
� is actually estimated us-

ing MCMC to draw knot positions from the prob-
ability distribution in the integral in Eq. (15), i.e.,
p(djĉ; �; E; I) p(�jE; I) (2�)E=2 det(Hc(�))�1=2. The
covariance matrix (H�

�)
�1 is estimated as the matrix of

second moments of the resulting set of MCMC samples
of �.
The aim of an MCMC algorithm [14] is to generate a

sequence of parameters yk; (k = 1; 2; � � � ;K) that repre-
sent random draws from a speci�ed probability density
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distribution, let's say �(y). To add a new member to
the sequence yk+1, the Metropolis algorithm consists of
trying a proposed step away from the present yk. The
proposed step �y is drawn randomly from a symmetric
distribution, and is either accepted or rejected on the ba-
sis of the value of � at the new position compared to the
old position. If the step is rejected, yk+1 is set equal to
yk. For the step distribution we use a Cauchy distribu-
tion, i.e., / [1+(j�yj=W )2]�1, where W is the full-width
at half-maximum(FWHM) of the distribution [17]. With
its wide tails, the Cauchy distribution occasionally pro-
poses large steps, which can be useful for getting out of
local minima. In our algorithm, only one knot position
is moved at a time. When a knot is moved to within �x
of another knot, the move is rejected. When a knot is
moved past other �xed knots, the knots are renumbered
to maintain the required knot ordering.
The FWHM of the Cauchy distribution is started at

a value of about one tenth the interval width (xmax �
xmin)=(E � 1) and the width for each knot position is
adaptively adjusted during a training run to obtain an
approximate 50% acceptance rate for proposed steps.
For the PIXE spectrum in Fig. 4, the �nal FWHM val-
ues ranges from 10�4 to 0.02. For the MCMC runs to
draw samples from the probability distribution of � cited
above, on the order of 105 cycles through the full pa-
rameter set are taken. We check the performance of
our MCMC procedure by calculating the autocorrelation
function for each knot position [14]. The estimated cor-
relation lengths range from 10 to 1000 MCMC iterations.
The pivotal knot position is chosen randomly. From this,
the number of e�ectively independent samples from the
probability density function for a run of 105 iterations
is from 50 to 5000. The simulated annealing procedure
used to �nd the most likely knot positions described in
the preceding section proceeds similarly, but with the in-
troduction of the arti�cial temperature.
As we shall see in our results, there are com-

peting factors in Eq. (18). The likelihood factor

p(djĉ; �̂; E; I) should always increase with increasing
E because the data must always be matched bet-
ter by the spline model with more knots when the
knots are allowed to move. The Ockham factors for
ĉ, p(ĉj�; E; I)(2�)E=2 det(Hc)

�1=2 (Eq. (5)) and for �,

p(�̂jE; I)(2�)(E�2)=2 det(H�)�1=2 typically decrease as
E increases. This competition between likelihood and the
priors is the action of Ockham's razor [18{20], named af-
ter William of Ockham, whose principle states that mod-
els should be no more complex than necessary to explain
the available data. The overall e�ect is that there will
be a maximum in the probability of E beyond which the
addition of more knots does not help represent the back-
ground signi�cantly better.

D. Estimation of Uncertainties in Background

The uncertainty bound on the estimated background
function may be calculated as described in Sect. IID.
Equation (16) shows how the covariance in the estimates
for b is obtained by splitting the covariance into two
terms, one arising from the uncertainties in c for �xed �,
and the other from uncertainties in �. The contribution
from the �rst term is based on the analytic expression for
the Hessian Hc, which can be evaluated for any �. The
rest of the calculation involves randomly drawing sam-
ples from p(�jd) using the Markov Chain Monte Carlo
(MCMC) technique described above. For each � drawn,
the optimum ĉ has to be found using the minimization
procedure described above. Then, the spline values at
the data points are obtained: b̂ = �ĉ. The integration
in Eq. (16) is accomplished by averaging the quantity
within the square brackets in the integrand over the �
samples.

IV. RESULTS

We now describe the results of applying the analysis
outlined in the preceding section to the PIXE data shown
in Fig. 1. For this analysis the underlying auxiliary para-
meters, described in Sect. II C, are the same as used in the
previous analysis shown in Fig. 1. The minimumdistance
between knots is �x = 0.015, the approximate width of
the conspicuous signal peaks at their base. Because we
know that the signal peaks in the PIXE spectrum must
be positive, we exclude the contribution of negative sig-
nals to the likelihood, in e�ect setting �� = 0. The
scale �+ should be derived from the signal [1]. As the
signal is much larger than the background, we set �+
equal to the average value of the data set, about 270
in this case. Figure 3 shows the probability distribution
for E given in Eq. (18). Note the extremely large dy-

namic range of this plot. The likelihood, p(djĉ; �̂; E; I)
increases monotonically with E since the �t to the data
always improves with more knots. The Ockham fac-
tor for ĉ, p(ĉj�; E; I)(2�)E=2 det(Hc)

�1=2 (Eq. (5)) de-
creases gradually over the range of E shown. The corre-
sponding factor for �, p(�̂jE; I)(2�)(E�2)=2 det(H�)

�1=2

decreases substantially. The net result is a strong peak in
the probability at E = 14, which contains a probability
of 80%. Since most of the probability falls into the single
E = 14 bin, we may legitimately �x E at 14, instead
of marginalizing over E, to obtain the �nal background
estimates.
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FIG. 3. The probability for the parameter E (the number
of spline knots) given by Eq. (15), shown as the solid curve,
with its various contributions. The maximum probability oc-
curs at E = 14 knots.
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FIG. 4. The same PIXE spectrum as in Fig. 1, showing the
most probable background estimate obtained using adaptive
splines in which the optimal number of knots is found to be 14.
In the energy region above 0.25, the estimated background is
now smooth, indicating a lack of evidence in the data for the
oscillations visible in Fig. 1.

The background estimate with the highest posterior
probability obtained in the simulated annealing search
for the most probable knot position is shown in Fig 4.
The high-energy portion of the spectrum is now �t with
a smooth background, consistent with a physicist's ex-
pectation. It is remarkable that our model requires only
one additional spline knot to �t the energy region above

0.25. It is also interesting to note that the background
under the �rst signi�cant peak at an energy of approxi-
mately 0.06 is smoother and more plausible than for the
previous analysis. The placement of the knots is of in-
terest. The highest knot density occurs in the vicinities
of the three major peaks in the background. While these
seem like fairly smooth sections of the background on this
semi-log plot, the curve varies somewhat more rapidly in
the linear space in which it is modeled. These adaptive
background estimates are very plausible.

0 0.1 0.2 0.3 0.4 0.5
Energy [arb. units]

0

2

4

6

rm
s 

un
ce

rt
ai

nt
y

background uncertainty
ξ contribution
c contribution

FIG. 5. The uncertainties in the background function dis-
played in Fig. 4. The separate contributions to the rms devia-
tion of the background values are shown; from the uncertain-
ties in the c and the variance arising from the knot positions
�.

The rms uncertainties in the estimated background
curve are summarized in Fig. 5 as uncertainty bounds.
These are derived from Eq. (16) by combining the vari-
ances from uncertainties in c using the analytic part for
�xed knots plus uncertainties arising from the knot posi-
tions �, obtained by numerical integration over the pos-
sible knot positions. First of all, we see that the uncer-
tainties are quite small compared with the background
itself, on the order of a few percent in the peak regions
and about an order of magnitude smaller in the high-
energy end of the spectrum. The uncertainties due to
those in c dominate at the �rst signi�cant peak and in
the high-energy tail. However, the uncertainties arising
from knot placement are most important around the two
signal peaks in the spectrum around an energy of 0.2.
Clearly, no simple formula based on a single contribution
to the total uncertainty applies.
The uncertainty bands shown in Fig. 5 actually cor-

respond to the square root of the diagonal terms of the
covariance of b given in Eq. (16). These are useful for
showing the limits of uncertainty of the curve, but are
not applicable for estimating the consequences of these
uncertainties in the background on further computation,
e.g., on the areas under a signal peak. For that, the full
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covariance matrix is required because one expects a sig-
ni�cant degree of correlation in the uncertainties from
one position to another. For example, when two points
lie near each other in the same spline interval, there is a
strong positive correlation in their uncertainties because
their estimates both rely on the same cubic spline curve.
It is feasible to calculate the full covariance matrix using
Eq. (16), but not so easy to display it.
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FIG. 6. (a) An MVV Auger spectrum for iron. The esti-
mated background shown is that obtained for the transformed
spectrum shown in (b). (b) A logarithmic transformation of
the Auger spectrum shown in (a) reduces the curvature of
the background, rendering it suitable for the general approach
presented here. The estimated background is shown. (c) The
signal determined by subtracting the estimated background
from the original spectrum. The inset in (c) shows the auto-
correlation of the signal vs. energy di�erence. A signi�cant
secondary peak is seen at an energy o�set of 39 eV.

To demonstrate how well our background method
works for signals with both positive and negative contri-
butions, we turn to the Auger spectrum shown in Fig. 6a.
This spectrum was obtained for an iron sample using a
four-grid low-energy electron di�raction (LEED) optics,
operated in the retarding-�eld mode. Harmonic modula-
tion of the retarding potential and lock-in detection of the
transmitted current on the second harmonic of the mod-
ulation frequency results in spectra as shown in Fig. 6a.
Such spectra constitute the energy derivative of the sum
of the Auger electron energy distribution, the signal, and
the slowly varying, much larger secondary electron en-
ergy distribution, the background. The signal contains
both positive and negative components. For quantitative
Auger analysis it is mandatory to separate the two con-
tributions to the total signal [21,22]. The principal signal
seen at around 50 eV comes from an M2;3VV Auger tran-
sition.
It is evident from Fig. 6 that, while the background

may be smooth, it varies quite rapidly at low ener-
gies. This behavior is inconsistent with our general back-
ground model, whose prior is based on the second deriv-
ative of the background. However, a simple transforma-
tion of the measured spectrum brings the background
into conformance with our background model and does
not dilute the signal characteristics unduly. By taking
the logarithm of the measured spectrum, the nearly ex-
ponential rise of the spectrum is transformed into an ap-
proximately linear dependence that is more easily accom-
modated by the background model. Furthermore, such a
transformation of the ordinate does not change the width
of the signal structure, leaving unchanged the minimum
knot separation criterion. As a general principle for ap-
plying our model to a speci�c spectrum, it may be trans-
formed to bring the background into conformance with
the background model, provided the signal contributions
do not loose their assumed rapid and localized charac-
teristics. For example, we �nd that taking the square
root of the horizontal scale, after a suitable o�set, yields
a data record that also provided reasonable estimates of
the background.
Figure 6b shows the Auger spectrum after the trans-

formation z(k) = log[a� y(k)], where y(k) is the original
spectral amplitude and a is a constant (= 340 in this
case). The uncertainties in the transformed spectrum
are obtained by dividing the uncertainties in the original
spectrum, �i, by a� y(k). �i is estimated to be approx-
imately 35 over the entire spectrum. The transformed
spectrum is analyzed using the background models de-
scribed earlier. The minimum knot separation is set at
�x = 15 eV. In this analysis, �+ and �� are assumed to
be equal because the positive and negative signals are ex-
pected to have approximately the same amplitudes. They
are set to a typical value of about 0.1. The evidence eval-
uation of Eq. (18) shows that p(Ejd; I) is rather 
at for
the number of nodes between E = 8 and E = Emax = 12.
The lack of a strong peak in the evidence, as seen in the
earlier PIXE analysis, may be explained as follows. The
prior on �, given in Eq. (7), increases considerably as
E approaches Emax because of the decreasing available
volume for knots. This e�ect is partly counteracted by
the decreasing volume given by H�, but not completely.
Thus, the Ockham factor pertaining to � may e�ectively
increase with increasing E, a behavior that is unexpected,
but plausible. It is not the number of parameters that
de�ne the penalizing Ockham factor but the phase space
of the prior covered by the high-likelihood region, which
may increase when the parameters are highly correlated.
As the likelihood probability increases insigni�cantly for
E � 8, we show the background estimated for E = 8.
The results for E > 8 lie within the line thickness of the
results for E = 8. Thus marginalization over E would
yield quite the same result. The estimated background
is shown in Fig. 6b, and is transformed back into Fig. 6a
for comparison with the original spectrum.
After plotting the di�erence between the original spec-

trum and its estimated background shown in Fig. 6c, a
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possible secondary peak is observed. This small peak is
demonstrated in the autocorrelation of this background
subtracted spectrum, shown as an inset in Fig. 6c. A sec-
ondary peak with an amplitude of about 2% of the main
peak is convincingly shown at an energy o�set of 39 eV,
which corresponds to an M1VV Auger transition for iron.
In this case, a proper background subtraction even helps
one identify the presence of less apparent signals in an
Auger spectrum.

V. SUMMARY

We have developed a probabilistic model to separate
the background from signals in spectra. The general as-
sumptions are that the background varies smoothly and
that each rapidly varying signal peak is con�ned to a
well-de�ned interval. The background is represented by
a cubic spline basis. In order to allow the smoothness of
the background to accommodate the data, we have al-
lowed the number of spline knots and their position to
vary. Our Bayesian approach provides a straightforward
way to deal with this adaptivity by marginalizingover the
probability of the number of knots. The e�ect of Ock-
ham's factor is to produce a maximumin this probability.
We have further extended the earlier work by incorporat-
ing signals with either positive or negative components,
or both. The uncertainties in the estimated background
have also been shown.
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