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ABSTRACT

The detection of actual changes in a pair of images is confounded by the inadvertent but pervasive differences
that inevitably arise whenever two pictures are taken of the same scene, but at different times and under different
conditions. These differences include effects due to illumination, calibration, misregistration, etc. If the actual
changes are assumed to be rare, then one can “learn” what the pervasive differences are, and can identify the
deviations from this pattern as the anomalous changes. A recently proposed framework for anomalous change
detection recasts the problem as one of binary classification between pixel pairs in the data and pixel pairs that
are independently chosen from the two images. When an elliptically-contoured (EC) distribution is assumed for
the data, then analytical expressions can be derived for the measure of anomalousness of change. However, these
expression are only available for a limited class of EC distributions. By replacing independent pixel pairs with
uncorrelated pixel pairs, an approximate solution can be found for a much broader class of EC distributions.
The performance of this approximation is investigated analytically and empirically, and includes experiments
comparing the detection of real changes in real data.
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1. INTRODUCTION

Each pixel in a hyperspectral image consists of a radiance (or, with some processing, reflectance) spectrum with
typically hundreds of high signal-to-noise-ratio channels, each channel corresponding to a very narrow wave-
length band. Such exquisitely detailed datasets provide an opportunity for precise discrimination of constituent
materials from remote platforms. The precision also permits the detection of weak signals, as from subpixel
targets or gaseous plumes, in broad area surveys.

Although researchers often bemoan the deluge of data provided by hyperspectral imagery, the fact that there
is so much information in each pixel can actually simplify the analysis. In fact, most algorithms for hyperspectral
image analysis effectively treat the image as a “bag of pixels” – with each pixel treated as an independent sample.
Although the spatial correlations are nontrivial and not inconsiderable, useful analysis can can often be obtained
even while neglecting these correlations.

Not only are the pixels treated as if they were independent samples from a common distribution, that
distribution is usually assumed to be a multivariate Gaussian. This is simplistic, but it does capture some
important aspects of the data. The covariance matrix that characterizes the Gaussian encapsulates the (linear)
correlations between every pair of image channels. The dynamical range between the largest and smallest
eigenvalues of the covariance matrix can span many orders of magnitude.

One important aspect of hyperspectral image data which is poorly captured by the Gaussian model is its
behavior on the tails of the distribution. It is widely recognized that the tails of most hyperspectral datasets
are much fatter than Gaussian. And since detection of rare signals requires comparison out at the tails of the
distribution, this is particularly important for anomaly detection applications.

The problem of “white balance” that bedevils amateur (and professional) photographers is particularly oner-
ous in hyperspectral imagery. The problem is that the observed spectrum for a given material (whose “actual
color” is fixed) will be different when viewed under even slightly different conditions (of illumination, sensor
calibration, atmospheric distortion, etc.). For target detection applications, this means that the effective target
signatures vary from image to image.1 And for the change detection problem, it confounds the search for actual
changes because under different conditions, the spectrum of every pixel changes.
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2. MACHINE LEARNING FRAMEWORK
FOR ANOMALOUS CHANGE DETECTION

Given two images, call them the x-image and the y-image, the aim is to find those few pixels for which the x-to-y
change is unusual compared to the changes exhibited by the rest of the pixels.

Let x ∈ Rdx denote (the observed radiance spectrum observed at) a pixel in the x-image, and y ∈ Rdy be the
corresponding pixel in the y-image. We assume that the images are registered (i.e., that corresponding pixels
x and y correspond to the same location in the scene), but we acknowledge that this registration is not always
precise.2, 3 Here, dx and dy are the number of spectral channels in the x-image and y-image, respectively.

In the machine learning framework introduced in Ref. 4, the data is modeled as random samples from a
probability distribution P (x,y). In this model, straight anomaly detection seeks points x,y on the “tail” of the
distribution; that is, where P (x,y) is small. But straight anomaly detection identifies pixels where x and y are
individually unusual (e.g., they might correspond to particularly dark or particularly bright pixels), as well as
pixels where the relationship between x and y is unusual. If we write P (x) as the distribution just of the pixels
in the x-image, then this P (x) will be the marginal distribution of P (x,y). We can similarly write P (y) as the
distribution of pixels in the y-image. Then the product P (x)P (y) describes a distribution of x and y values that
are independent of each other. When P (x)P (y) is small, that means that either x or y (or both) are individually
unusual, but does not saying anything about whether the relationship between them is unusual. When the ratio

P (x,y)

P (x)P (y)
. (1)

is small, that means not only that P (x,y) is small, but that it is small compared to P (x)P (y). That is, the pair
x,y is more anomalous than would be expected, given the individual anomalousnesses of x and y. This enables
us to isolate the notion of anomalous change from that of straight anomaly.

For a given ρ, we can define a set of anomalies as

Aρ =

{

(x,y) | P (x,y)

P (x)P (y)
< ρ

}

. (2)

In seeking a function A(x,y) which quantifies the “anomalousness” of the change that has occurred at this pixel
location, we can take a function of this ratio

A(x,y) = f

(

P (x,y)

P (x)P (y)

)

(3)

where f is a monotonically decreasing function of its argument. When the ratio is small, the anomalousness is
large, and in particular, the set Aρ defined in Eq. (2) is given by those x,y for which A(x,y) > f(ρ).

2.1. Gaussian Model

The ratio in Eq. (1) takes a simple form when the distribution is modeled as a multivariate Gaussian. In general,
a d-dimensional Gaussian depends on a d-dimensional mean µ ∈ Rd and a covariance matrix K ∈ Rd×d. We
can write

µ = 〈z〉 , and (4)

K =
〈

(z− µ)(z− µ)T
〉

(5)

where the angle brackets denote a mean over the distribution (in practice, these quantities are estimated by
taking a sample average over the data), and the superscript T denotes a matrix transpose. The density of the
distribution at a point z ∈ Rd is given by (e.g., see Eq. (2.5) in Kay5)

P (z) = (2π)−d/2 |K|−1/2
exp

[

−1
2
(z− µ)TK−1(z− µ)

]

. (6)
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It is useful to more specifically identify a stacked vector

z =

[

x

y

]

∈ Rdx+dy (7)

which denotes a corresponding pixel pair in both images. This leads to

µ =

[

µx

µy

]

(8)

where µx = 〈x〉 and µy = 〈y〉. Further, we can write

K =

[

X CT

C Y

]

(9)

where

X =
〈

(x− µx)(x− µx)
T
〉

, (10)

Y =
〈

(y − µy)(y − µy)
T
〉

, and (11)

C =
〈

(y − µy)(x− µx)
T
〉

. (12)

The marginal distributions P (x) and P (y) are also Gaussian, and are given by

P (x) = (2π)−dx/2 |X|−1/2
exp

[

−1
2
(x− µx)

TX−1(x− µx)

]

, and (13)

P (y) = (2π)−dy/2 |Y |−1/2
exp

[

−1
2
(y − µy)

TY −1(y − µy)

]

. (14)

Finally, we can combine Eq. (6) with Eq. (13) and Eq. (14) to express the ratio in Eq. (1)

P (x,y)

P (x)P (y)
=

(2π)−(dx+dy)/2 |K|−1/2
exp

[

− 1
2 (z− µ)TK−1(z− µ)

]

(2π)−(dx+dy)/2 |X|−1/2 |Y |−1/2
exp

[

− 1
2 (x− µx)

TX−1(x− µx)− 1
2 (y − µy)

TY −1(y − µy)
]

=

[ |K|
|X| |Y |

]−1/2

exp

[

−1
2
(ξz − ξx − ξy)

]

(15)

where the three scalars ξx, ξy and ξz are given by

ξx = (x− µx)
TX−1(x− µx), (16)

ξy = (y − µy)
TY −1(y − µy), and (17)

ξz = (z− µ)TK−1(z− µ). (18)

Since |K|, |X|, and |Y | are constants that do not depend on x or y, we can derive a simple expression for
anomalousness using Eq. (3) with f(r) = −2 log(r)− log(|K|/[|X||Y |):

A(x,y) = −2 log
[

P (x,y)

P (x)P (y)

]

− log
[ |K|
|X| |Y |

]

= ξz − ξx − ξy. (19)

Equivalently, A(x,y) = (z− µ)TQ(z− µ), where the quadratic coefficient matrix is given by

Q =

[

X CT

C Y

]−1

−
[

X 0
0 Y

]−1

. (20)
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2.2. Elliptically-Contoured Distributions

The class of elliptically-contoured (EC) distributions has found utility both for radar6 and hyperspectral im-
agery.7, 8 These distributions depend on the covariance matrix K and are of the form

P (K; z) = |K|−1/2H(d, ξz) (21)

where |K| is the determinant of the covariance matrix K, and H is a function which depends on the dimension
d of the vector z, and on z via the scalar ξz = (z− µ)TK−1(z− µ), which is the squared Mahalanobis distance
to the centroid of the data. Note that for the Gaussian distribution, H(d, ξ) = (2π)−d/2e−ξ/2.

2.2.1. Consistent families

A consistent family H(d, ξz) has the property that: if P (z) = |K|−1/2H(d, ξz), where z is the stacked vector in
Eq. (7), then P (x) = |X|−1/2H(dx, ξx) is the marginal distribution associated with the projection of z onto the
dx < d dimensional subspace corresponding to x. Given H(d, ξ) for a given d, there exists a consistent family of
lower dimensional distributions,9 given by

H(d′, ξ) = c(d′, d)

∫ ∞

0

w(d−d′)/2−1 H(d,w + ξ) dw, (22)

where c(d′, d) is a scalar constant that ensures that the distribution is normalized.

For a consistent family, we can write an explicit expression for the ratio in Eq. (1):

P (x,y)

P (x)P (y)
=

[ |K|
|X| |Y |

]−1/2
H(d, ξz)

H(dx, ξx)H(dy, ξy)
(23)

and from that derive a closed-form expression for anomalousness A(x,y).
The Gaussian is an example of a consistent family, and as already seen in Eq. (19), provides a simple

anomalous change detector. Another example of a consistent family is the multivariate-t statistic.7, 9 Here,

H(d, ξ) =
Γ
(

d+ν
2

)

Γ
(

ν
2

)

πd/2(ν − 2)d/2
(

1 +
ξ

ν − 2

)−(d+ν)/2

. (24)

This is a fatter tailed distribution than the Gaussian, and it gets fatter as ν gets smaller. In fact, as ν → 2, the
variance diverges. The limit ν →∞ recovers the Gaussian distribution.

The multivariate-t leads to an anomalousness measure (using Eq. (3) with f(r) = −2 log(r) + constant)

A(ν;x,y) = (dx + dy + ν) log(ξz + ν − 2)− (dx + ν) log(ξx + ν − 2)− (dy + ν) log(ξy + ν − 2) (25)

that may be more effective than Eq. (19) when the data is fatter tailed than Gaussian.

One simplifying limit takes place for dx = dy À ν and ν → 2. In this limit, Eq. (25) becomes A(x,y) =
2d log(ξz/

√

ξxξy), which can be monotonically transformed to:

A(x,y) = ξz
√

ξxξy
. (26)

Although the expression in Eq. (22) ensures the existence of a family of distributions, it does not say that the
family can be expressed in a tractable closed-form. For instance, a popular choice of EC distribution is given by
the generalized Gaussian:

H(d, ξ) = c(d, β, γ) exp(−γξβ) (27)

with c(d, β, γ) a scalar constant. Here β = 1 produces the Gaussian distribution, and β < 1 is a fatter tailed
distribution. However the generalized Gaussian does not satisfy the condition in Eq. (22), and it is not a
consistent family.
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One can, however, take the expression in Eq. (27) for a specific value of d and derive a consistent family of
distributions for other values of d, but the corresponding expressions for these other values of d will not have the
nice form in Eq. (27).∗

3. UNCORRELATION AS AN APPROXIMATION TO INDEPENDENCE

It is for these inconsistent families that we have introduced the concept of uncorrelated versus independent
distributions as a denominator in the ratio in Eq. (1). Here, if

P (K;x.y) = P

([

X CT

C Y

]

;x,y

)

(28)

is an EC distribution for the stacked vector z =

[

x

y

]

, then we will approximate the product of the marginals

P (x)P (y) which corresponds to independence of x and y with an EC distribution in which x and y are merely
uncorrelated:

P (x)P (y) ≈ Pu(x,y) = P

([

X 0
0 Y

]

;x,y

)

. (29)

That is,

Pu(x,y) =

∣

∣

∣

∣

X 0
0 Y

∣

∣

∣

∣

−1/2

H(d, ξ′), (30)

where

ξ′ = (z− µ)T
[

X 0
0 Y

]−1

(z− µ) = ξx + ξy. (31)

We remark that the projection of Pu(x,y) to the x or y space produces marginals P (x) and P (y) that are the
same as the marginals of the parent distribution P (x,y). The anomalousness measure then varies inversely with
the modified ratio

P (x,y)

Pu(x,y)
=

[ |K|
|X| |Y |

]−1/2
H(d, ξz)

H(d, ξx + ξy)
. (32)

For the Gaussian case, we have that Pu(x,y) = P (x)P (y) exactly, and we get the same anomalousness
measure as the independent case in Eq. (19). For the multivariate-t in Eq. (24), using f(r) = constant×r−2/(d+ν),
we obtain

A(ν;x,y) = ξz + ν − 2
ξx + ξy + ν − 2 . (33)

which is substantially simpler than Eq. (25), and has no dependence on dx or dy. The fat tailed ν → 2 limit
produces

A(x,y) = ξz
ξx + ξy

, (34)

which recalls Eq. (26), except that the harmonic mean is replaced by an arithmetic mean. We also remark that
the ν →∞ limit of Eq. (33) leads to the Gaussian anomalousness measure defined in Eq. (19).

The main utility of this approximation is that there are no constraints on the function H(d, ξ) that appears
in Eq. (32). Since both numerator and denominator use the same dimension d, there is no need to identify
a consistent family. For instance, even though the family of generalized Gaussian distributions in Eq. (27) in
inconsistent, we can still write a simple expression for the uncorrelation-based anomalous change detector:

A(β;x,y) = ξβz − (ξx + ξy)
β . (35)

Here β = 1 corresponds to a Gaussian distribution. In the fat-tailed limit, as β → 0, the anomalousness
expression becomes A(x,y) = ξz/(ξx+ξy) which agrees with the fat-tailed limit of the multivariate-t in Eq. (34).

An alternative interpretation of this approximation is given in the Appendix.
∗We can show that it is possible to create a family of distributions which for even d take the form H(d, ξ) =

G(d, β, γ; ξ) exp(−γξβ), where G(d, β; ξ) is a polynomial in ξβ . But to find the members of this family for odd d, one must
fall back on the less tractable expression in Eq. (22).
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Figure 1. ROC curves for Gaussian and EC detectors applied to simulated data. In both cases, n = 106 samples are
drawn from a single-channel (dx = dy = 1) distribution specified by covariances X and Y , and cross-covariance C. (a)
Gaussian data is generated with X = 2, Y = 1, and C = 1.3. For this data, we see that the Gauss-based anomalous
change detector achieves the highest performance. (b) Elliptically-contoured multivariate-t data is generated using X = 2,
Y = 1, and C = 1.41, and ν = 2.1; see Eq. (24). Here, we see that the EC detectors outperform the Gaussian detector.
We also see that the detector based on the independence formula, in Eq. (25), outperforms (though only slightly) the
detector based on the approximate, but simpler, formula in Eq. (33). Both plots also show the performance of the detector
in Eq. (35) with β = 0.5.

4. NUMERICAL EXPERIMENTS

To illustrate the utility of EC distributions for anomalous change detection, and in particular to evaluate the
effect of approximating independence with uncorrelation in this context, we provide three sets of numerical
experiments: pure simulation, a hybrid simulation in which pervasive differences and anomalous changes are
artificially generated in a real image, and a real pair of images which exhibits both pervasive differences in the
images and some actual changes in the scene.

4.1. Pure simulation

In this experiment we generate two image pairs, one Gaussian and one elliptically contoured with very fat tails.
The data are specified in terms of X, Y , and C defined in Eqs. (10-12). Single-channel images are generated using
X = 2 and Y = 1. The pervasive differences between the x and y images are encapsulated in the cross-covariance
term C; for the Gaussian pair, we take C = 1.3 and for the EC pair, we take C = 1.41. Note that the closer
C is to

√
2, the more nearly deterministic is the relationship between the pixels in the two images. For the EC

distribution, we use a multivariate-t distribution with ν = 2.1.

Following the simulation framework described in Ref. [10], we generate an anomalous change at a given pixel
location by keeping x fixed and replacing y with a random sample drawn from elsewhere in the image. This way,
neither x nor y are individually unusual, but the relationship between x and y breaks the pattern of correlation
in the simulated image pairs.

Fig. 1(a) shows that of the four detectors, the “Hyper” detector, which is optimized for Gaussian distributions,
performs best. Also shown are the generalized Gaussian (EC-beta) with β = 0.5, the independence-based
multivariate t statistic (EC-indep) with ν = 2.1, and the uncorrelation-based multivariate t (EC-uncorr) again
with ν = 2.1. Choosing ν so close to 2 produces an extreme variant of the change detector that is optimized for
very fat tails.

When applied to non-Gaussian fat-tailed data, however, the EC detectors outperform Hyper. As shown in
Fig. 1(b), the best detector is EC-indep, the detector that is exactly matched to the statistics of the data. But
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Figure 2. Same data as previous figure, but including other change detection algorithms, and using more moderate value
of ν = 10 instead of ν = 2.1 in the EC-indep and EC-uncorr detectors.

even in this extreme case, we see that the approximation provided by EC-uncorr performs nearly as well as
EC-indep. The generalized Gaussian with β = 0.5 and the Gaussian itself (Hyper) perform less well.

In Fig. 2, we revert to a less highly optimized variant of the EC detector, and use a moderate ν = 10.
This figure also includes the performance of some previously described detectors; these detectors are surveyed
in Ref. [10], and include the simple difference (SD), the chronochrome (CC) of Schaum and Stocker,11, 12 and a
straight anomaly detector (RX) based on Mahalanobis distance from the centroid of the stacked z space.13 For
the Gaussian data in Fig. 2(a), the performance of all three of the EC detectors is virtually identical to that of
Hyper, which is known to be optimal. For the EC data in Fig. 2(b), even though it is extremely fat tailed, the
more moderate EC detectors (EC-indep, EC-uncorr) still perform the best, and are virtually identical in their
performance. Comparing the moderate EC detectors in Fig. 2(b) with the extreme EC detectors in Fig. 1(b),
we see that the moderate detectors perform nearly as well.

4.2. Simulating pervasive differences and anomalous changes

In this hybrid simulation, we begin with real 224-channel hyperspectral data from the AVIRIS sensor.14, 15 See
Fig. 3. Using the simulation framework outlined in Ref. 10, we generate pervasive differences by applying some
operation to the whole scene. For the results shown in Fig. 4, four operations were considered: multiplicative
noise, splitting the image into two 112-channels images, smoothing the image with a 3 × 3 kernel, and (after
smoothing) misregistering the image by one pixel. As with the pure simulation, anomalous changes are produced
by replacing a pixel with one drawn at random from another part of the image. After this simulation, the first ten
principal components are used in place of the full image as a dimension reduction measure. In all four cases, the
EC detectors outperformed the Gaussian-based detectors, and in particular EC-uncorr and EC-indep performed
essentially identically.

4.3. Real anomalies in real imagery

In a long running experiment, Eismann et al.16 made a series of hyperspectral images of a grassy field with
trees in the background (see Fig. 5(a,b)). As well as the grass and trees, four panels were placed in the scene,
exhibiting spectra that were unlike that of most of the background, and which might be identified as anomalies in
the image. But those panels were kept in place throughout the experiment, so they did not represent anomalous
changes. Periodically, a pair of tarps would be placed on the grass, and these were the anomalous changes that
algorithms were challenged to find. In particular, two images were taken on October 14th, one without and
one with the emplaced tarps. The images are 800×1024 pixels, and have 124 spectral channels. Following the
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Figure 3. Broadband image of AVIRIS data over the Florida coastline. Shown here is the first principal component of
the 224-channel image, which is 150×500 pixels.

(a) (b)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

false alarm rate

pr
ob

ab
ili

ty
 o

f d
et

ec
tio

n

 

 

SD
CC
RX
Hyper
EC−indep
EC−uncorr
EC−beta

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

false alarm rate

pr
ob

ab
ili

ty
 o

f d
et

ec
tio

n

 

 

SD
CC
RX
Hyper
EC−indep
EC−uncorr
EC−beta

(c) (d)

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

false alarm rate

pr
ob

ab
ili

ty
 o

f d
et

ec
tio

n

 

 

SD
CC
RX
Hyper
EC−indep
EC−uncorr
EC−beta

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

false alarm rate

pr
ob

ab
ili

ty
 o

f d
et

ec
tio

n

 

 

SD
CC
RX
Hyper
EC−indep
EC−uncorr
EC−beta

Figure 4. ROC curves produced by various anomalous change detectors, applied to the AVIRIS data shown in Fig. 3
in which pervasive differences have been simulated in four ways: (a) multiplicative noise (each pixel is multiplied by an
value randomly chosen from the interval [1,2]; (b) the image bands are split into two groups, one with the first 112 bands
of the image, and one with the last 112 bands; (c) the image is smoothed with a 3 × 3 kernel; and (d) the image (after
smoothing) is misregistered by one pixel.

To appear in: Computational Imaging VII, Proc. SPIE 7246 (2009)



(a)

(b)

(c)

10
−6

10
−5

10
−4

10
−3

10
−2

10
−1

10
0

0

0.2

0.4

0.6

0.8

1

false alarm rate

pr
ob

ab
ili

ty
 o

f d
et

ec
tio

n

 

 

SD
CC
RX
Hyper
EC−indep
EC−uncorr
EC−beta

Figure 5. (a,b) First principal component of two hyperspectral images taken of a grassy field with trees in the background.
There is a set of four panels on the horizon line that are in both images, and some actual changes which are evident in
the second image (b) as two darker spots, halfway up the image, with one near the center and the other to the left. (c)
ROC curves for the detection of the actual changes seen in these two images.

approach taken by Meola and Eismann,2 we reduce that to ten channels each, using the principal components
computed from a third image (taken August 25).

Fig. 5(c) compares the performance of the different detectors applied to this data. Although one should be
cautious about drawing conclusions from single examples, we see in this case that the EC detectors outperform
the Gaussian (Hyper) detector in the very low false-alarm rate regime, but the multivariate-t based detectors
(EC-indep and EC-uncorr) perform more poorly in the intermediate false-alarm-rate regime. The detector based
on a generalized Gaussian (EC-beta) outperforms Hyper over the whole range. We recall that EC-beta is an
uncorrelation-based detector and that we found that a formally optimal generalized Gaussian detector (i.e.,
one that used independence of P (x)P (y)) was intractable, but that the uncorrelation approximation that is so
successful on this data is given by the very simple formula in Eq. (35).

5. VISUALIZATION

The simple form given in Eq. (32) ensures that any EC-uncorr anomalous change detector will be a function only
of the two scalars ξz and ξx + ξy. This permits a two-dimensional visualization of the data, as shown in Fig. 6.
It is evident, in these plots, that the relative performance of different detectors depends on how heavy-tailed the
distribution of data is.

The reason EC-uncorr is able to produce a two-dimensional plot is that the expression for “individual anoma-
lousness” depends only on ξx+ξy. For the EC-indep algorithms, on the other hand, the individual anomalousness
term depends on more general functions of ξx and ξy. Fig. 7 compares the shapes of the contours, in ξx − ξy
space, that are obtained with these two different approaches to EC anomalous change detection.
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Figure 6. Scatterplots of ξx+ ξy versus ξz; dark crosses corre-
spond to data, light points correspond to simulated anomalies.
The lines correspond to anomalous change detectors, and each
has been calibrated to give a false alarm rate of 10−4. The light
points below the lines are missed detections, so the best detec-
tors will be those that miss the fewest points. The solid lines
correspond to the Hyper detector in Eq. (19), the dash-dotted
lines correspond to the multivariate-t detector in Eq. (33) with
ν = 22, and the dashed line is the fat-tailed limit given in
Eq. (34). The data shown: (a) AVIRIS data with the first
112 channels assigned to the x-image and the last 112 channels
to the y-image, followed by canonical components analysis to
reduce the dimension to dx = dy = 5; (b) a Gaussian simu-
lation with the same covariances and cross-covariances as the
AVIRIS data; and (c) a simulation with the same covariances
and cross-covariances but using a very fat-tailed EC distribu-
tion corresponding to ν = 3 in Eq. (24).
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APPENDIX A. GROUP INVARIANT ANOMALY DETECTION

In this appendix, we provide an alternative interpretation of the anomalous change detector that we have proposed
in the text. In this interpretation, we do not see the uncorrelated case as an approximation to the correct
independence-based anomalous change detector, but instead consider it a valid anomaly detector in its own
right, one of a family of detectors that is consistent with a symmetry property that is derived in terms of group
invariants.

According to Cambanis et. al.17 a measure µ on Rd is an EC distribution with covariance parameter Σ
(corresponding, up to a multiplicative constant, to the covariance of the measure, when the covariance exists†)
if the characteristic function

φ(t) :=

∫

Rd

eit·zdµ(z) (36)

is a function of tTΣt. When Σ is invertible, it is easy to show that the function t 7→ tTΣt is a maximal invariant
for the representation g 7→ Σ1/2gΣ−1/2, with g a member of the orthogonal group O(d), in the sense (see, e.g.,
Ex. 1.7.1 in Ref. [18]) that any function which is invariant under this representation is a function of the maximal
invariant. Consequently, EC distributions are simply those which are invariant under a representation of the
orthogonal group. Similar statements can be made when the matrix Σ is degenerate but for simplicity we restrict
to the non-degenerate case. In the anomaly detection framework of Refs. [19, 20], for a given measure µ one must
select a reference measure ν such that µ is absolutely continuous with respect to ν and then the anomalies at

level ρ are defined to be the set {z : dµ
dν
(z) ≤ ρ} where dµ

dν
is the Radon-Nykodym derivative.

When µ is an EC distribution it at first appears reasonable to assume that the sets of anomalies at any
level should be invariant under the associated orthogonal symmetry group. Unfortunately, taking the reference
measure ν to have the same symmetries as µ leads to the conclusion that different choices of reference measure
lead only to different parameterization of the level function: namely, that all symmetric anomaly detectors are
reparameterizations of Mahalanobis distance. Or said differently, if we look over the set of level parameters ρ
there really is only one symmetric anomaly detector – the Mahalanobis distance.

Instead, let us consider anomalous change detection where µ is a measure on Rdx × Rdy . If µ is an EC
distribution and therefore symmetric, and we wish to detect anomalous changes, then the above argument implies
that we must not select the reference measure ν to have the same symmetry as µ, for otherwise we would simply
be detecting straight anomalies and not anomalous changes. That is, symmetric anomalous change detection is
symmetry breaking. However there are still symmetries available. In particular, Thm. 2.6.3 in Ref. [18] implies
that the marginal distributions µx on Rdx and µy on Rdy are EC with parameters Σx and Σy respectively and

therefore they are orthogonally symmetric with the representations Φx(gx) := Σ
1/2
x gxΣ

−1/2
x with gx ∈ O(dx)

and Φy(gy) := Σ
1/2
y gyΣ

−1/2
y with gy ∈ O(dy) respectively. Consequently, it is natural to require the reference

measure ν to be symmetric with respect to Φx in its Rdx coordinates and symmetric with respect to Φy in its
Rdy coordinates. That is, it should be symmetric with respect to the direct product symmetry Φx × Φy. If we
take this as a natural assumption for symmetric anomalous change detection and define the maximal invariants
ξz = zTΣ−1z, ξx = xTΣ−1

x x and ξy = yTΣ−1
y y, it therefore follows that all symmetric anomalous change detector

have the following form

{z = (x,y)| h(ξz)

g(ξx, ξy)
≤ ρ} (37)

for a univariate function h and bivariate function g. A particular case of this general formulation is given by
g(ξ, η) := h(ξ + η) and this leads to a family of anomalous change detectors determined by a single univariate
function h:

{z = (x,y)| h(ξz)

h(ξx + ξy)
≤ ρ}. (38)

This is just the family proposed in Eq. (32).

†When the distribution is so fat-tailed that the second moment diverges, then the covariance is not defined. But it is
still possible to describe such EC distributions with this more general formulation.
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