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Basic operations
marginalization  :       p(X)  =  ∑Y p(X,Y) 

conditioning :            p(X | Y)  =  p(X,Y) / p(Y)

• used from right to left to eliminate "nuisance" variables not required later
• used from left to right to introduce "hidden" variables

factorization :             p(X,Y)  =  p(X)  p(Y|X)

• used to incorporate evidence (in this case Y)
• used for hypothetical reasoning, "what if we knew Y?"

independence :          p(X|Y,Z)  =  p(X|Z)   assuming Y indep. of X given Z

• used in problem decomposition and simplification

expectation  :       Expected-Value U(X)  =  ∑X U(X) p(X)

• used to calculate expected utilities, averages, etc.
maximization  :       Maxd   Expected-Value U(X,d)

NB.   and they all apply recursively;  recursive maximization leads to dynamic programming;  
splicing recursive maximization and conditioning is the hardest,  e.g.  two-arm bandit,  
learning to balance a pole

• used to maximize utility, choose best decision
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Value of information (see Clemen, '90)

We are about to make an investment decision.  What would be the value to us of 
knowing the truth about future stock market activity?  

Expected value of perfect information about X:   What would be our increase in 
utility from having a clairvoyant inform us about the true value for X?  (Current 
utility is based on our belief of what X might be.)

basic framework for managing the collection of information, sense acts, etc.
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The value of computation

e.g.   Monte Carlo sampling with N cases  { x1, x2, ..., xN }, should you sample a new 
case, xN+1, or stop and make do with the sample you have?

cost of sampling a single case = T seconds

current variance of sample average

 s2  =      ( ∑i xi2  - N (∑i xi )2   ) / (N-1)

approximate decrease in variance =  s2  ( 1 -  (N-1)/N)  =   s2  / N

        i.e.   diminishing returns as N -> ∞

value of computation   whats the value (in terms of change in utility) of doing the extra 
computation?

rate cost of a single second = S

rate cost of increasing mean square error of estimate = M

value of computation  ≈  M s2  / N  -  ST

these computations can be embedded in scheduling and  optimization systems, etc.

how do we assess these?

basic framework for managing uncertainty/complexity in computation
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Mixture models
• Introduce an extra variable c (the mixing variable):

p(X)  =  ∑c  p(c) p(X|c)

     where p(c) and p(X|c) are suitably tractible.

• Are ubiquitous in data analysis:

– missing values in other problems, e.g. in curve-fitting  data

– latent or hidden variables,  e.g., medical {\em syndromes}.

– unsupervised learning and clustering,& hidden Markov models

– Supervised learning and multivariate splits in trees, robust 
regression

– non-parametric density estimation  (i.e., equivalent to Kernel 
density estimation and nearest neighbor).

– rule-based systems with multi-firing probabilistic rules.

• Examples over page are for:   c is binary, p(c) is Bernoulli, p(X|c) is a 
2-D Gaussian with unit covariance matrix.
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K-means algorithm in 2-D clustering
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EM algorithm in 2-D clustering
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Gibbs sampling in 2-D clustering
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Algorithms

☞ Many probabilistic algorithms are closely related to one of 
the following:

Maximum A Posteriori  (MAPs):    via local search,  gradient descent, 
maximum likelihood, MDL, minimum K-L

Exponential family or 2nd order exponential:   linear regression, estimating 
Gaussian, Poisson or multinomial parameters  (see any text)

 NB.   many other algrithms use these routines in their inner core

Monte Carlo Markov Chains (MCMCs):    simulation to estimate expected 
values;  Gibbs sampling and the Metropolis algorithm are variations; used in 
more challenging conputation where other algorithms wont apply  (see any 
advanced text)
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Algorithms, cont.

Variable clustering:  recursive marginalization and conditioning on discrete/
Gaussian Bayesian networks;  used in first order inference for diagnosis, and 
to simplify calculations for Bayesian classifiers (Shachter, Andersen, 
Szolovits, 94)

Exact algorithms for iterative updating:   Kalman filters, forward-backward 
algorithm for HMMs, Viterbi algorithm, each are instances of Bayesian 
network clustering algorithms

Expectation-Maximization (EM):   for estimation, unsupervised learning or 
clustering;  Baum-Welch is a variation of this using the above exact routines;  
EM is a deterministic version of Gibbs sampling 

Laplace's method:  approximate Bayes factors, marginals and expected values 
(Tanner,1993; Kass and Raftery, 1995)

Large sample,  parallel, and incremental  versions: most algorithms are easily 
adapted for large sample problems, for incremental updating, and for parallel 
algorithms,  e.g.,  sub-sampling, data parallelism, independent parallel search/
sampling,  restarting search at last optima
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Multinomial Priors

...θ3θ1 θ2 θ10000

• mutually exclusive and exhaustive set of cells, so ∑            θ  =  1

• each cell has a probability of occurrence;   i.e.   a multinomial distribution

e.g.     leaves in a decision tree, phonemes in a speech system, words in a 
language model, faults in a diagnosis system, cells in a Bayes network 
probability table, ....

Whats a "good" prior for the multinomial ?

θ9999

i ≤ 10000

θ5001 ...
θ< 1−θ<

cells

grouped cells

θ5000
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Multinomial Priors, cont.

...θ3θ1 θ2 θ10000θ9999θ5001 ...
θ< 1−θ<

cells

grouped cells

θ5000

The textbook "non-informative" prior is Jeffreys' prior    ∝     ∏              θi

(Although some text books suggest as many as 4 different alternatives.)

i ≤ 10000

-0.5

How do we interpret/understand this ?

• look at expected values:

average  θi  =    1/10000 ;    std. dev.  θi  ≈    1.4/10000

average  θ<  =    0.5 ;            std. dev.  θ<  ≈    0.007

!!

☞     The "non-informative" prior is highly informative about the grouped cells!!
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NB 1.   Jeffreys prior is known to be poor in certain contexts, such as:
•   Gaussian with unknown mean and variance
•   10,000-dimensional multinomial (θ  , θ  , θ  , ...  θ         );   the 
marginal prior on    ∑            θ    approaches a delta function so is 
highly informative

Aside:  Non-informative Priors
Jeffreys' non-informative prior:      π(θ)   ∝   ι(θ)                 1/2

where  ι(θ)  is the determinant of the Fisher Information matrix.

1 2 3 10,000

i<5,000 i

NB 2.    Jeffreys argument is based on invariance;  its poor because 
using measure theory there are infinitely many other priors with 
similar properties

 See the discussion on “reference” priors in Bernardo and Smith, 
1994.   In general,  “reference” priors for multi-dimensional 
spaces are difficult.


