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ABSTRACT

I _‘1‘—@“‘ I

A method for comparing reconstruction algorithms is presented based on the ability to perform certain
detection tasks on the resulting images. The reconstruction algorithms compared are the algebraic
reconstruction technique (ART) and the maximum entropy reconstruction method (MaxEnt). Task

rformance 15 assessed through a Monte Carlo simulation of the complete imaging process, including the
generation of a set of object scenes, followed by data-taking, reconstruction, and performance of the
specified task by a machine observer. For these detection tasks the figure of merit used for comparison is
“the detectability index, d’. When each algorithm is run with approximately optin'ized parameters, these
studies find comparable values for d’. :
!

- 1. INTRODUCTION -
The overall purpose of a medical imaging system is usually to provide visual information for
"interpretation by a radiologist or other trained observer. Assessment of the quality of images obtained from
a medical imaging system has been a long-standing problem. The merit of an image cannot be determined
simply by subjettive visual inspection. Rather, image quality must be evaluated objectively based on how
“well the image provides ihe information required by the observer to perform a specific task. If a scalar
. figure of merit can be determined that represents the usefulness of the image for the specified task, many
aspects of the imaging chain can be optimized by adjust.ng the system parameters to ircrease that measure.
[ Or, the figure of merit can be used to compare two different imaging systems. In this study wec shali
consider one aspect of the imaging chain, the reconstruction procedure, and consider both the optimization
~of a single reconstruction algorithm and the comparison of two different (and each optimized)
. reconstruction algorithms based on the usefulness of the images they provide for performing certain
' detection tasks.

2. CALCULATION OF TASK PERFORMANCE

In order to evaluate the usefulness of an image we need to first specify some task and then determine
the ability of some observer to perform the task using the iinage. Psychophysical studies are one avenue for
doing this; a set of real or simulated images are presented to trained human observers and their ability to
perform a stated task is measured. Unfortunately, psychophysical studies can pe very time consuming to
perform. Optimization of imaging systerns based on psychophysical testing would be cumbersome, since
many images and observers are required to evaluate a single set of imaging system parameters. The whole
psychophysical study would have to be performed many, many times with great resolution in order to
determine the optimal system configuration over several system parameters.

An alternative strategy is to calculate the performance of a model observer. There is a considerable
literature on the ideal or Bayesian observer, defined as one who has full knowledge of all relevant statistical
properties of the images and of the task at hand. The performance of the Bayesian observer has been
calculated analytically or numerically for several simple detection and discrimination tasks where the signal
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“and background are completely specnfned and (he observer’s perfonnance is limited by the randomness in
the data resulting from the quantum fluctuations in the incoming radiation stream.!:? These fluctuations
_result in a noisy image that changes for repeated imaging trials even when the object is the same each time.
More recently, pertormance calculations for two model observers (both sub-optimal) were de~’led for the
case where the signal was known exactly but the observer was limited by both image noise and a random,
inhomogeneous background.? The calculation of ideal-observer performance measures in cases where there
is some randomness in the parameters defining the signa! to be detected or discriminated is the subject of
ongoing research, and has been presented at this and other recent SPIE Medical Imaging meetings.4"7 Suill,
these investigations do not address the degradation in task performance that can occur when the
reconstructed image contains artifacts. We define artifacts as those deviations in the reconstructed image
from the original object that are present in the absence of measurement noise. Artifacts are the result of
inadequate sampling of the object during the measurement process and do not change when the same object
is imaged repeatedly. Since artifacts depend on the object in a complicated fashion, we choose a third
method for image evaluation based on Monte Carlo simulations of the complete imaging process.

2.1 Monte Carlo Method
L_ The Monte Carlo method is favored for our purpose because we can define a class of objects and
‘thereby obtain an ensemble of images, each one a single realization of the noise and artifacts that result
'from the imaging process. By performing the visual task on the ensemble of images we obtain a statistically
Lmeaningful average of the response of each algorithm to the object ciass and task. This Monte Carlo
'method has been used by Hanson to optimize the algebraic reconstruction technique (ART)} for a wide
i variety of detection and estimation tasks.8-1! The method has also been used recently to optimize the
_maximum a posteriori reconstruction method.!?

i
‘ Before the Monte Carlo method can proceed, the problem must be fully specified. In general, the
following steps must be performed:

1) First, the object class or classes must be specified, including any variability in the signal and

—  background parameters that are to be modeled.

2) The measurement geometry must be specified, including all sources of noise and blur. [f the acquired
data are to be reconstructed or otherwise processed in some manner, the processing algorithm must be

--  specified.

3) The task to be performed must be clearly defined.

4) The method of task performance must be designated. The method should be appropriate for the

..~ intended application. If a human viewer is to be the image interpreter for the final system, a model of
the human observer can be invoked. If a .achine reader is to analyze the final images, then a
machine can perform the task in the Monte Carlo simulation. Or, the Bayesian observer can be used to

- determine the best possible task performance given the image and any available information about the
prior probabilities.

5) A figure of merit that quantifies the usefulness of the images for performing the specified task must
be chosen.

Once the steps above have been accomplished, the Monte Carlo simulation proceeds as follows:

1) One realization of an object is generated.

2) The object is used to generate a detected data set by simulating the imaging process. Any required
post-processing or reconstruction of the raw data is performed.

) The task is performed by the simulated observer acording to the prescribed rule.

4. Steps 1) through 3) are repeated a sufficient number of times so that an accurate estimate of the
statistics of the task performance may be obtained.

J) Finally, the figure of merit is determined that summarizes the usefulness of the imaging system based
on the task performance statistics for the ensemble of objects,
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72.2 Example - Comparison of ART and MaxEnt o

The specific problem we shall address is the ccmparison of two reconstruction algorithms, the algebraic
“reconstruction technique {ART) and the maximum entropy reconstruction method (MaxEnt). The object
class shail consist of a set of 10 scenes, each containing many randomly placed, non-overlapping discs on a
, zero background. Specifically, 10 low-contrast (amplitude=0.1) discs are present in each scene. To probe
“the effect of object-dependent artifacts, 10 high-contrast discs (amplitude=1.0) are also randomly placed in
‘each scene. The high- and low-contrast discs are all 8 pnxels in diameter in an object of 128 pixels in
diameter. One sample object from the ensemble is shown in Figure J. The task shall be the detection of
" the low-contrast discs, with amplitude, size, and location known. The measurements consist of a number of
parallel projections equally spaced over 1809 each containing 128 samples. We shall consider two data-
taking situations. The first is the situation where there are many views, 100 in total, and each of the 100
‘projections contains additive, zero-mean Gaussian noise with rms=8. This first case is intended to
investigate the noise-limited regime of the reconstruction problem. The second case we shall consider is the
limited-view situation, where the number of projections is small, 8 in all, ana no noise is added to the
I"detected data. This scenario is meant to investigate the artifact-limited domain of the reconstruction
problem.

I~ The simulated projection data become the input to the reconstruction algorithms, whose job it is to find
an estimate of the criginal object on which the detection task can be performed. The details of the
. reconstruction algorithms are given in sections below. Both reconstruction algorithms employ a pre-
smoothg step that has the effect of mildly blurring the projection data. The pre-smoothing filter is a
3 -pixel-wide mangular window that reduces the rms noise in the data by a factor of 0.4P4. Such a pre-
smoommg step is recommended for these algorithms on tomographic problems to avoiad over-{itting the
“high-frequency components in the input data that can result in ringing in the reconstruction. In the results
' sections that follow, the stated rms noise in the data is the value before pre-smoothing.

2.3 Figures of Merit for Task Performance

To evaluate’and compare the reconstructions, a figure of merit summarizing the detectability of the
Jow-contrast discs in the scenes must be obtained. The task we shall consider is the binary detection
problem, that is, iS the disc present or absent? The observer or decision-maker will be the non-
prewhitening matched filter. We choose this model observer because the Bayesian observer requires full
knowledge of the probability density functions on the data when the signal is present and cbsent. These
distributions are difficult to obtain because of the scene-dependent nature of the artifacts in the images.
The non-prewhitening matched filter is essentially a handicapped Bayesian observer in that it uses all
“information about the signal parameters perfectly, but does not attempt to correct for any correlations in the
background fluctuations from either artifacts or noise post-processing. This model has been found to
correlate well with human observer performance in a number of psychophysical investigations,13:14

When the signal and background are assumed to be completely known, the non-prewhitening matched
filter forms a template that is a simple disc of radius matched to the low-centrast disc, and counts up all
the activity in the region it superimposes. The output of that operation becomes the observer’s decision
variable. The observer declares the signal to be present, a positive resporse, if the decision variable is
above his decision threshold. By applying this strategy to many locations where the signal is known to be
present, and again where the signal is known to be absent, we can derive histograms for the observer’s
decision variable (plots of the frequency of occurrence of the decision variable) under both the signal-
present and signal-absent conditions. The traditional receiver operating characteristic (ROC) curve is
obtained by plotting the fraction of true-positive responses versus the fractior of false-positive responses
from the histograms as the observer’s dccision threshold is varied. In our studies the histograms are
generated by reconstructing 10 different object scenes, each containing 10 low-contrast discs that are used
to form the signal-present decision-variable histogram and 30 locations that are free of the disc signals and
are therefore used to form the signal-absent decision-variable histogram, The further apart the histogroms,
the better the observer can correctly distinguish signal-present cases from those where the signal is absent.
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ﬁe—aég}é; o-f separation of the two hiStc;grams 7can be chﬁracterized by the detectability index d°, given
by1s
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where ¥, and o, are the mean and rms deviation of the frequency distribution when the signal is present,
and ¢, and o, are the mean and rms deviation of the frequency distribution when the signal is absent. The
detectability index is sometimes called the observer’s signal-to-noise ratio. This is a meaningful figure of
merit provided the distributions on the decision variable under each hypothesis are Gaussian. However, one
should be aware that improper conclusions regarding the ranking of observer performances can be obtained
when the detectability index is used to describe very non-Gaussian decision-variable frequency
distributions.”

We could have chosen to plot the entire ROC curve and use the area under the curve as the figure of
merit instead of the detectability index d°. Or, an effective detectability index d, that can be derived from
the arca might have been used.}%1® We choose to use the detectability index d’ as our figure of merit

_because it is the most accurate representation of tha: overlap of the two histograms, especially for the high
d’ values we encounter in some of our examples, provided they meet the Gaussian assumption.”»11 Hanson
has found good agreement between d” and d, for tasks similar to those considered here.!!

A number of other summary measures have been suggested as figures of merit for image quality. One
of the best-known of these is the root mean square difference between a reconstructed or estimated object

.and the actual object, called the L2 norm. The problem with this metric is that the relationship between

the L2 norm and the usefulness of the image for task performance is unclear. Measures based on the
agreement between the actual data and the estimated data that would be derived from the estimated object,
such as the rms residual, can be ill-conditioned or ill-posed. In the approach to system (specifically
algorithm) evaluation presented here, we are using a figure of merit that is fundamentally related to the
ability of an observer to use the image to perform a specified task.

3. ART

_ The algebraic reconstruction technique!” is an iterative algorithm that recon~tructs a function from its
projections and has been shown to be useful in situtations where there are a limited number of projections.
Optimization of the algorithm for a variety of visual tasks has been presented by Hanson.®8-1! Results of
the optimization of ART for a number of detection tasks shall be summarized briefly below to allow
comparison with the MaxEnt algorithm for the same tasks.

3.1 Theory

We assume that N individual projection measurements are acquired of the unknown object f, with the
boldface character denoting a vector. The data vector for the i*th projection can be written as

8! - lll f + nl ) i=l....,N, (2)

where H; is the corresponding row of the measurement matrir and n; is the noise vector for that projection,
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The ART algorithm proceeds by formmg an initial guess for example f0=0. Then for each iteration the
estimate is updated by iterating on the individual measurements as follows:

fael o k4 M HT _L:H_lill-lf_ , i=k-mod(N)+1, (3)

where f* is the kth estimate of the object f, Ak is the relaxation factor for the kth update, and the
superscript "T" represents the transpose of a vector or matrix. Constrained ART uses the same iteration
approach represented by Eq. (3), with the additional rule that any negative object estimate be set to zero
before proceeding to the next update. The relaxation factor is given by

K w2g(ry)K1 (4)

where the iteration number K=int(k/N) represents the number of passes through all N projections. Hanson
.has investigated the optimization of the relaxation parameters ), and r, for several detection and
discrimination tasks.®-1!

'3.2 Results
i

Table | summarizes the results for the optimization of both the unconstrained and constrained ART
algorithm for the detection task. From the top half of the table, we see that nominal values for the
-relaxation parameters in the 100-view case lead to a d° value of 1.99 that degrades slightly with the
application of the positivity constraint for 10 iterations of ART. Neither optimization of the relaxation
parameters, nor increasing the number of interations to 100 has any large effect on the detectability index
for this case. Figure 2a shows a reconstruction of the object in Figure 1, achieved via the constrained ART
algorithm from 100 noisy projections after 100 neratxons corresponding to the d’=1.84 row of Table 1.

The second half of Table 1 reviews the results for the optimization of the ART algorithm in the 8-view
case. This imaging geometry is found to yield d’ values that are greatly improved through optimization of
the relaxation parameters and through the application of the positivity constraint for 10 iterations of ART.
Constrained ART with relaxation parameters optimized for 100 iterations yields a detectablity index of
11.69. Figure 3a is an image of the source shown in Figure 1, reconstructed from 8 noiseless views after
100 iterations of optimized, constrained ART.

4. MAXENT

. The maximum entropy algorithm employed here is the "historic" MaxEnt algorithm described by Gull
and Skilling!® for the reconstruction of positive, additive images. A commercial software package, entitled
MEMSYS 2(c), was used to obtain the MaxEnt reconstructions.!®

4.1 Theory

We again assume that the data are a set of projection vectors as described by Eq. (2) above. The
entropy of the reconstruction is defined to be

SHy=-) pylogp, oy =fysh (5)
j
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In the case where there is an underlying mode! for the object class, the entropy can be rewritten as

s(f) = Z[fj -m; - f; log(f;/m;) ] , (6)
J

where m; is the value of the model in the j*h object pixel. The global maximum of S(l' ) occurs when
fj=m; I'or all j, where S(f )=0. Hence the entropy term measures the deviation of the object estimate from
the assumed model. Since the randomly placed discs in the object scenes in the simulations here are equally
likely to occur in any location, the underlying model is a uniform grey level set equal to the average pixel
brightness in the object. Note also that the logarithmic term in Egs. (5) and (6) has the effect of imposing
a positivity constraint on the reconstruction values.

The misfit between the reconstruction and the detected data values is measured in the data domain by
the chi-squared statistic:

3
lgi'ZHijfj
AL T j
SUEDH| = K (M

where o® specifies the expected variance in the data. Here we assume the noise to be independent of
_location, so it appears as a constant independent of the summation index. The chi-squared value is a
meaningful measure of the agreement between the data and the reconstruction as long as the noise is
Gaussian and uncorrelated. Note that the X2 value is related to the rms residual of the reconstruction by

1,
. A 2
rms residual = [X'(f) " No. of m:asuremems] ' (8)

_ One obtains the maximum entropy solution by maximizing S(l‘= ) over x'(f )=x§;m, where xii,,, sets the
desired degree of consistency with the actual data. Formally, this is expressed by

maximize ((f) - Ax3(f)) with respect to f , )

where A is a Lagrange multiplier. The solution is a balance between the entropy term and the term that
demands some agreement with the detected data. Where the balance is struck is determined by the user-

supplied value for x’..m For our cases, increasing X,m Yields increasingly smooth reconstructions as the

solution moves toward the smooth underlying model. Decreasing xiim drives the algorithm toward a
solution that relies more heavily on the data, or what might be called a constrained-least-squares or
constrained-maximum-iikelihood solution.

4.2 Results

Table 2 summarizes the MaxEnt results for the noisy 100-view case. The table gives the detectability

index as a function of xzim for 15 iterations of the MaxEnt algorithm and an assumed rms noise ("acc.” in
the table) equal to 8, the rms noise in the detected data before pre-smoothing. The table gives both the
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“expected rms residual for each value of Xaim (in terms of the assumed rms noise in the data) as well as the
rms residual measured from the reconstructions. As qum decreases from a starting value of 8000, thz
“detectability improves and reaches a maximum at X’.;m-2900. For xz.-m,z2900 the expected rms residual is

equal to the actual rms residual obtained in the reconstructions. When we decrease xﬁim further, the rms
_residua! in the reconstructions is unable to keep up with the expected rms residual, and the detectability
index begins to decline as well. We find the maximum d° value to be equal to about 1.86, a value slightly
less than the best detectability index obtainable with the ART algorithm for this problem. An example

MaxEnt reconstruction for xz.im=2900 is shown in Figure 2b.

Figure 3b shows a sample MaxEnt reconstrucdon for the optimum xzm parameter in the noise-free,
B-projection case. The MaxEnt algorithm requires a positive-definite estimate of the noise variance, which
is set equal to .l for this case. For 50 iterations of the MaxEnt algorithm, a detectability index of 14.53 is

obtained for xﬁm-s. This maximum detectability index is somewhat Ligher than the best d° value obtained
with the ART algorithm, as shown in Table 1.

Figure 4 is a plot of the expecied rms residual and the actual rms residual in the data as a function of
aim. The actual rms residual saturates at a value of 0.012, a value subtantially lower than the rms residual

obtained in the optimized ART reconstructions for the limited-view case. The Maxent detectability index is
-plotted as a function of the expected rms residual in Figure 5. The detectability index is found to increase

with decreasing Xz.m, until a saturation occurs when the desired rms residual departs from the actual rms

_residual obtained in the reconstructions. The decrease in detectability as a function of xf.—m can be partially
explained by the effect depicted in Figure 6, which is a plot of the average amplitude in the signal-present

and signal-absent regions in the reconstruction as a function of qum This figure graphicallv shows the

‘algorithm moving toward a uniform grey solution - the underlying model - as xim increases, so that the
pixel values in the reconstruction in the disc locations and background become more and more similar. This
has the effect of moving the histograms of the decision variable for the signal-present and signal-absent
cases closer together, thereby reducing the detectability index provided the histogram widths stay constant.
(Although not depicted on the figure, ihe histogram widths are unchanged or even broadened.)

5. DISCUSSION

We have shown how algorithms can be optimized and compared based on the ability of a simulated
‘observer to do signal-known-exactly detection tasks. We might expect the MaxEnt algorithm, with its
implicit positivity constraint, to give similar results to the constrained ART algorithm. This is indeed found
to be true for the noise-limited 100-view case. The detectability index of the constrained ART algorithm
‘and the MaxEnt algorithm are both found to be about 1.9.

The noise-free 8-view case compares the ART and MaxEnt algorithms for very limitea data sets. We
find that the MaxEnt algorithm gives a peak detectability index of 14.5, while constrained ART gives a
peak d" of 11.7. It is clear from the noise-free 8-view results that the positivity constraint inherent in
MaxEnt and explicit in constrained ART is a powerful tool for reconstructing limited data. In addition, the
MaxEnt algorithm demonstrates a superior ability to reduce the rms residual. The average rms residual in
the optimized reconstructions is .012 for MaxEnt and .020 for ART. We believe this to be the primary
reason for the improved detectability index determined from the MaxEnt reconstructions. In fact, an rms
residual of .020 for the MaxEnt algorithm corresponds to a d’ value of about 11.5, based on the plot in
Figure 4. Thus, the MaxEnt algorithm yields the same d° as the ART algorithm at the same value for the
rms residual. The lower rms residual from MaxEnt could be the result of the multiplicative nature of the
algorithm. Or, another possible reason is the additional smoothness condition in the MaxEnt algorithm as
we have applied it. A test of this supposition would be to use an underlying model with the same average
grey level but with an added zero-mean random component so that the model is no longer smooth.
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In optimizing MaxEnt, we find in general that the d’ value is a maximum at the lowest )(z,u.n value for
which the desired rms residual is the actual rms residual achieved in the reconstruction. In the noise-
limited 100-view case, values of x’.,m either above or below that optimum cause marked changes in the .
character of the reconstruction and the associated detectability index. The noise-free 8-view case shows a

turation in d° when the desired rir.s residual can no longer be met in the reconstruction. Lower values of
aim do not change the reconstruct.on or the d° value. For both imaging geometries, a choice of xzm =

l/measurement with the estimated noise rms set approximately equal to the actual rms noise in the detected
data gives d’ values far from the ootimum.

We have performed initial investigations of the ability of a simple matched filter to detect a signal when
the background is not known a priori using reconstructions obtained from the MaxEnt and constrained ART
algorithms. For these studies the filter is a center-surround template that measures the counts in the region
where the presence of a signal is being tested, and subtracts off an estimate of the local background activity
in an annular region about the signal. For 10 iterations of constrained ART, the need for background
fitting in the noisy 100-view case reduces the d° from the known-background value of 1.82 to a d" of 1.53,-
a decrease of 16%. These d’ values are for nominal relaxation parameters after optimization of the areas of
the signal and background regions in the unknown-background template. The MaxEnt algorithm yields
similar results in the noise-limited 100-view case. For 15 iterations, the unknown-background d’ is found
to be 1.56, down from the known-background d’ of 1.86 by 16%. These results are obtained using the best
aim [rom the known-background case for both tasks. .

Similar performance penalties for the two algorithms are also found in the noise-free R-view case. For
100 iterations of constrained ART, the optimized d° value decreases from 11.69 to 5.96 when the
background has to be estimated, a decrease of 49%. The MaxEnt algorithm gives reconstructions that lead
to a similar performance loss: the background-unknown d’ is 7.78, which is only 46% of the known-
background d’ we find of 14.53. These d’ values are obtained after 50 iterations of the MaxEnt algorithm

with the same )&m value (x’.im-S) that gives the known-background d’. Futher investigation of these
algorithms and their optimization for the unknown-background task is the subject of current research.
Several possibilities exist for CPU time comparisons for these algorithms. CPU time per iteration can
be misleading, since one iteration of MaxEnt can mean up to four projection-backprojection steps. It is
perhaps more meaningful to compare CPU times for different algorithms on the basis of CPU time per d’.
If we consider the 100-view case, on a uVAX 3500 machine, 15 iterations of the MaxEnt algorithm takes
about 7.5 hours for 10 trial scenes and 1283% size images. A similar d’ value ‘s obtained for 10 iterations of
the constrained ART algorithm in less than 2 hours. These times refer to computer simulations that
evaluate the detectability index with constant algorithm parameters; no optimization steps are involved.

- 6. CONCLUSIONS

We have presented a method for the comparison of reconstruction algorithms on the basis of task
performance. The algorithms were first optimized to provide the best images for detection of low-contrast
discs by a simple matched filter, as measured by the detectability index d’. In particular, we have shown

how the choice of the Xiim parameter in the historic MaxEnt algorithm affects the detectatility index.

For many noisy views, we found the known-background d’ values obtained from the ART and MaxEnt
algorithms to be very similar. The MaxEnt ~lgorithm was found to give a slightly lower d’ than constrained
ART, which has been shown by Hanson to be slightly inferior to unconstrained ART for this imaging
geometry. Having to estimate the background level caused a performance degradation of 16% for images
obtained from either algorithm.

For a few noise-free views, the algorithm ranking was reversed. In this case the MaxEnt algorithm
gave a higher d’ value than the constrained ART algorithm, which in turn has been shown to be superior to
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~the unconstrained ART algorithm. An unknown background caused similar relative performance penalties
- for the MaxEnt and constrained ART algorithms, so that the need for background estimation did not affect
. the algorithm ranking.

We have found the CPU time of the MaxEnt algorithm to be 2-4 timnes slower than the ART algorithm
for simulations that yield approximately equal detectability indices.

Finally, aside from the specific results for the algorithms considered here, we emphasize the underlying
. theme of this work. It is important that images be evaluated based on an objective figure of merit that
summarizes their usefulness for whatever task they are intended for.
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Table 1. Summary of ART results. The stated rms noise refers to the noise in the data before the pre-
smoothing operation.

No. No. rms ms residual d’
Views | Iter. | noise | A\ , r, | without | with | without | with
constraint constraint
100 10 8 nominal 3.55 3.85 1.99 1.82
100 10 8 optimiz. 3.62 3.99 2.01 1.91
100 100 8 optimiz. 3.80 1.84
8 10 0 nominal 0.06 0.76 0.46 0.65
8 10 0 optimiz. 0.96 0.18 0.48 5.14
8 100 0 optimiz. 0.02 11.69

Table 2. Summary of MaxEnt results for the 100-view case. The stated rms noise refers to the data before
the pre-smoothing operation. "acc™ is the expected rms noise in the data input to the MaxEnt
algorithm.

No. No. x’ ms. rms. residual
Views | Iter. noise | acc.| aim actual d’

100 15 1600 8.0 8.0 | 2.83 3.79 1.82

100 15 2700 8.0 8.0 | 3.67 3.80 1.81
100 15 2900 8.0 8.0 | 3.81 3.81 1.86
100 i 3200 8.0 8.0 | 4.00 4.00 1.78
100 15 5000 8.0 8.0 | 5.00 5.00 1.01
100 15 8000 8.0 8.0 | 6.32 6.34 0.58

Fig. 1. Sample source object showing 10 high-contrast (amplitude=1.0)
and 10 low-contrast (amplitude=0.1) discs.
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Fig. 2a. Optimized reconstruction of object Fig. 2b. Reconstruction of object shown in
shown in F.e. 1l from 100 noisy Fig. 1 from 100 noisy (noise
(noise rms=8) projections after 100 rms=8) projections after 15
iterations of constrained ART. iterations of optimized MaxEnt.
(d'=].84} (d’=1.86)

Fig. 3a. Optimized reconstruction of object Fig. 3b. Reconstruction of object shown in
shown in Fig. | from 8 noise-free Fig. | from 8 noise-free views
views after 100 iterations of after 50 iterations of optimized

const.ained ART. (d'=11.69) MaxEnt. (d’'=14.53)
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Fig. 4. Effect of varying X’.;m on the expected rms residual and the average rms residual obtained from the
MaxEnt reconstructions for the noise-free 8-view case.
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Fig. 5. Plot of the MuxEnt detectabiuty index as a function of the desired rms residual for the noise-free
8-view case. The desired rms residual was varied by vaiying xfim.
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Fig. 6. Average value in the signal-present and signal-absent locations in the MaxEnt reconstructions as a
function of X:jm for the 8-view, noise-free case.





