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ABSTRACT

Feature extraction from imagery is an important and long-standing problem in remote sensing.  In this paper, we report on
work using genetic programming to perform feature extraction simultaneously from multispectral and digital elevation model
(DEM) data.  We use the GENetic Imagery Exploitation (GENIE) software for this purpose, which produces image-processing
software that inherently combines spatial and spectral processing.  GENIE is particularly useful in exploratory studies of
imagery, such as one often does in combining data from multiple sources.  The user trains the software by painting the
feature of interest with a simple graphical user interface.  GENIE then uses genetic programming techniques to produce an
image-processing pipeline.  Here, we demonstrate evolution of image processing algorithms that extract a range of land cover
features including towns, wildfire burnscars, and forest.  We use imagery from the DOE/NNSA Multispectral Thermal
Imager (MTI) spacecraft, fused with USGS 1:24000 scale DEM data.
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1.  INTRODUCTION AND GOALS

Feature extraction from imagery is an important and long-standing problem in remote sensing.  In the case of multispectral
imagery, a number of image classification schemes are well known and widely available, but they don’t always yield
satisfactory results, particularly for classification outside the training data.  Typically, a given feature-extraction technique is
used on a single image, or perhaps for change detection on a time-series of images.  By using multiple data sources for
feature extraction, signatures in one sensor can be combined with those in another sensor to produce a signature more easily
separated from the background.  By signature we mean a spectral band, a mathematical combination of spectral bands, or
perhaps the result of spatial processing on a spectral band.  Thus, we seek a feature extraction technique that combines the
low-level products of sensors, not, for instance, combining the results of supervised classifiers run on multiple sensors.  In
this paper we investigate a machine-learning approach to feature extraction from multiple data sources.

The particular sample problem for this investigation is land cover classification in the vicinity of Los Alamos, NM.  In
particular, we will describe our work on separating different land cover classes using data from the US Department of
Energy/National Nuclear Security Administration’s Multispectral Thermal Imager (MTI) satellite1,2,3 combined with USGS
1:24k digital elevation model (DEM) data.4

The Los Alamos area is of interest not only because we can obtain ground truth easily, but because of the Cerro Grande Fire
and rehabilitation efforts post-fire.  Between May 6 and May 18, 2000, the Cerro Grande/Los Alamos wildfire burned
approximately 43,000 acres (17,500 ha) of forest and 235 residences in the town of Los Alamos. Restoration efforts
following the fire were complicated by the large scale of the fire, and by the presence of extensive natural and man-made
hazards.  These conditions forced a reliance on remote sensing techniques for mapping and classifying the burn region and
surrounding vegetation. During and after the fire, remote-sensing data was acquired from a variety of aircraft- and satellite-
based sensors, including Landsat 7, MTI, AVIRIS, and others.  Data from these sensors are used to evaluate the impact of the
fire and begin to monitor the rehabilitation of the ecosystem.
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Beyond classification and mapping of the wildfire burn scars, rehabilitation efforts require up-to-date forest inventories and
land cover maps.  These can be used to plan rehabilitation efforts, and to estimate remaining forest fuels and hence the risk of
further significant wildfires. These mapping products need to be revised on a time scale of years, as destroyed forest gives
way to new plantings or as erosion sets in.  Land cover map makers have used Landsat TM and ETM+5 data for many years,
and more or less automated algorithms for land cover feature extraction are the subject of an extensive literature.6,7,8  Such
techniques generally require some parameter setting for any given scene, and we are interested in exploring how a machine
may learn to set these parameters or find new algorithms for multi-data-source land cover classification.

There are a number of previous efforts that combine multispectral and DEM data.  Bucher and Lehmann use high-resolution
multispectral data along with hyperspectral data for land cover classification.9  The DEM data are used both for
orthorectification of the multispectral data sets and for differentiating subclasses of vegetation by height.  Zhang, Cassells
and van Genderen use fused data from a variety of sources for detection and characterization of underground coal fires in
China.10  Their approach makes great use of thermal and multispectral data sources, as well as a DEM, which was used for 3-
D visualization of the image data and for deriving depth information about the coal fires.  Schistad Solberg, Taxt and Jain
explore using Markov Random Fields for multi-source feature extraction, in particular fusing Landsat TM, ERS-1 SAR and
GIS for land cover classification.11  This last reference also gives a good overview of the field.

In previous papers, we described the application of a machine learning technique to the classification of forest fire burn
severity12 and on land cover classification for the entire Jemez Mountain region.13  Both studies used Landsat 7 ETM+
multispectral imagery without additional data sources.  In this work we are also interested in this region’s land cover post-
fire, with an emphasis on details in the immediate vicinity of the Los Alamos townsite.

Figure 1. Region of interest. The left panel shows the part of the Jemez Mountains Northwest of the town of Los
Alamos. This is a grayscale representation of a color-infrared slice through the Multispectral Thermal Imager
(MTI) image cube (using MTI bands D-C-B).  Solar angle is such that north-facing slopes appear dark.  The
right panel shows the matching DEM data, which is co-registered and appended to the multispectral imagery to
form our fused datacube.  In the DEM, brighter pixels correspond to higher elevations.



2.  TECHNIQUE

Machine learning is an excellent tool for producing feature-extraction algorithms from multiple data sources, for several
reasons.  First, feature extraction typically involves the setting of multiple parameters, which often don’t have a physical
basis to determine their values.  Second, computers are good at trial-and-error techniques, which are precisely the methods
used by many developers of feature-extraction algorithms.  Finally, we wish to exploit the serendipitous nature of machine
learning – for example: what are the correlations between sensors that we haven’t considered, but that result in excellent
feature extraction?

In general, should we have a physics-based approach that performs as well as our machine learning algorithms, we would
prefer the physics-based algorithm.  It is important to note, however, that the algorithms produced in this research are not
“black boxes” that are largely impenetrable to the user.  Rather the machine learning technique in use here, genetic
programming based on genetic algorithms, produces outputs that are interpretable to the user and in fact can be modified by
the user.

2.1 GENIE
The tool used in this research, the GENetic Imagery Exploitation (GENIE) software, is showing excellent results in assisted
feature extraction tasks.  GENIE14,15,16 is an evolutionary computation (EC) software system that uses a genetic algorithm17,18,19

(GA) to assemble image-processing algorithms from a collection of low-level (“primitive”) image processing operators (e.g.,
edge detectors, texture measures, spectral operations, and various morphological filters). This system has been shown to be
effective in looking for complex terrain features, e.g., golf courses.20 GENIE can sequentially extract multiple features for the
same scene to produce land cover classifications.21 The implementation details of the GENIE software have been described at
length elsewhere,14,16 so we will only present a brief description of the system below.

GENIE is well suited for feature extraction from multiple data sets because the system does not assume that the input “bands”

Figure 2. Town/Urban feature. Left: Training data provided to GENIE.  Black pixels define non-town training example
pixels, and gray pixels define town example pixels. Right: The GENIE result.  Town/Urban was detected in pixels marked
in white. Compared to the training data (i.e., only those pixels given a true or false label in left panel), this result
achieved a detection rate of 100% and a false alarm rate of 0.16%.  Outside of the training pixels, performance is
qualitatively good, based on comparison to existing, manual land cover maps and known town boundaries.



are related to each other in a simple manner.  When GENIE runs on a multispectral image, the inputs typically include all the
spectral bands of interest, but also may include preprocessed input planes, which may be the output of other classifiers, other
genie runs, or hand processing done by the operator.  Internal to GENIE are scratch storage planes (the “signature” planes
discussed below), which are the result of intermediate computations performed by GENIE.  Thus, GENIE does not require all
its inputs to be the same type of physical quantity.  This, of course, is the case in the present work, where we are combining
quite different data sets: multispectral data in radiance units with a DEM in units of meters.

GENIE follows the classic evolutionary paradigm: a population of candidate image-processing algorithms is randomly
generated, and the fitness of each individual assessed from its performance in its environment, which for our case is a user-
provided training scene. After fitness has been assigned, reproduction with modification of the most fit members of the
population follows via the evolutionary operators of selection, crossover, and mutation. The process of fitness evaluation and
reproduction with modification is iterated until some stopping condition is satisfied (e.g., a candidate solution with
sufficiently high score is found).

The algorithms assembled by GENIE will generally combine spatial and spectral processing, and the system was in fact
designed to enable experimentation with spatio-spectral image processing of multi-spectral and hyper-spectral imagery.  Each
candidate algorithm in the population consists of a fixed-length string of primitive image processing operations. We now
briefly describe our method of providing training data and our method for evaluating the fitness of individuals in the
population.

The environment for the population consists of one or a number of training scenes.  Each training scene contains a raw multi-
spectral image data cube, together with a weight plane and a truth plane.  The weight plane identifies the pixels to be used in
training, and the truth plane locates the features of interest in the training data. Providing sufficient quantities of good training
data is crucial to the success of any machine learning technique. In principle, the weight and truth planes may be derived
from an actual ground campaign (i.e., collected on the ground at the time the image was taken), may be the result of applying

Figure 3. Generic forest feature. Left: Training data provided to GENIE.  Black pixels define non-forest training
example pixels, and gray pixels define forest example pixels. Right: The GENIE result.  Forest was detected in pixels
marked in white. Compared to the training data, this result achieved a detection rate of 99.4% and a false alarm
rate of 0.5%.  Outside of the training pixels, performance is qualitatively good, based on comparison to existing,
manual land cover maps.



some existing algorithm, and/or may be marked-up by hand using the best judgement of an analyst looking at the data.  We
have developed a graphical user interface (GUI), called ALADDIN, for the manual mark-up of raw imagery. Using ALADDIN,
the analyst can view a multi-spectral image in a variety of ways, and can mark up training data by painting directly on the
image using the mouse. Training data is ternary-valued, with the possible values being “true”, “false”, and “unknown”. True
defines areas where the analyst is confident that the feature of interest does exist.  False defines areas where the analyst is
confident that the feature of interest does not exist. Unknown pixels do not influence the fitness of a candidate algorithm.

Each candidate image-processing algorithm generates a number of intermediate feature planes (or “signature” planes), which
are then combined to generate a Boolean-valued mask for the feature of interest.  This combination is achieved using a
standard supervised classifier (we use the Fisher linear discriminant22), and an optimal threshold function.

The fitness of a candidate solution is given by the degree of agreement between the final binary output plane and the training
data. This degree of agreement is determined by the Hamming distance between the final binary output of the algorithm and
the training data, with only pixels marked as true or false (as recorded in the weight plane) contributing towards the metric.
The Hamming distance is then normalized so that a perfect score is 1000.

2.2 The data sets
The data sources used in this work are MTI and the USGS 1:24k DEM, both of which have been described extensively
elsewhere.1-4  The MTI is among many sensors that produced data of the Los Alamos area during or shortly after the fire, and
is now supporting ongoing restoration and analysis work, tracking the effects of mitigation efforts and the slow return of
vegetation.  The MTI image used here was acquired January 13, 2002.

Some preprocessing of the data is needed before GENIE can make effective use of them.  The MTI instrument team performed

Figure 4. Ponderosa Pine forest feature. Left: Training data provided to GENIE.  Black pixels define non-
Ponderosa Pine forest training example pixels, and gray pixels define Ponderosa Pine forest example pixels.
Right: The GENIE result.  Ponderosa Pine forest was detected in pixels marked in white. Compared to the
training data, this result achieved a detection rate of 99.9% and a false alarm rate of 0.05%.  Outside of the
training pixels, performance is qualitatively good, based on comparison to existing, manual land cover maps.
The algorithm predominantly detects Ponderosa Pine in the medium elevation valleys and canyons bordering
on the Jemez Mountains.



calibration and band-to-band registration on their data set. No atmospheric correction is done on the MTI data set.   We used
the ENVI23 image processing package to coregister the MTI spectral data and the elevation data contained in the DEM. The
coregistration accuracy was less than 3 MTI pixels (i.e. less than 60 meters).  This misregistration may be important along the
canyon edges, but since the features sought in this work were not expected to depend on small changes in elevation (e.g.
along mesa tops and on hillsides), this accuracy was considered sufficient to explore joint MSI/DEM signatures.  At this
point the coregistered data sets are presented to GENIE for the feature extraction process.

2.3 The Features of Interest
We chose a set of standard land cover classes for which ground truth existed, in the form of an official land cover map24 for
Los Alamos National Laboratory and Los Alamos county.  The features we chose to extract were:

• Town/Urban areas
• Wildfire burn scar
• Forest (predominantly Ponderosa Pine, Spruce, Fir, and Aspen)
• Medium elevation Ponderosa pine forest

The topography of the region of interest is quite complex, ranging from the ~10,000 foot peaks of the eastern wall of the
heavily forested Jemez Mountains (a dormant volcano), to the ~7,000 foot narrow mesas and steep canyons on which is
located the town and Laboratory of Los Alamos.  A number of our target features are naturally linked to altitude, e.g., there is
an ecological transition region (ecotone) at approximately 8500 feet separating medium altitude forest dominated by
Ponderosa Pine, from high altitude mixed conifer forest (which includes Douglas Fir, White Fir, and Spruce), while the town
is located on a group of almost constant elevation mesa. Thus, we expect interesting complementary information in the
multispectral imagery and digital elevation data sets.

3.  RESULTS

For each feature described above, a small amount of training data was marked up by hand using a combination of existing
land cover maps, first-hand knowledge of the region of interest, and photo-interpretation of the multispectral imagery.  A
more extensive mark-up of the scene was also prepared to act as out-of-sample test data for each feature.  Figure 1 shows the
region of interest, and Figure 2 gives an example of the training mark-up and the GENIE result for the town/urban feature.
This mark-up was accomplished using the ALADDIN user interface described above. Each feature is then extracted, one by
one, by GENIE in separate processing run on a standard Linux/Intel workstation.  Each run required approximately 1 hour of
wall clock time.  The in-sample (training) and out-of-sample (testing) results for detection rate and false alarm rate for each
feature are shown in Table 1.

In-sample Performance Out-of-sample Performance
Feature Detection

Rate
False Alarm

Rate
Detection

Rate
False Alarm

Rate
Town 100% 0.16% 78.2% 0.2%

Wildfire Burnscar 100% 0.09% 90.25% 2.2%
Forest 99.4% 0.5% 96.6% 2.3%

Ponderosa Pine 99.9% 0.05% 94.4% 14.7%
Ponderosa Pine
without DEM

98.8% 3.70% 83.96% 26.8%

Table 1. In-sample and Out-of-sample results for feature extraction using GENIE .

As an example of the individual results, Figure 3 shows training and the GENIE result for the generic forest feature, and
Figure 4 shows training data and the GENIE result for Ponderosa Pine. In each case, the qualitative performance of the
algorithm compared to the benchmark manual land cover map is good, and gives confidence that the system is learning valid
signatures as opposed to simply over-training on the training data.  Another paper in this session discusses using GENIE to



extract multiple classes simultaneously from a single data type.25

The evolved feature extractor with the poorest out-of-sample performance was the town/urban feature extractor.  In this case,
it appeared that GENIE was only given training data for built-up areas in the town center, and experienced difficulty when
tested on urban plus suburban areas.  This is understandable, as a large fraction of the suburban component of Los Alamos
township is permeated by full-grown trees that fill a substantial aerial fraction when viewed from overhead.

As a test that the system is benefiting from the inclusion of the DEM data, we re-ran the Ponderosa Pine finder problem with
the same training data (Fig. 4), but now only presented GENIE with the MTI multispectral imagery.  After an equivalent
period of training, the performance of the best evolved algorithm (see Table 1) was somewhat less than that of the best
algorithm evolved using MSI plus DEM, but the performance outside the training area was noticeably worse, with a
substantial decrease in detection rate and a substantial increase in the false alarm rate.  In particular, the algorithm trained
without access to the DEM data confused Ponderosa Pine forest with high altitude mixed conifer forest throughout the scene.

4.  DISCUSSION AND SUMMARY

We have demonstrated evolution of algorithms on a data set consisting of multispectral (visible to thermal) imagery fused
with a digital elevation model (DEM).  In seeking to evolve algorithms to extract a range of land cover features, including
town/urban, forest, and wildfire burnscars, we find that the system was able to exploit successfully the heterogeneous dataset,
and continue to perform well outside the training area.  We also demonstrated a case where the same evolutionary system
trained to find a particular type of forest, Ponderosa Pine, without the DEM data, had difficulty separating the medium
elevation Ponderosa Pine forest from the high elevation mixed conifer forest.  We find these results encouraging for future
efforts of discovering multi-instrument signatures of land cover features.
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