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ABSTRACT

Although the Bayesian approach provides a com-
plete solution to model-based analysis, it is often diffi-
cult to obtain closed-form solutions for complex mod-
els. However, numerical solutions to Bayesian modeling
problems are now becoming attractive because of the
advent of powerful, low-cost computers and new algo-
rithms. We describe a general-purpose implementation
of the Bayesian methodology on workstations that can
deal with complex nonlinear models in a very flexible
way. The models are represented by a data-flow dia-
gram that may be manipulated by the analyst through
a graphical-programming environment that is based on
a fully object-oriented design. Maximum a posteriori
solutions are achieved using a general optimization algo-
rithm. A new technique for estimating and visualizing
the uncertainties in specific aspects of the model is in-
corporated.

Keywords: Bayesian analysis, MAP estimator, uncer-
tainty estimation, object-oriented programming, adjoint
differentiation, optimization

1. INTRODUCTION

We interpret physical reality in terms of models. There-
fore, basic questions about building models from data
are of fundamental importance: Which models are ap-
propriate? What are the best values of the model pa-
rameters? As measurements can not be made exactly, all
interpretations based on measurements can not be made
with complete certainty. Bayesian analysis provides the
methodology to quantitatively characterize the degree of
uncertainty in the models that we build in light of the
measurements. In the Bayesian approach the degree of
certainty of any parameter is represented as a proba-
bility density function defined on that parameter. For
example, a wide probability distribution on a parameter
means that it is not known well. Conversely, a narrow
one means the parameter is accurately known.
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Historically, most Bayesian calculations, indeed the
majority of signal recovery work, have been grounded on
certain standard simplifying assumptions. For example,
it is often assumed that there is a linear relationship be-
tween measurements and the model parameters that are
to be determined. Furthermore, Gaussian probability
density functions have been used extensively in Bayesian
formulations (and other approaches to statistical analy-
sis). These historical predilections may be understood by
the fact that they result in a seductive simplicity in the
solutions. Linear measurement models may be handled
using the tools of algebra. Gaussian probabilities lead to
quadratic expressions in the logarithm of the probabili-
ties. Therefore, when differentiated to find the station-
ary point corresponding to the maximum a posteriori
(MAP) solution, the result is a set of linear equations
for the MAP solution for the parameters, which may be
conveniently dealt with using the tools of linear algebra.
The simplicity of such results accounts for the popularity
of the historical assumptions.

However, many researchers have demonstrated the
tremendous advantage of deviating from the traditional
assumptions. First, the restriction to linearity between
the measurements and the model parameters imposes
very limiting constraints on the model for the measure-
ment process, as well as on the model for the object.
Such a restriction precludes direct use of important sources
of experimental data that are represented by nonlinear
transformations, for example, radiographic data [1]. Fur-
thermore, many important models for objects imply a
nonlinear relationship between measurements and the
model parameters, e.g. deformable geometric models to
describe the shape of objects [2, 3, 4, 5].

The second historical assumption, that all probabil-
ity density functions have Gaussian form, has also proved
beneficial to ignore. The use of an entropic prior in
a Bayesian context has been a smashing success [6, 7].
Even the use of a simple modification to a Gaussian prior
on image amplitudes such as a nonnegativity constraint
can have a profound beneficial effect on the usefulness
of tomographic reconstructions derived from a limited
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number of projections [8]. NonGaussian likelihood func-
tions are also clearly needed when the measurements are
subject to a noise process that is not Gaussian. For ex-
ample, when measurements are based on the number of
discrete events, the proper likelihood function is a Pois-
son distribution.

The disadvantage of giving up the usual simplifying
assumptions is that closed-form solutions are usually pre-
cluded. Answers often can only be obtained through the
use of a computer. While this aspect may be disquieting
to some, the power of these advanced models to provide
useful results in situations not otherwise approachable
has left little doubt that the computer results are worth-
while. Furthermore, the use of a computer actually frees
one to employ numerical techniques to deal forthrightly
with some messy issues in Bayesian analysis, such as in-
tegration of the posterior over unimportant parameters,
a process called marginalization. Unfortunately, the new
approaches to modeling are typically implemented with
only one type of special model in mind and do not pro-
mote the use of alternative or compound models or al-
low more than one type of prior. These capabilities are
implied by the Bayesian methodology and are a natu-
ral conclusion of hypothesis testing, a key component to
model building.

The preceding discussion anticipates our goals in de-
signing the computer application, which we call the Bayes
Inference Engine (BIE). The BIE provides a computa-
tional approach to Bayesian inference incorporating many
new features. The BIE is intended to allow great flexi-
bility in modeling in order to facilitate complex models
for the objects under study. It should be easy to de-
velop hierarchical models by simply augmenting an ex-
isting model. The BIE allows one to construct models
with both linear and nonlinear components with com-
plete flexibility. The BIE will permit the use of a vari-
ety of types of distributions for the inherent probability
density functions that describe the likelihoods and pri-
ors, such as Gaussian, Poisson, Cauchy, entropic, etc.
We intend for the BIE to break the restrictive bonds of
historic Bayesian analysis.

2. OVERVIEW OF THE BAYESIAN
APPROACH

In this paper we present just the basics of the Bayesian
approach under the assumption that the reader has some
understanding of the field. Those readers who are unfa-
miliar with Bayesian analysis are urged to learn the fun-
damentals, presented in textbooks on the subject [9, 10,
11]. The papers by Gull and Skilling and their colleagues
encapsulate the essential aspects of practical Bayesian
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data analysis [6, 7, 12]. Also, one of the authors has
written several papers that treat general aspects of the
methodology as applied to tomographic image recon-
struction and medical image analysis [13, 14].

Bayesian methodology provides a rational and com-
plete approach to inferring models and their parame-
ters from noisy measurements. It transcends ad hoc
approaches to modeling because it permits the use of
quantified prior information concerning the chosen mod-
els and ultimately leads to results whose uncertainties
can be fully characterized. In Bayesian analysis uncer-
tainties in parameter values are represented by probabil-
ity distributions on those parameters. A relatively large
uncertainty in a parameter is represented by a broad
distribution; a precisely-known parameter by a narrow
distribution. Probability theory provides a quantitative
and consistent basis for Bayesian analysis, which inher-
its its name from Bayes’s fundamental law governing the
updating of one probability distribution, called the prior,
in the face of new data, called the likelihood, to obtain
the resulting probability, called the posterior.

The essential action of Bayes law is captured in the
theory of the propagation of experimental errors to which
most scientists are exposed early in their careers. When
accurate measurements are combined with less accurate
ones, coming from prior experiments for example, the
uncertainty in the combined result will be significantly
reduced compared to that before the acquisition of the
new data. By providing a much more thorough descrip-
tion of uncertainty in the form of a precise probabil-
ity distribution, Bayesian analysis allows one to treat
arbitrary probability distributions and address detailed
issues, for example, optimal estimators, confidence inter-
vals (or more properly called credible intervals in Bayesian
analysis) in the estimates, and so forth.

Bayes law gives the posterior probability p(x|d) of a
particular set of model parameters x, given the observed
data d, in terms of the probability of the data given the
parameters p(d|x) and a prior probability of the param-
eters p(x) as

p(x|d) o p(d[x)p(x) . (1)

The probability p(d|x), usually called the likelihood, comes
from a comparison of the actual data to the data ex-
pected on the basis of the model of the object and its
parameters. The expected data are generated using a
model for how the measurements are related to the ob-
ject, which we call the measurement model. The prior
expresses what is known about the object before the
measurements are taken and may represent knowledge
acquired from previous measurements, specific informa-
tion regarding the object itself, or simply general knowl-



edge about the parameters, e.g. that they are nonnega-
tive.

The full state of our knowledge about reality is sum-
marized by the posterior probability, or simply, the pos-
terior. We will use the symbol ¢ for minus the logarithm
of the posterior ¢ = —log[p(x|d)]. Computations with
this function are typically easier to do than with the pos-
terior itself since the products of probabilities in Bayes
law become sums.

The standard approach to obtaining a representative
solution is to find the parameter values that maximize
the posterior, or minimize ¢, which is called the MAP
solution. Although this single solution is often the goal
for many investigators, the posterior can be more fully
utilized to determine the degree and character of the
uncertainty in the solution. We are developing a tool for
exploring the posterior to provide an understanding of
the degree of uncertainty in Bayesian solutions, which
we describe in Sect. 8.

Bayesian analysis also provides the means to prop-
erly make subsequent decisions through the use of cost or
utility functions, which specify the costs of making cor-
rect versus incorrect decisions. Examples of such kinds
of decisions include, in the field of nondestructive test-
ing, whether to accept or reject a precision part on the
basis of a radiograph, or, in medicine, whether to follow
up a positive outcome in a screening test with another
test or with surgery.

3. THE BAYES INFERENCE ENGINE

We are developing the Bayes Inference Engine (BIE)
to implement the Bayesian methodology on a computer
workstation. Our goals for the BIE are that it should
be easy to learn and to use and that it should provide
a high degree of interactivity with good visualization of
the inference process and the models. Additionally, we
are building an application that provides the user with a
great deal of flexibility in configuring object models and
measurement models. We deem these features essential
to the usefulness of the BIE.

From the form of Bayes law, we recognize that for
a given object model the posterior can be evaluated by
combining the likelihood, which requires the data values
expected for that object model, and with a numerical
value of the prior. This calculation is usually straight-
forward. It involves calculating the expected measure-
ments for the given object model, which we refer to as
the forward measurement calculation.

A typical nonBayesian approach to estimating model
parameters from a given set of data is to attempt to ap-
ply the inverse of the forward measurement process to
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the data. Such an approach is fraught with problems
when there are insufficient data to uniquely determine
all aspects of the actual object. A common remedy for
overcoming such problems is to invoke some sort of reg-
ularization to permit the inverse solution.

In the BIE we are avoiding the difficulties of direct
inversion by basing the estimation on the forward mea-
surement calculation, which evaluates . We also make
use of the derivatives of ¢ with respect to the object
parameters, which are calculated using the adjoint dif-
ferentiation technique described in Sect. 5. The parame-
ters for the object model are found using an algorithm to
minimize ¢ with respect to those parameters. The use
of priors provides the means of regularization in a prob-
abilistic way that has a quantifiable basis, which may be
potentially verified experimentally . We note that this
numerical approach has many benefits, which were out-
lined in the Introduction. Thus with the computer we
can obtain accurate Bayesian solutions to fairly complex
problems that are intractable using analytic approaches.
The computer also allows us to explore complex situ-
ations in real time employing data visualization to en-
hance understanding.

The BIE incorporates many innovative features, in-
cluding:

1) a graphical programming tool programmed in an object-
oriented language, which greatly enhances the flexibility
of modeling objects and measurements,

2) adjoint differentiation to calculate the gradient of ¢,
with respect to all object parameters,

3) new approaches to solving the constrained optimiza-
tion problem, which is required to find the MAP solution,
4) geometrical representations of physical objects, and
5) a new method to explore the reliability of the Bayesian
solution.

We will describe each of these new developments in the
following sections.

4. DATA FLOW DIAGRAM

The major mode of interaction with the BIE is through a
graphical programming environment. Such an environ-
ment provides a very intuitive interface for building mod-
els because it mimics a data-flow diagram, with which
most scientists and engineers have some experience. It
has also been successfully used in a variety of computer
applications, such as the Cantata environment found in
the image-processing package KHOROS*.
We are programming the BIE using the object-oriented

(0O0) language Smalltalk in the version supplied by Par-

*Khoral Research, Inc., 6001 Indian School Rd. NE, Suite 200,
Albuquerque, NM 87110
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Figure 1: The canvas of the Bayes Inference Engine permits one to specify a data-flow diagram by connecting together

Transforms.

cPlace Systems’, which includes a complete class library
for user-interface development. The main interface to
the BIE is the graphical programming tool [15]. Figure 1
shows the canvas on which one can create a data-flow di-
agram. Buttons on the top of the canvas window allow
one to add icons to, or delete icons from, the canvas.
The square icons represent Transforms, which, together
with the Connectors represented by lines drawn between
them, describe a data-flow diagram. In this description
the capitalized words are classes in the object-oriented
language. Transforms act on input Data (actually called
PhysicalTensors in the BIE) to calculate output Data.
One specifies the flow of data by connecting one Trans-
form to another using a Connector, which is represented
by lines drawn between the two Transforms.

The Transforms are living objects with which one
can interact. By clicking on the icon representing the
Transform with the middle mouse button, a menu pops
up that allows one to specify a request of the Trans-
form. One can see a description of a Transform and
change the parameters that define it. One can have the
Transform display its output data structure. The fact

fParcPlace Systems, Inc., 999 East Arques Ave., Sunnyvale,
CA 94086, tel: 408-481-9090
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that the Transform objects are alive and always present
distinguishes this graphical programming tool from one
that allows a user to construct and visualize a script that
contains a sequence of actions to be executed (off line)
in the prescribed order, as is the case with KHOROS.

Referring to the data-flow diagram in Fig. 1, the Pa-
rameters of the object model (the lefthand icon) provide
input to the measurement model. The radiographic mea-
surement model shown consists of the next three icons,
which sequentially take the projection of the object, ex-
ponentiate the result, and perform a convolution with a
point-spread function kernel to mimic radiographic blur.
The output of the measurement model represent pre-
dicted Data, which are fed into a (minus) LogLikelihood
function, designated by ®, along with the actual data,
the uppermost icon. A LogPrior, which operates on the
model parameters, can also be specified. The output of
the LogLikelihood is fed into the Optimizer, the lower
righthand icon, whose task it is to find the values of the
object-model parameters that result in a minimum value
for ®. One specifies the Parameters of the object model
that are to be optimized by connecting their icons to the
Optimizer. After optimization, the object model and its
Parameter values represent the MAP solution.

An interesting aspect of the OO design of the data-



flow diagram is that no supervisor of the sequence of
calculations is needed. In Fig. 1 the Optimizer functions
by requesting output from its inputs, the LogLikelihood
in this case. In a rudimentary implementation, this re-
quest is propagated backwards through the Connectors
of the data flow diagram to the beginning, namely to the
Parameters (the box with a P indicating that they rep-
resent parameterizations of models). The forward calcu-
lation proceeds by each Transform using its inputs (and
internal parameters) to calculate its output. Then the
output is transferred upstream to the next transform,
which does its calculation. Eventually the request by
the Optimizer is answered with the value of .

The unnecessary recomputation of data structures
is avoided with a slightly more sophisticated design in
which each Transform keeps a status variable that indi-
cates whether its output is current and valid. The cor-
rect status is maintained by giving each Transform the
responsibility of transmitting a message forward through
the data-flow diagram when its output status is switch-
ing from valid to invalid, in response to any change in
its inputs. When a Transform receives such a message
from downstream, it treats that message the same as if
its input variables had changed. The Optimizer acts as
the termination to this process by returning this charge-
of-status message.

Another desirable aspect of the data-flow diagram
that is easily accomplished is checking between Trans-
forms that are connected together to see whether the
data structures are consistent with what the Transforms
can operate on.

The OO approach has provided more than just a pro-
gramming environment; it has aided in the design of the
overall application, as well as the numerical algorithms
at a fundamental level. For example, the following as-
pects of the BIE have been elucidated by OO design: the
adjoint differentiation technique, the accommodation of
constraints in optimization, the automatic connection of
the Optimizer to any parameter, and the appropriate
role of Connectors and Transforms in the data-flow dia-
gram.

5. ADJOINT DIFFERENTIATION

In our application we need to minimize the scalar func-
tion ¢ by varying the many (10% to 10 or more) vari-
ables that comprise the parameters of the object model.
This optimization problem would be intractable without
knowing the gradient of ¢, or sensitivities, with respect
to the many parameters on which it depends. We have
uncovered a technique to calculate these crucial sensitivi-
ties, called adjoint differentiation [16], that is apparently
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Figure 2: Data flow diagram showing a sequence of trans-
formations, represented by the boxes A, B, and C, start-
ing with the data structure x and ending with the scalar

®.

little known. Using the adjoint differentiation technique
the calculation of all these derivatives can be done in a
computational time that is comparable to the forward
calculation through the data-flow diagram. Our use of
objects to represent transformations greatly aids the im-
plementation of this adjoint calculation [17].

We assume that a calculation proceeds as a sequence
of transformations such as that shown in Fig. 2. In the
context of the BIE, the transformations are implemented
by the Transform class. The independent variables in
the data structures designated by the vector x are trans-
formed by block A to produce the dependent variables
y. These are transformed by blocks B and C to produce
the dependent data structure z and the final scalar ¢,
respectively. We call the sequence of transformations,

the forward calculation and the flow of data from left to
right in Fig. 2 is called the forward direction.

We assume that the transformations are general, with
the only restriction being that they are differentiable. In
accordance with the OO approach, each transformation
is self-contained; it requires only its input variables to
calculate its output variables, e.g. module B uses only
its input y to calculate its output z. Therefore, each
transformation should require nothing more than its in-
put to implement the derivative of its output variables
with respect to its input variables.

The data structures are likewise general. They can
consist of mixed types of data structures. Some of the
data may be parameters that affect the transformations
themselves, which could be viewed as separate inputs to
the module affected. But there is no loss in generality if
they are thought of as being carried along in the sequence
of data structures up to the module at which they are
used.

Keeping in mind that the data structures might rep-
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Figure 3: As in Fig. 2 with the data flow for the adjoint
derivatives indicated as going from right to left.

resent 2D images as a collection of their pixel values
or objects in terms of complex geometric descriptions,
we will base the following discussion on the assumption
that the dimensionality of the data structures x, y, and
z could be very large, perhaps 106 or larger. We will fur-
ther assume that the computing environment is such that
the storage of these data structures is feasible. However,
storage of the sensitivity matrices of the transformations,
e.g. g—i’i for all ¢ and j, is likely to be impossible because
that would require storing 10'2? variables if x and y each
possess 10¢ variables.

The chain rule allows us to calculate the derivatives
of ¢ with respect to the ith component of x,

dp

3:@-

Even if the transformations are nonlinear, this expression
amounts to a product of matrices, each element of which
specifies the differential response of an output variable
with respect to a differential change of an input variable.

The order of the summations can obviously be done
in two different ways. If the sum over j is done before
the sum over k, the calculation proceeds in the same
direction as the forward model calculation. The sequence
is:

Op 02 Dy
Oz Oy; Om;

(2)

A Oy B 0z ¢ Op
gy BNt
ox

—>8x—>8x

I

where % is shorthand for the matrix whose elements
are % and transformation B’ propagates the deriva-

tive of the transformation B, i.e. by multiplication of the
sensitivity matrix % by the matrix g—; to produce the
Oz

sensitivity matrix gZ. The symbol I at the beginning of
the sequence represents the identity structure, indicat-
ing that the sensitivity calculation begins with the first
transformation A’. As the dimensions of x, y, and z are
assumed to be large, we see that this sequence results in
very large intermediate matrices, which we would like to
avoid.
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On the other hand, if the sum on k is done before
that on j, the sequence of calculations is

C/T 8(,0T BIT 8¢T A'T 8(pT
I—— — = — =
0z y ox

where, for example, B’ f implements the adjoint of the
matrix 2%2. This sequence implies intermediate data

oy *
structures (e.g. g—§) that mimic the normal data struc-
tures (e.g. y). Thus the requirement for storing these
data structures is merely double that required to store
the structures for the forward calculation, which may be
required for the sensitivity calculation if the transforma-
tions are nonlinear. This approach is called the adjoint
differentiation technique.

The adjoint differentiation calculation is straightfor-
ward to program. Our experience in explaining this ap-
proach to others indicates that it is worth emphasizing
that adjoint differentiation is not that same as calcu-
lating the inverse of the forward transformation, which
might be an ill-posed problem. For example, if the trans-
formation B is linear, the forward calculation amounts
to multiplication by a matrix B. The adjoint differenti-
ation calculation would correspond to multiplication by
the matrix B (the same as the transpose of B when the
matrix is real), which is quite different than multiplica-
tion by B~1.

The backward flow of the adjoint derivatives is de-
picted in Fig. 1. We emphasize that in the OO approach
we are using, each Transform has the responsibility to
propagate the adjoint derivative from its output side to
its input side. The Transform “knows how” to do this
because it knows how to accomplish the forward calcu-
lation. In reality, what this means is that when a new
Transform is created by a programmer, the code for the
adjoint derivative should be developed using the logic of
the forward calculation to determine the derivatives of
the output variables with respect to the input variables.
We stress that this derivative matrix need not be ex-
plicitly calculated and stored. The effect of multiplying
the adjoint gradient of ¢ with respect to the Transform
output variables by the adjoint of this derivative matrix
can often be achieved using computer code that is very
similar to the code for the forward calculation.

A simple example of a nonlinear transformation is
the exponentiation of each input element, which is one
of the icons shown in Fig. 1. The output data elements
are given by y; = 0;; exp(x;), where z; are the input data
elements and d;; is the Kronecker delta (6;; = 1 when
i = j and 0 otherwise). Then the derivative is given by
B = Y, 5258 = exp(ni) 5L = uige.
tion of this expression in the adjoint context is clearly
straightforward.

Implementa-



This example points out a few aspects of the calcula-
tion of the adjoint derivative. If, in the forward calcula-
tion, each output variable depends on a relatively limited
number of input variables (one in this case), then the ad-
joint derivative with respect to an output variable will
only contribute to the adjoint derivative with respect to
those same relatively few input variables. Provided the
logic of the forward calculation is not too intricate, the
adjoint derivative calculation should involve an amount
of computation comparable to the forward computation.
A second point is that the adjoint calculation may need
to have access to the data structures from the forward
calculation. In this case, the value of either x; or y; is
needed to compute 8"9 from 8“" The implication is that
the forward data structures may need to be stored for
the time between which they are calculated and the time
they are needed for the adjoint derivative calculation.

To further elucidate the adjoint differentiation tech-

. . . . A
nique, consider a sequence of linear transformations, x —

y 5 z, followed by the evaluation of the norm squared.
Expressed in equations: y = Ax, z = By, ¢ = z"z,
where A and B are matrices. The overall transforma-
tion is p = |BAx/|?.

Then the forward calculation of

the sensitivities amounts to evaluating g—“’ = 2z'BA.
The reverse (adjoint) calculation is g_ﬂ ATBT(2z),

where AT denotes the adjoint (or transpose) of matrix
A. Tt is clear that these two results are identical, the
second equation being just the adjoint of the first. For
linear transformations, the forward data structures need
not be stored for the purpose of calculating the adjoint
derivative.

Examples of linear transformations in image process-
ing include convolution of an image by a fixed kernel
(point-spread function) and the calculation of the pro-
jection (line integrals along along a set of parallel lines)
of an image. The adjoint derivatives for these two exam-
ples are calculated by convolution with the adjoint of the
kernel in the first case and backprojection, i.e. streaking
the data from the projection domain back across the im-
age along the lines of integration, in the second.

6. OPTIMIZATION

The MAP solution is found in the BIE by minimizing
© with respect to all the model parameters. Given the
possibly large number of parameters, it is imperative to
use the derivatives of ¢ with respect to all parameters,
called the gradient. Fortunately, there is a technique
to efficiently calculate them as described in the previous
section. OO programming imposes certain conditions on
how optimization can be implemented. We have found
that these conditions may actually be strengths. For ex-
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ample, many of the models in the BIE impose constraints
on parameters. Some constraints involve fixed limits on
individual parameters, e.g. nonnegativity. Constraints
can also exist between parameters. The approach to op-
timization should include these in an OO way. That is,
the Optimizer should only request that the Parameters
act on themselves. Examples of possible actions include
a) add a specified vector to the present values of the pa-
rameters and b) satisfy constraints on the parameters.

In our present algorithm the Optimizer roughly fol-
lows these steps: 1) requests the value of ¢ from the
last Transform, 2) requests the gradient from the Pa-
rameters it is attached to, 3) instructs the Parameters
to increment themselves by a certain amount, 4) asks
Parameters to apply constraints, 5) asks for ¢ from last
Transform in the flow diagram and 6) repeats steps 3) to
5) to find the minimum in ¢ along the search direction.
Then the Optimizer returns to step 2) to calculate a
new search direction and continues until convergence to
a minimum. The increment taken in the parameters in
step 3) could be a parameter vector proportional to the
gradient, but in the opposite direction (steepest descent),
or might be determined by using the conjugate-gradient
method. A major point to make is that the Optimizer
functions in an abstract variable space. It does not re-
ally know what kind of Parameters are connected to it.
It can only ask the Parameters to perform a limited set
of tasks.

The general method that we employ to guarantee
that the constraints on the parameters are met is by
projection onto convex sets (POCS) [18]. Each Parame-
ter checks whether constraints are violated. If they are,
the Parameters are minimally changed to meet the con-
straint [19].

7. GEOMETRIC REPRESENTATION
OF OBJECTS

Deformable models have been developed in a number of
fields to describe objects geometrically, particularly in
computer vision where the aim is to describe a scene
(image) in terms of geometrical objects [2, 4, 20]. This
approach is also being used in medical imaging to warp
a template of the “average” brain to match a particular
patient’s actual brain [3].

We are pioneering the use of geometric models to
improve tomographic reconstruction [5, 21]. This tack
is quite different from the normal one of representing
a 2D object in terms of its density, typically described
by square pixels on an ordered grid. The use of a geo-
metrical description recognizes the very important role
that boundaries play in characterizing objects. The re-



construction process amounts to deforming an initial ob-
ject geometry in a minimal way to match the data. In
the Bayesian approach, one controls the geometric de-
formation by placing a prior on it. The net effect is to
add to ¢ a deformation energy that penalizes greater
deformations. This approach has proven to be a valu-
able means to achieve good reconstructions in situations
where all other methods fail, for example when only two
radiographs are available [21]. However, it must be em-
phasized that this approach can only be successful when
the objects being reconstructed have a fairly simple mor-
phology that is approximately known beforehand. Please
refer to the above citations for more details and exam-
ples.

8. RELIABILITY EXPLORATION

A central aspect of the Bayesian approach is the charac-
terization of the degree of certainty in the models given
by the posterior. Bayesian modeling has been used to
solve a variety of difficult imaging problems. However,
surprisingly little has been done to make use of the full
posterior of the models used to interpret data. Part of
the reason reliability has not been approached by many
lies in the difficulty of doing so, particularly in a large
dimensional space.

We know of two ways to visualize the reliability of in-
ferred models. The first, proposed by Skilling et al. [22],
provides a stochastic look at the range of possible solu-
tions. It involves the display of a sequence of solutions
that are randomly chosen from the posterior probabil-
ity distribution. This sequence, typically calculated off
line, is presented as a video loop. By showing a rep-
resentative range of alternative solutions, the degree of
variability of this presentation provides the viewer with
a visual impression of the degree of uncertainty in the
inferred model.

Our new approach [23, 24] draws on an analogy be-
tween ¢ and a physical potential; then the gradient of ¢
is analogous to a force. An unconstrained MAP solution
can be interpreted as the situation in which the forces on
all the variables in the problem balance so that the net
force on each variable is zero. Further, when a variable
is perturbed from the MAP solution, the derivative of ¢
with respect to that variable is the force that drives it
back towards the MAP solution. The phrase “force of
the data” takes on real meaning in this context.

We exploit this physical analogy to facilitate the ex-
ploration of the reliability of a particular feature of a
MAP solution, which the user specifies by directly in-
teracting with the solution presented by the BIE. The
uncertainty in the solution is explored by applying a
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constant force to the selected combination of parameters
that characterize the feature of interest. All parameters
are readjusted to minimize . The uncertainty in the
parameters is indicated by the amount that they move
away from their MAP values for a given applied external
force. The correlations between parameters experiencing
the external force and the others is demonstrated by how
much and in what direction the parameters change. We
have shown that this approach leads to a quantitative es-
timate for an appropriate part of the covariance matrix
for problems in which the parameters are unconstrained
[23, 24]. Ideally, these correlations could be seen through
direct interaction with a rapidly-responding dynamical
Bayesian system. Alternatively, they may be demon-
strated as a video loop of results produced off line.

9. FUTURE DIRECTIONS

In the BIE we have an ideal tool with which to efficiently
deal with Bayesian inference. It provides a framework
that is well-suited to many desirable extensions, some of
which we mention in this section.

The full and simple-to-use interactivity of the BIE
provides the analyst with the capability to fully diagnose
the models he creates. Feedback about what is needed
from the model to match the data is provided by dis-
playing the adjoint derivative, which shows the force of
the data. The full interactivity with the object models
makes it easy to augment the models to achieve a better
fit to the data.

We intend to implement soon a means to generate
random samples from the posterior [25]. This capabil-
ity could be used to estimate the posterior mean (as an
alternative to the posterior mode) and variance, which
is one way to summarize the uncertainty in solutions.
This technique permits marginalization with respect to
any parameters that are not of interest. It also can pro-
vide a visualization of the uncertainty in solutions by
displaying as a video loop the sequence of random sam-
ples [22].

Most of the models presently available in the BIE
are two dimensional. We expect to develop 1D models
soon. One-dimensional models will provide a very useful
environment in which to develop demonstrations of how
the Bayesian approach addresses many familiar problems
such as deconvolution, or restoration, of blurred 1D sig-
nals, spectral estimation, interpolation, and line fitting.
The advantage of 1D problems is that the calculations
can be done very quickly, thereby providing excellent re-
sponse time. This would be an ideal way to demonstrate
the usefulness of the concepts put forward in Sect. 8. We
also expect to develop three-dimensional modeling capa-



bilities before long so that we can address the problem
of tomographic reconstruction of 3D objects.

An interesting variation of the technique proposed in
Sect. 8 to explore the reliability in Bayesian solutions
presented is the possibility of decomposing the forces
into various components. For example, the force derived
from all the data (through the likelihood) may be com-
pared to the force derived from the prior. This capability
can provide the analyst with a better idea of how much
the prior is affecting any aspect of the reconstruction.
Other decompositions of the overall force on the solu-
tion are possible: it might be useful to see how much
certain measurements contribute to the uncertainty of
the solution.

We anticipate that in the future it may be possible
to use the tools of virtual reality, coupled to supercom-
putation, to explore the reliability of a Bayesian solu-
tion through direct manipulation of the computer model.
Force feedback would permit one to actually feel the stiff-
ness of a model. Higher dimensional correlations might
be felt through one’s various senses.

In addition to estimation of the uncertainties in pa-
rameter values, the Bayesian approach also provides a
methodology for inference from measurements about the
choice of models appropriate to describe reality. Proba-
bilities can ultimately be employed to compare and de-
cide amongst different models. Our preference for sim-
pler models over more complex ones can be incorporated
through a prior on model complexity [12]. An often-used
example of where model selection plays a role is in the
choice of the number of terms to allow in a series ex-
pansion that is meant to describe the behavior of some
data. A more interesting use of model selection is in the
context of an object defined by its boundary, which is
smooth by default. The boundary might be allowed to
develop a kink, i.e. an abrupt change in slope, thereby
negating the smoothness constraint at a particular place,
if the data provide enough evidence for such a departure
from the default model [26].
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