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ABSTRACT

We cast anomalous change detection as a binary classification
problem, and use a support vector machine (SVM) to build a
detector that does not depend on assumptions about the un-
derlying data distribution. To speed up the computation, our
SVM is implemented, in part, on a graphical processing unit.
Results on real and simulated anomalous changes are used to
compare performance to algorithms which effectively assume
a Gaussian distribution.

Index Terms— anomaly, change detection, machine
learning, classification, support vector machine, graphical
processing unit

1. INTRODUCTION

Given two images of the same scene, taken at different times
and (inevitably) under different conditions, we consider the
problem of finding anomalous changes in the scene [1]. There
will be pervasive differences between these two images, due
to the different conditions under which the images were taken,
but our working assumption is that the character of these dif-
ferences will be the same over a large number of pixels in the
image, and that they can therefore be learned. By contrast, the
anomalous changes will be small and/or rare, and their char-
acter will be different from the pervasive differences. The
recasting of this problem in terms of binary classification en-
ables the use of more sophisticated machine learning tools
than have traditionally been employed for the change detec-
tion problem.

In this paper, we investigate the use of support vector ma-
chines (SVMs) with radial basis kernels for finding anoma-
lous changes. Compared to typical applications of SVMs, we
are operating in a regime of very low false alarm rate. This
means that even for relatively large training sets, the data are
quite meager in the regime of operational interest. This drives
us to use larger training sets, which in turn places more of a
computational burden on the SVM.

We initially considered three different approaches to ad-
dress the need to work in the very low false alarm rate regime.
The first is a standard SVM which is trained at one thresh-
old (where more reliable estimates of false alarm rates are
possible) and then re-thresholded for the low false alarm rate

regime. The second uses the same thresholding approach, but
employs a so-called least squares SVM; here a quadratic (in-
stead of a hinge-based) loss function is employed, and for this
model, there are good theoretical arguments in favor of adjust-
ing the threshold in a straightforward manner. The third ap-
proach, which is also supported by theoretical arguments, em-
ploys a weighted support vector machine, where the weights
for the two types of errors (false alarm and missed detection)
are automatically adjusted to achieve the desired false alarm
rate. We have found in previous experiments (not shown here)
that the first two types can in some cases work well, while in
other cases they do not. This renders both approaches unre-
liable for automated change detection. By contrast, the third
approach reliably produces good results, but at the cost of
larger computational requirements caused by the need to esti-
mate very small false alarm rates. To address these computa-
tional requirements, we employ a recently developed in-house
solver for SVMs that is significantly faster than freely avail-
able standard solvers.

But these computational issues are secondary to the larger
question: do kernelized solutions provide better performance,
in terms of detection rates and false alarm rates, than more
traditional methods for change detection that effectively as-
sume Gaussian data distributions? To this end, we will com-
pare ROC curves obtained from the SVM with those from
chronochrome [2], covariance equalization [3], and hyper-
bolic anomalous change detection [4].

2. ANOMALOUS CHANGE DETECTION

A seeming difficulty with anomalous change detection, and
with anomaly detection generally, is that anomalies tend to
defy precise definition. We say that they are not normal or
that they are not not typical, but we have more trouble trying
to say what they are. As is often the case with detection prob-
lems, however, the main technical challenge lies not in char-
acterizing the targets, but in characterizing the background –
in this case, the non-anomalous pervasive differences.

Let x ∈ Rdx be a pixel in the “x-image”, and y ∈ Rdy

be the pixel at the corresponding location in the “y-image”.
We write P (x, y) as a joint probablity distribtuion in dx + dy

dimensional space that describes how x and y are correlated
over the two images. Here, P (x, y) corresponds to our model



for pervasive differences.1

As a one-class problem, P (x, y) describes the one “or-
dinary class;” data outside (or on the tails of) this distribu-
tion are candidates for anomalies. One way to find these
anomalies is to recast anomaly detection as binary classifica-
tion [5, 6]. In this recasting, one defines an “anomaly class”
as a generic low-information distribution – the usual choice is
a uniform distribution with support that extends well beyond
the range of the data. In this uniform case, contours of the
likelihood ratio (i.e., the Bayes optimal classifier) correspond
to the contours of P (x, y). A nonuniform anomaly class, in-
troduced previously [7], provides a model that is tailored for
anomalous change.

Let Px(x) =
∫

P (x, y) dy and Py(y) =
∫

P (x, y) dx
be the marginal distributions of P (x, y). Here Px(x) corre-
sponds to the distribution of pixels in the x-image, regardless
of what is going on in the y-image. And Py(y) is the dis-
tribution of pixels in the y-image. Our model for anomalous
change considers the x and y pixels as individually ordinary,
but the relationship between them to be unusual. Specifically
we write the product Px(x)Py(y) as our model for anomalous
changes. This allows a likelihood ratio to be defined:

A(x, y) =
Px(x)Py(y)

P (x, y)
. (1)

Here A(x, y) is our measure of anomalousness, and when it
is above a given threshold, then we declare the change at a
pixel pair (x, y) to be anomalous.

From a machine learning point of view, however, we do
not want to work with distributions explicitly. Instead, we
want to work directly with samples that are drawn from this
distribution (namely, our data). We can effectively draw data
from Px(x)Py(y) by resampling from our data. A pair (x, y)
is obtained by choosing x randomly from the x-image, and
independently choosing y from the y-image. In fact, this can
very efficiently be done by just scrambling the pixels in one of
the images. These pairs define our anomalous change class;
the original data defines our pervasive difference class. And
we have all we need to employ our favorite binary classifica-
tion algorithm.

It is important to note, however, that this binary classifi-
cation has to operate in the low false alarm rate regime. From
the point of view of likelihood ratio, this is a simple matter
of adjusting a threshold. But for binary classification, one
does not obtain a likelihood ratio, and must employ other
techniques. In the next section, we describe the use of our
favorite binary classifier, the support vector machine, with un-
equal weighting on the two classes, for solving the anomalous
change detection problem.

1We remark that this model treats the pixels as i.i.d. samples from a parent
distribution, and in particular neglects spatial correlations in the imagery.
For hyperspectral imagery, this is often reasonable because there is so much
detailed spectral information at each pixel.

3. A SUPPORT VECTOR MACHINE APPROACH

In this work we use support vector machines (SVMs) to solve
these weighted binary classification problems. Therefore, let
us briefly recall SVMs (see [8, 9] for a thorough introduc-
tion). The core ingredient of an SVM is a so-called kernel
k : Rd × Rd → R, that is, a symmetric positive semi-definite
function. In the following we will solely focus on the so-
called Gaussian RBF kernels that, for a given σ > 0, are
defined by kσ(x, x′) := exp(−σ2‖x−x′‖2

2), where ‖ · ‖2 de-
notes the Euclidean norm on Rd. In it well-known that to each
such kernel there exists a unique reproducing kernel Hilbert
space (RKHS) Hσ , which consists of functions f : Rd → R.
Now, given a so-called regularization parameter λ > 0, a ker-
nel parameter σ > 0, and two classification weights w− > 0
and w+ > 0 with w− + w+ = 1, the corresponding SVM
solves the optimization problem

fσ,λ,w− = arg min
f∈H

[
λ‖f‖2

Hσ
+

w−

n−

∑
yi=−1

L(−1, f(xi))+

w+

n+

∑
yi=1

L(1, f(xi))
]
, (2)

where L(y, t) := max{0, 1 − yt} is the so-called hinge loss
and n− and n+ denotes the number of negatively and posi-
tively labeled samples, respectively. It is well-known that (2)
is a strictly convex optimization problem that has a unique so-
lution fσ,λ,w− ∈ Hσ , see e.g. [9, Chapter 5.1]. Moreover, this
solution is of the form

fσ,λ,w− =
n∑

i=1

yiα
∗
i kσ(xi, · ) , (3)

where (α∗i , . . . , α
∗
n) is a solution of the dual optimization

problem, see e.g. [9, Chapter 11.1]. Unfortunately, there is, in
general, no way to use suitable a-priori knowledge to deter-
mine the free parameters λ, σ and w−, and thus they are often
determined by a hold-out set in the following way. First one
fixes sets Λ, Σ, and W of candidate values for λ, σ and w−,
respectively and splits the training set into two subsets D1 and
D2. Then, for each triple (λ, σ, w−) ∈ Λ×Σ×W , the SVM
optimization problem for the dataset D1 is solved and the
false alarm rate and the detection rate of the resulting fσ,λ,w−

is estimated using D2. Finally, the triple (λ, σ, w−) is picked
for which the false alarm rate is below a false alarm thresh-
old and the detection rate is maximized. Analogously to the
unweighted classification case, see e.g. [9, Chapter 8.3], one
can show that under suitable conditions on Λ, Σ, and W this
approach asymptotically yields optimal decision functions
fσ,λ,w− . In addition, this approach closely resembles many
approaches recommended in practice for unweighted binary
classification problems.



Conceptionally, the SVM approach is quite straightfor-
ward, but when implemented by standard SVM packages
such as LIBSVM [10] it is computationally almost infeasible
on a single desktop. Indeed, the fact that we need to determine
three hyperparameters λ, σ and w− means that we have to
solve the dual problem several thousand times, which is too
time-consuming when done by such packages. To address
this issue we developed our own faster SVM solver [11].
Our implementation also carefully caches the kernel matri-
ces (yiyjkσ(xi, xj))n

i,j=1, which also decreases the training
time significantly. Another computational bottleneck comes
from the fact that we are interested in very small false alarm
rates, which can only be estimated by large hold-out sets D2.
Now (3) shows that a brute-force approach for estimating
the false alarm and detection rate for a single triple requires
(λ, σ, w−) requires T × V kernel computations and the same
amount of additional multiplications and additions. Here, T
is the number of training samples in D1 and V is the number
of validation samples in D2. With sample sizes of a few
thousand for T and 100-200 thousand for V , this becomes
computationally intractable when done for several thousand
triples (λ, σ, w−), even if the sparsity, see [9, Chapters 8.4
and 8.6] of the representation (3) is taken into account. To
address this issue, we combined the sparseness of (3) with
the following strategies: a) caching the kernel matrix and
changing σ in the most outer loop of the hyper-parameter
determination, b) updating (3) only for those α∗i that have
changed from the previous value of λ, which are changed in
the most inner loop of the hyper-parameter determination,
c) implementing the remaining summation on a graphical
processing unit (GPU). By this means, a typical computa-
tion of the false alarm rate and the detection rate for a single
triple (λ, σ, w−) currently takes about 5ms if T = 1, 000
and V = 100, 000, while without these strategies the same
computation exploiting only the sparseness takes about one
minute on one of the currently fastest desktop processors (In-
tel Core i7 Extreme). Similarly, the test phase in which the
final decision function is applied to the entire image requires
computing (3) very often (depending on the image size up
to several million times). Again, this is computationally too
expensive when done on a CPU, and hence we implemented
this step on an GPU, too. The discussion above shows that a
rigorous SVM approach for the anomalous change detection
problem requires a significant implementation effort.

4. RESULTS

Using the simulation framwork introduced by [4], we can take
a single real image, and produce an artificial pervasive differ-
ence everywhere in the scene; this corresponds to the normal
differences that are observed due to different viewing condi-
tions. We then introduce a single-pixel anomalous change by
replacing a given pixel with another pixel taken from some-
where else in the image. This can be done multiple times to
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Fig. 1. ROC curves for anomalous change detection using
AVIRIS data with split channels, reduced by canonical corre-
lation analysis to d = 5 channels, and simulated anomalies.

get a good statistical estimate of detection rate.
This was done with data from AVIRIS (Airborne Visi-

ble/InfraRed Imaging Sensor) [12], based on the 224-channel
image number 960323t01p02 r04 sc01. The pervasive
difference was generated by splitting the image into two 112
channel images, and then canonical correlation analysis was
used to reduce this to five channels per image. Fig. 1 shows
ROC curves computed for various change detection algo-
rithms: HACD is hyperbolic anomlous change detection [7],
CC is the chronochrome detector [2], and CE is covariance
equalization [3]. The two support vector machine runs used
T = 1000 and T = 3000 randomly chosen training samples,
and the reported performance is for a separate testing set.

In Fig. 2, we used a pair of hyperspectral images that were
part of an extensive change detection experiment, described
in [13]. Here, two separate images were taken, several hours
apart; in one of the images, a pair of folded tarps (approxi-
mately 100 pixels in size) were placed in the scene to act as
the anomalous changes. Canonical correlation analysis was
used to reduce the dimension to ten per image. In Fig. 2(a),
we masked out the actual changes and introduced simulated
changes as described above. In Fig. 2(b), the results are based
on the real changes (the tarps) in the image pair.

In all three cases, we observed HACD outperforming CC
and CE, which points to the utility of the machine learning
framework that is summarized in (1). The support vector ma-
chine results are based on the median of twenty runs; we see
that, for the simulated changes, the SVM with T=3000 works
even bettter than HACD, while for the real changes consid-
ered in Fig. 2(b) our experiments gives mixed results. Since
we only considered a few images so far, it is, however, too
early to draw a final conclusion.
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Fig. 2. ROC curves for anomalous change detection using data from [13], reduced to d = 10 dimensions per image using
canonical correlation analysis. Panel (a) is based on simulated anomalies that arise from shuffling the pixels in one of the
images, and panel (b) is based on the actual changes that occurred in the scene.
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