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ABSTRACT

I

L
A method for comparing reconstruction algorithms is presented based on the ability to perform certain

detection tasks on the resulting images. The reconstruction algorithms compared are the algebraic
reconstruction technique (ART) and the maximum entropy reconstruction method (MaxEnt). Task

rformance is msessed through a Monte Carlo simulation of the complete imaging process, including the
generation of a set of object scenes, fol!owed by data-taking, reconstruction, and performance of Ihe
specified task by a machine observer. For these detectm’n tasks the figure of merit used for comparison is

~[he detectability index, d’. When each algorithm is run with approximately optinized pa.tameters, these
studies find comparable values for d’.

—
1. INTRODUCTION —

The overall purpose of a medical imaging system is usually to provide visual information for
,-interpretation by a radiologist or other trained observer. Assessment of the quali!y of images obtained from

a medical imaging system has been a long-standing problem. The merit of an image cannot beI determined
simply by subjective visual inspection. Rather, image quality must be evaluated objectively based on how

‘-well the image provides the information required by the observer to perform a specific task. If a scalar
figure of merit can be determined that represents the usefulness of the image for the specified task, many
aspects of the imaging chain can be optimized by adjusth’ig the system parameters to increase that measure.

~Or, the figure of merit can be used to compare two different imaging systems. In :his study WC shali
, consider one aspect of the imaging chain, the reconstruction procedure, and consider both the optimization
1of a single reconstruction algorithm and the comparison of two different
-reconstruction algorithms based on the usefulness of the images they provide
‘ detection tasks.

—
2. CALCULATION OF TASK PERFORMANCE

In order to evaluate the usefulness of an image we need to first specify some

(and each optimized)
for performing certain

task and [hen determine
the ability of some observer to perform the msk u~ng the image. Psychophysical studies are one avenue for
doing this; a set of real or simulated images are presented to trained human observers and their ability to
perform a stated task is measured. Unfortunately, psychophysical studies can be very time consumin~ to
perform, Optimization of imag; ng systems based on psychophysical testing would be cumbersome, since
many images and observers are required to evaluate a single set of imaging system ptwame[ers. The whole
psychophysical study would have to be performed many, many times with great resolution in order to
determine the optimal system configuration over several system parametem.

An ultcrna[ive strategy is [o calculate the performance of a model observer, There is a considerable
literature on the ideal or Bayesian observer, defined as one who has full knowledge of all relevant statistical
properties of the images and of the task at hand, The performance of the Bayesian observer has been
calculated analytically or numerically for several simple detection and discrimination tasks where [he signal
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and background are completely specified and the observefs performance is
the data resulting from the quantum fluctuations in the incoming radiation

limited by the randomness in
stream.ll~ These fluctuations

~esult in a noisy image that changes for repeated imaging trials even when the object is the same each time.
More recently, pert-ormance calculations for two model observer% (both sub-optimal) were de~”:led for the
case where the signal was known exactly but the observer was limited by both image noise and a random,
inhomogeneor.rs background.’ The calcrJation of ideal-observer performance measures in cases where there
is some mndomness in the parameters defining the signs! to be detected or discriminated is the subject of
ongoing research, and has been presented at this and other recent SPIE Medical Imaging meetings, q- 7 !Nill,
these investigations do not address the degradation in task ~rformance that can occur when the
reconstructed image contains artifacts. We define artifacts as those deviations in the reconstructed image
from the original object that are present in :he absence of measurement noise. Artifacts are the result of
inadequate sampling of the object during the mewrement prwess and do not change when the same object
is imaged repeatedly. Since artifacts depend on the object in a complicated fashion, we choose a third
method for image evaluation based on Monte Carlo simulations of the complete imaging process,

---
2,1 Monte Carlo Meth~

The Monte Carlo method is favored for our purpose because we can define a class of objects and
: thereby obtain an ensemble of images, each one a single realization of the noise and artifacts that result
from the imaging process. By performing the visual task on the ensemble of images we obtain a statistically

meaningful average of the response of each algorithm to the object c;ass and task. This Monte Carlo
~method has been used by Hanson to optimize the algebraic reconstruction technique (.ART) for a wide
i variety of detection and estimation [asks.e - 11 The method has also been used recently to optimize the
‘aaximum a posterior reconstruction method,12

Before the Monte Carlo method can proceed, the problem must be fully specified. !n general, the
following steps must be performed:

1)

>)

‘i)
4)

,_-

5)

1)
2)

‘)
i,

j)

First, the object class or classes must be specified, including any variability in the signal and
background parameters that are to be modeled.
The measurement geometry must be specified, including all sources of noise anr! blur. If [he acquired
data are to be reconstructed or otherwise processed in so,me manner, the processing algorithm must be
specified.
The task to be performed must be clearly defined.
The method of task ~rformancc must be designated. The me[hod should be appropriate for lhe
intended application, [f a human viewer is to be the image interpreter for the final system, a model of
the human observer can be invoked. If a i-.achine reader is 10 analyze the final imnges, then a
machine can perform the task in the Monte Cario simulation. Or, the Bayesiwr observer can be used to
determine the best possible task performance given the image and any available information about the
prior probabilities.
A figure of merit that quantifies the usefulness of the imngcs for performing [he specified [ask mus[
be chosen.

Once the steps above have been accomplished, the Monte Curio simulation proceeds m follows:

One realization of an object is generated.
The object is used to generate a dctcctcd data set by sirnuhtting the imaging process. Any required
post-processing or reconstruction of the raw data is performed.
The task is performed by the simulntcd observer acording to [hc prescribed rule,
Steps 1) through 3) arc repeatrx-1 a sufficient number of times so th:lt on accurutc c$timotc of Ihr
statistics of the task pcrformnnce may be ob[ained,
Finally, the figure of merit is dc[crrninccl that summurims the uwfulncss of the imoging systcnl IXIYWI
on the [ask performance s[:ltistics for [he ensemble of ohjccts,
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‘2.2 Example - Comparison of ART and MaxEnt

The specific problem we shall address is the ccmparkon of two reconstruction algorithms, the algebraic
‘reconstruction technique (ART) and the maximum entropy reconstruction method (MaxEnt). The object

class shail consist of a set Gf 10 scenes, each containing many randomly placed, non-overlapping discs on a
, zero background. Specifically, IO Iow-contsast (amplitude=O. I ) discs are present in each scene. To probe
,-lhe effect of object-dependent artifacts, 10 high-contrast discs (amplitude= 1.0) are also randomly placed in

each scene. The high- and low-contrast discs are all 8 pixels in diameter in an object of 128 pixels in
diameter. One sample object from the ensemble k shown in Figure J. Tbe task shall be the detection of
the low-contrast discs, with amplitude, size, and location known. Ile measurements consist of a number of
parallel projections equally spaced over 180°, each containing 128 samples. We shall consider two data-
taking situations. The first is the situation where there are many views, 100 in total, and each of the 100
projections contains additive, zero-mean Gaussian noise with ms=8. This first case is intended to
investigate the noise-limited regime of the reconstruction problem. The second case we shall consider is the
limited-view situation, where the number of projections is small, 8 in all, ana no noise is added to the

‘detected data. This scenario is meant to investigate the artifact-limited domain of the reconstruction
I problem.
I
~ ne simulated projection data become the input to the reconstruction algorithms, whose job it is to find
, an estimate of the c~iginal object on which the detection task can be performed. The details of the

reconstruction algorithms are given in sections below. Both reconstruction algorithms employ a pre-
~moothing step that has the effect of mildly blurring the projection data. The pre-smoothing filter is a
; 3-pixel-wide triangular window that reduces the rms noise in the data by a factor of 0.4P4. Such a pre-
: smoo[hing step is recommended for these algorithms on tomographic problems to avoid over-fitting the
‘high-frequency components in the input data that can result in ringing in the reconstruction. In the results

sections that follow, the stated rms noise in the data is the value before pre-smoothing.

2.3 Figures of Merit for Task Performance

To evaluate-and compare the reconstructions, a figure of merit summarizing the detectability of the
low-contrast discs in the scenes must be obtainect. The task we shall consider is the binary detection
problem, that is, is the disc present or absent? The observer or decision-maker will be the non-
prewhitening matched filter. We choose this model observer because the Bayesian observer requires full
knowledge of the probability density functions on the data w~en the signal is present and rbsent. These
distributions are difficult to obtain because of the scene-dependent nature of the artifacts in the images.
The non-prewhitening ma[ched filter is essentially a handicapped Bayesian observer in that if uses till

‘information about the signal parameters perfectly, but does not attempt to correct for any correlations in the
background fluctuations from either artifacts or noise post-processing. This model has been found [o
correlate well with human observer performance in a number of psychophysical investigations.13*1’

When the signal and background are assumed to be completely known, the non-prewhitening mntchul
filter forms a template that is a simple disc of radius mfi[chcd to [he !ow-ccntrmr disc, and counts up all
the activity in the regiol, it superimposes. The output of that operation bccomcs the observer’s decision
variable. The observer declares the signal to be present, a positive response, if the decision vari:lble is
above his decision threshold, By applying this strategy to many Iocalions where the signal is known to be
present, and again where the signal is known to be absent, we can derive histograms for the observer’s
decision variable (plots of the frequcnc] of occurrence of the decision variable) under both the siEn:ll -
prcscnt and signal -nbsent conditions. “I_he traditional receiver opcrn[ing chnr:]cleristic (R(x) curve is
obtained by plotting the fraction of true-positive responses versus the frxctior 01’ fnlsc-posilive rcspomcs
from the histograms M the observer’s decision thrcshokl is varied, [n our studies the histogranls :lrc
gcncratcd by reconstructing 10 different object sccncs, ench conktining 10 low-con(rast discs that arc uwd
to form the signal-present decision-variable histogritm and 30 locations that are free of the disc signals and
arc thcrcfow used 10 form the signnl-nbsent decision-variable histogram, “l’he furlhcr :Il)nrt the hislogr:lln$,
the bct[cr the observer can correctly distinguish signnl-prrsent cnscs from those whrrc [lw signdl k :II)SCI)I.
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The degree of separation of the two hi.stogmms can be characterized by the detectability index d’, given
by16

(1)

where ~1 and al are the mean and rrns deviation of the frequency distribution when the signal u present.
and TOand UOare the mean and rms deviation of the frequency distribution when the signal is absent. The
detectability index is sometimes called the observer’s signal-to-noise mtio. This is a meaningful figure of
merit provided the distributions on the decision variable under each hypothesis are Gaussian. However, one
should be aware that improper conclusions regarding the ranking of observer performances can be obtained
when the detectability index is used to describe very non-Gaussian decision-variable frequency
distributions.7

We could have chosen to plot the entire ROC curve and use the area under the curve as the figure of
‘merit instead of the detectability index d’. Or, an effective detectability index dA that can be derived from
the area might have been used.16*1e We choose to use the detectability index d’ as our figure of merit
because it is the most accutate representation of the overlap of the two histograms, especially for the high
d’ values we encounter in some of our examples, provided they meet the Gaussian a.ssumption,7,11 Hanson
has found good agreement between d’ and dA for tasks similar to those considered here.11

.-
A number of other summary measures have been suggested as figures of merit for image quality. On;

of the best-known of these is the root mean square difference between a reconstructed or estimated object
and the actual object, called [he L2 norm. The problem with this metric is [hat the relationship between
the L2 norm and the usefulness of the image for task performance is unclear. Measures based on [he
agreement betw$en the actual data and the estimated data that would be derived from the estimated object,
such as the rrns residual, can be ill-conditioned or ill-posed, In the approach to system (specifically
algorithm) evaluation presented here, we are using a figure of merit that is fundamentally related to the
ability of an observer to use the image to perform a specified task.

3. ART

The algebraic reconstruction technique’ is an iterative algorithm that
projections and has been shown to be useful in situations where there are
Optimimtion of the
the optimization of
comparison with the

3.1 Theory

We assume that

recon-!ruc[s a function from i[s
a limited number of projections.

algorithm for a variety of visual tasks has been presen[ed by }Ianson, s-n Results of
+.RT for a number of detection tasks shall be summarized briefly below to allow
Max Ent algorithm for the same tasks.

N individual projection measurements are acquired of the unknown object f, wi[h [he
boldface charac[er denoting a vector. The dakt vector for [he ith projection can be writ[en as

El=l{lf+nl , i=l,.,., N, (2)

where lli is [he corresponding row of the me.a.suremenl matri~ and n, is the noi$c vector for that pro; rclion,



1231 -4f@ -/q
.:, , .—. . . .. . ._

—— ..- .—.. ——.—
The ART algorithm pro&ds by forming an ““initi&@s, for example, ~0-O. Then for each iteration the
estimate is updated by iterating on the individual measurements as follows
.—

i=k.mod(N)+ 1, (3)

where fk is the kth estimate of the object f, Ak is the relaxation factor for the kth update, and the
superscript 7“ represents the transpose of a vector or matrix. Constrained ART uses the same iteration
approach represented by Eq. (3), with the additional rule that any negative object estimate be set to zero
before proceeding to the next update. The relaxation factor is given by

AK - ~(rA)K-l , (4)

‘where the itemtion number K=int(k/N) represents the number of passes through all N projections. Hanson
,has investigated the optimization of the relaxation parameters ~ artd r~ for several detection and
,@crimination tasks.~-ll

‘3.2 Results
I

- Table I summarizes the results for the optimization of both the unconstrained and constrained ART
algorithm for the detection task. From the top half of the table, we see that nominal values for the
relaxation parameters in the 100-view case lead to a d’ value of 1.99 that degrades slightly with the
application of the positivity constraint for 10 iterations of ART. Neither optimization of the relaxation
parameters, nor increasing the number of integrations to 100 has any large ef feet on the detectabilityy index
for this case. Figure 2a shows a reconstruction of the object in Figure 1, achieved via the constrained ART
algorithm from 100 noisy projections after 100 iterations, corresponding to the d’= 1,84 row of Table 1,

The second Iialf of Table 1 reviews the results for the optimization of the ART algorithm in the 8-view
&M& This imaging geometry is found to yield d’ values that are greatly improved through optimization of
the relaxation parameters and through the application of the positivit y constraint for 10 iterations of ART.
Constrained ART with relaxation parameters optimized for 100 iterations yields a detectability index of
11.69. Figure 3a is an image of the source shown in Figure 1, reconstructed from 8 noiseless views after
100 iterations of optimized, constrained ART.

---
4. MAXENT

The maximum entropy algorithm employed here is the “historic” MaxEnt algorithm described by Gull
and Skillingll for the reconstruction of positive, additive images. A commercial software tXtckaEe. entitled
MEMSYS 2(C), was used to obtain the MaxEnt

4. I Theory

We again assume that the data are a set
entropy of the reconstruction is defined to be

-.
reconstiuctions~19

of projection vectors as described by Eq, (2) above, The

(5)



1231-19
,-..:,... .. . .

In the case where there is an underlying model for the object class, the enmopy can be rewritten as

—
X?) = ~ [fj - t’nj - fj 10g(fj /mj ) ] .

j
—
where m; is the value of the model in the jth object pixel. The global

(6)

maximum of S(?) occurs when
?j=mj fo; all j, where S(~)-O. Hence the entropy term measures the deviation of the object estimate from
the assumed model. Since the randomly placed discs in the object scenes in the simulations here are equally
likely to occur in any location, the underlying model is a uniform grey level set equal to the average pixel
brightness in the object. Note also that the logarithmic term in Eqs. (5) and (6) has the effect of imposing
a positivity mnstmint on the reconstruction values.

The misfit between the reconstruction and the detected data wdues is measured in the data domain by
the chi-squared statistic

..-

—

where u~ .mecifies the exoected variance in the data. Here we assume the noise to be indecwndent of
_location, so it appears as-a constant independent of the summation index. The chi-squared - value is a
meaningful measure of the agreement between the data and the reconstruction as long as the noise is
Gaussian and uncorrelated. Note that the X; value is related to the rms residual of the reconstruction by

—

l/1

[ 1
rms residual = X2(F) . No of ~~~uremenu , (8)

One obtains the maximum entropy solution by maximizing S(?) over Xz(f)=X~~, where X3~ sets the
“desired degree of consistency with the actual data. Formally, [his is expressed by

maximize (S(?) - N*(?)) with respect to ? ,.. (9)

where J is a Lagrange multiplier. The solution is a balance between the entropy term and the term that

demands some agreement with the detected data. Where the balance is s[ruck is dc[ermilwd by the uscr-

f . For our cases, increasing X~~ yields increasingly smooth reconstructions m thesupplied value for ~

solution moves toward the $mooth underlying model. Decreasing X~~ drives the algorithm toward a
solution that relies more heavily on the data, or what might be called a constrained-least-squares or
constrained -maximum-likelihood solution,

4.2 Results

Table 2 summarizes the Max Ent results for the noisy 100-view cmc. The table gives the dctcctnbilily
2

index ,asa function of xu~ for 15 itcra[ions of the Max Ent algorithm and an assumed rms m]isc (“mx,” in
the table) equal [O 8, the rms noise in the dcteclcd data before pre-smoothing. “I_he table givrs bo[h (IW
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expected rrns residual for each value of fiti (in tea of t-he assumed rms noise in the data) as well as the

rms residual measured from the reconstructions. 2As ~ decreases from a starting value of 8000, the

2‘detectability improves and reaches a maximum at ti=2900. For #ti22900 the expected rms residual is

equal to the actual rrns residual obtained in the reconstructions. 2When we decrease ti~ further, the rms
~esidu~~ in the reconstructions is unable to keep up with the expected rms residual, and the detectability
index begins to decline as well. We find the maximum d value to be equal to about 1.86, a value slightly
less than the best detectability index obtainable with the ART algorithm for this problem. An example

MaxEnt reconstruction for #ti=2900 is shown in Figure 2b.

Figure 3b shows a sample MaxEnt reconstruction for the optimum ~ parameter in the noise-free,2
8-projection case. The MaxEnt algorithm requires a positive-definite estimate of the noise variance, which
is set equal to .1 for this case. For 50 iterations of the MaxEnt algoritim, a detectability index of 14.53 is

obtained for #tirn=8. This maximum detectability index is somewhat higher than the best d’ value obtained
with the ART algorithm, as shown in Table 1.

Figure 4 is a plot of the expected rms residual and the actual rrns residual in the data as a function of
‘~~. The actual rms residual saturates at a value of 0.012, a value substantially lower than the rms residual

obtained in the optimized ART reconstructions for the limited-view case. The Maxent detectability index is
-plotted as a function of the expected rms residual in Figure 5. The detectability index is found to incre~

?with decreasing ~ until a saturation occurs when the desired rms residual departs from the actual rms

~esidual obtained in the reconstructions. The decrease in detectability as a function of ~w~ can be partially
explained by the effect depicted in Figure 6, which is a plot of the average amplitude in the signal-present

and signal-absent regions in the reconstruction as a function of #ti. This figure graphically shows the

algorithm moving toward a uniform grey solution - the underlying model - as X3~ incremes, so that [he
pixel values in the reconstruction in the disc locations and background become more and more similar. This
has the effect df moving the histograms of the decision variable for the signal-present and signal-absent
cases closer together, thereby reducing the detectability index provided the histogram widths stay constant.
(Although not depicted on the figure, ihe histogram widths are unchanged or even broadened.)

5. DISCUSSION

We have shown how algorithms can be optimized and compared based on the ability of a simulated
“observer to do signal-known-exactly detection tasks. We migh[ expect the MaxEnt algorithm, with its
implicit posit ivity constraint, to give similar results to the constrained ART algorithm, This is indeed found
to be true for the noise-limited 100-view case. The detectability index of the constrained ART algorithm

“and the Max Ent algorithm are kth found to be about 1.9.

The noise-free 8-view case compares the ART and MaxEnt algorithms for very limiteu data sets. We
find that the Max Ent algorithm gives a peak detectability index of 14.5, while constrained ART gives a
peak d’ of 11.7. It is clear from the noise-free 8-view results that the positivity constraint inhcrenl in
Max Ent and explicit in constrained ART is a powerful tool for reconstructing limited data. In addition, IIIC
MaxEnt algorithm demonstrates a superior ability to reduce the rms residual. The average rms residual in
the optimized reconstructions is .012 for MaxEnt and .020 for ART. We believe this to be the primary
remon for the improved detectability index determined from the Max Ent reconstructions. In fact, an rms
residual of .020 for the Max Ent algorithm corresponds to a d’ value of about I 1.5, based on the plot in
Figure 4, Thus, the Max Ent algorithm yields the same d’ as the ART algorithm at the same value for the
rms residual, The lower rms residual from Max Ent could be the result of the multiplicative rurture of the
algori[hm, Or, another possible reason is the additional smoothness condition in the Max Ent algorithm IS
we have applied it. A test of this supposition would be to use an underlying model with the same average

grey level but with an added zero-mean random component so that the model is no Iongcr smooth.
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In optimizing MaxEnt, we find in genem.1 that the d value is a #maximum at the lowest ~ value for

which the desired rms residual is the actual rms residual achieved in the reconstruction. In the noise-
.

limited IO&view case, values of #h either above or below that optimum cause marked changes in the
character of the reconstruction and the associated detectability y index. The noise-free 8-view case shows a

tumion in d’ when the desired rrr.s residual can no longer & met in the reconstruction. Lower values of
? ~ do not change the reconstflct ,on or the d’ value. For both imaging geometries, a choice of #h =

I/measurement with the estimated noise rms set approximately equal to the actual rrns noise in the detected
data gives d’ vak.s far from the o~timum.

We have performed initial investigations of the ability of a simple matched filter to detect a signal when
the background is not known a priori using reconstructions obtained from the MaxEnt and constrained ART
algorithms. For these studies the filter is a center-surround template that measures the counts in the region
where the presence of a signal is being tested, and subtracts off an estimate of the local background activity
in an annular region about the signal. For 10 iterations of constied ART, the need for background
fitting in the noisy 100-view case reduces the d from the known-background value of 1.82 to a d’ of 1.53, ”
a decrease of 16%. These d’ values are for nominal relaxation parameters after optimization of the areas of
the signal and background regions in the unknown-background template. The MaxEnt algorithm yields
similar results in the noise-limited IO&view case. For 15 iterations, the unknown-background d’ is found
to be 1.56, down from the known-background d’ of 1.86 by 16%. These rew.rlts are obtained using the best
/ti from the known-background case for both tasks. “

—,

Similar performance penalties for the two algorithms are also found in the noise-free ~-view case. For
I@l iterations of cortstmined ART, the optimized d’ value decreases from 11.69 to 5.96 when the
background has to be estimated, a decrease of 49%. ,~e MaxEnt algorithm gives reconstructions that lead
to a similar performance low the background-unknown d’ is 7.78, which is only 46% of the known-
background d’ we find of 14.53. These d’ values are obtained after 50 iterations of the MaxEnt algorithm

with the same ffi value (#ti=8) that gives the known-background d’. Futher investigation of these
algorithms and their optimization for the unknown-background task is the subject of current research.
—

Sevmd possibilities exist for CPU time comparisons for these algorithms. CPU time per iteration can
be misleading, since one iteration of M=Ent can mean up to four projection-backprojection steps. It is
perhaps more meaningful to compare CPU times for different algorithms on the basis of CPU time Pei d’.
If we consider the I(%view case, on a PVAX 3500 machine, 15 iterations of the MaxEnt algorithm takes
about 7.5 hours for 10 trial scenes and 1282 size images. A similar d’ value k obtained for 10 iterations of
~he constrained ART algorithm in less than 2 hours. These times refer to computer simulations that
evaluate the detectability index with constant algorithm parameters; no optimization steps are involved.

.— 6. CONCLUSIONS

We have presented a method for the comparison of reconstruction algorithms on the basis of task
performance. The algorithms were first optimized to provide the best images for detection of low-contrast
discs by a simple matched filter, as memured by the detectability index d’. In particular, we have shown

how the choice of the fu~ parameter in the historic MaxEnt algorithm affects the detectability index.

For many noisy views, we found the known-background d’ values obtained from the ART and MaxEnt
algorithms to be very similar, The MaxEnt ~,lgorithm was found to give a slightly lower d’ than constrained
ART, which has been shown by Hanson to be slightly inferior to unconstrained ART for this imaging
geometry. Having to estimate the background level caused a performance degradation of 1696 for images
obtained from either algorithm.

For a few noise-free views, the algoritfim ranking was reversed. In this case the MaxEnt algorithm
gave a higher d’ value than the constrained ART algorithm, which in turn has been shown to be superior to
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““the’unconstrained ART algorithm. An unknown background caused similar relative performance penalties
for the MaxEnt and consbained ART algorithms, so that the need for background estimation did not affect
the algorithm tanking.

-

We have found the CPU time of the MaxEnt algorithm to be 2-4 times slower than the ART algorithm

for simulations that yield approximately equal detectability indices.
—

Finally, aside from the spxific results for the algorithms considered here, we emphasize the underlying
theme of ‘this work. It is important that images be evaluated based
summarizes their usefulness for whatever task they are intended for.
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Table 1. Summary of ART results. The stated m noise refers to the noise in the data before the pre-
smoothing opemtion.

~= I ~= rrns rms residual d?

Views Iter. noise A,rA without I with withOut I with
o

constraint constraint

100 10 8 nominal 3.55 3.85 1.99 1.82
100 10 8 optimiz. 3.62 3.99 2.01 1.91
100 100 8 optirniz. 3.80 1.84

8 10 0 notninal 0.06 0.76 0.46 0.65
8 10 0 optirniz. 0.96 0.18 0.48 5.14
8 100 0 optimiz. 0.02 11.69

Table 2. Summary of MaxEnt results for the 100-view case. The stated rrns noise refers to the data before
the pre-smoothing operation. “ace” is the expected rms noise in the data input to the MaxEnr
algorithm.

INo. No. $ -.
Views Iter.

●im I noise

100
100
100
100
100
100

15
15
15
15
15
15

1600
2700
2900
3200
5000
8000

8.0
8.0
8.0
8.0
8.0
8.0

acc.

8.0
8.0
8.0
8.0
8.0
8.0

rms. residual
am I actual

2.83
3.67
3.81
4.00
5.00
6.32

3.79
3.80
3.81
4.00
5.00
6.34

d,

1.82
1.81
1.86
1.78
1.01
0.58

Fig. 1. Sample source object showing 10 high-contras[ (amplitude=l ,0)
and 10 low-contrast (amplitude-O. I ) discs.
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Fig. 2a. Optimked reconstruction of object
shown k Fe. 1 from 100 noisy
(noise rms=8) projections after 100
iterations of constmined ART.
(d’= 1.84)

Fig. 2b. Reconstruction of object shown in
Fig. I from 100 noisy (noise
rms-8) projections after I5
iterations of optimized MaxEnt.
(d’-l .86)

Fig, 3a, Optimized reconstruction of object
shown in Fig. 1 from 8 noke-free
vie ws after 100 iterations of
constrained ART. (d’=1 1.69)

Fig. 3b. Reconstruc~ion of object shown in
Fig. I from 8 noise-free views
after 50 iterations of optimized
MaxEnt. (d’=14.53)
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Fig. 4. Effect of varying fti on the expected rms residual and the average rms residual obtained from [he
MaxEnt reconstructions for the noise-free 8-view case.
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Fig. 5. Plot of the M~xEnt detectabi,lty index as a function of the desired rms residual for !he noise-free

8-view case. The desired rms residud was varied by va~ying Xzm.
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Fig, 6. Average value in the signal-present and signnl-alricm locations in the Max Ent reconstructions M ti

function of ~dm for the 8-view, noise-free ca.sc,
●




