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Spectral variability of remotely-sensed target materials:
Causes, models, and strategies for mitigation and robust exploitation

J. Theiler, A. Ziemann, S. Matteoli, and M. Diani

Abstract—The central problem in hyperspectral remote
sensing is characterizing the material components of a
scene based on the spectral radiance observed in the
image pixels. What makes this challenging is that the
spectral response for a given material exhibits considerable
variability from a variety of causes: intrinsic (depending
on composition or morphology of the material), extrinsic
(depending on size of an object, or concentration of the
material), or environmental (due to illumination, atmo-
spheric distortion, efc.). In this article, we survey many of
the causes of spectral variability, describe spectral models
for this variability, and outline some signal processing and
target detection strategies for analyzing hyperspectral data
in a way that is more robust to this variability.

I. HYPERSPECTRAL IMAGING

Many remote sensing applications require locating a
specific target object or material within a scene, which
may then be further identified, characterized, or quanti-
fied. A geologist might care about a particular mineral;
a forester might want to identify and monitor certain
vegetation species; a public health agent might want to
know about particular pollutants and dangerous toxins in
the environment; a climate scientist might want to locate
sources of methane or carbon dioxide; or a government
might want information about the nuclear proliferation
activities in another country.

With exquisite discrimination ability enabled by up-
wards of hundreds of distinct spectral channels in every
pixel, hyperspectral imaging has the potential to solve
all of these problems. Underlying the many algorithms
developed for exploiting hyperspectral imagery is the no-
tion that each material is unequivocally characterized by
its unique spectral signature (embodied by the spectral
reflectance, in the visible, near infrared, and shortwave
infrared; or by the spectral emittance, in the longwave
infrared).

Nonetheless, the notion of a single predetermined
spectral signature for each material is an ideal concept
that is not observed in real-world applications. Even
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in precisely-controlled laboratory experiments, the mea-
sured spectral reflectance of the same material exhibits
some variability. Matters get even worse in hyperspectral
remote sensing where target materials are imaged by a
sensor mounted on a platform, as many environmental
and geometric aspects are involved and unavoidably
affect the measured spectral radiance for the given
material. All these sources of variability will alter the
spectral intensity and shape of a measured spectrum
and will affect the performance of hyperspectral image
exploitation, particularly in the case of target detection.

The purpose of this survey is to examine the major
causes of spectral variability in target materials, to survey
some of the associated physical models, and to discuss
how hyperspectral analyses can be made more robust
to this variability. Whereas there are many kinds of
hyperspectral image exploitation algorithms (e.g., clas-
sification, clustering, unmixing) [1], and virtually all
of them are affected by spectral variability, we will
concentrate on the problem of target detection and, more
specifically, the detection, identification, and location of
particular materials of interest.

“I don’t like sand. It’s coarse and rough
and irritating and it gets everywhere.”
— Anakin Skywalker

II. SOURCES OF TARGET SPECTRAL VARIABILITY

The most obvious and immediate cause of variability
in a target spectrum is the intrinsic variability of the
target material itself. Unless the material is a pure sub-
stance, there is likely some variability in its composition;
for instance, we can refer to “sand” as a single material,
but there are many kinds of sand, and any given kind of
sand is composed of varying ratios of mineral compo-
nents [2]. Even “pure” materials can undergo chemical
variation (e.g., due to oxidation or hydration), and even
a chemically pure material, with fixed optical properties,
can exhibit spectral reflectances that vary with material
morphology. In addition to these intrinsic variability
sources, the effective reflectance at a pixel can depend on
extrinsic properties of the material, such as concentration
or thickness or size relative to the pixel. Environmental
effects, although not affecting the target reflectance itself,
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Fig. 1. Four spectra of the mineral actinolite, based on four ranges

of particle sizes, with the smaller particles generally more reflective.
From the USGS database [3].

can have a large impact on observed at-sensor spectral
radiance; these effects include atmosphere, illumination,
adjacent materials, and issues within the sensor itself.
The ultimate consequence of all these sources of
variability is that the observed target spectrum in the
field often differs from spectral reflectance or emissivity
measured in the laboratory and archived in spectral
databases, such as the United States Geological Survey
(USGS) Spectral Library [3]. The first step in bridging
this gap is to identify and catalog these individual
sources, while at the same time recognizing that their
effects occur together and superimpose upon each other.
If the sources are understood, then models can be formu-
lated, and from these models, algorithms can be designed
to achieve some measure of robustness to this variability.

A. Intrinsic target variability

The most direct source of spectral variability in a
target material is due to the chemistry or morphology
inherent to the material. When in powdered form, “pure”
solid materials become particularly complicated as their
spectra are highly variable [4] depending on particle size
(e.g., see Fig. 1), particle shape, and packing density, and
can be further complicated in the case of fine-grained
(a.k.a. “intimate”) mixtures of multiple materials. Under
ideal conditions, however, the fundamental reflectance
properties of a pure solid material are directly char-
acterized by its optical constants (refraction index n
and extinction coefficient k) [5], [6]; from those values
one can derive modeled reflectance signatures based on
morphology (e.g., for particle size [7], [8] or packing
density [9], [10]). As sensor technology has improved in
recent years, there has been an increasing need for such
reflectance models in order to generate simulated spectra,
as obtaining comprehensive spectral measurements under

Fig. 2. Illustration of BRDF geometry described in Eq. (1).

the multitude of possible morphologies is intractable
[11], [12]. For solid materials, both pure and mixed,
this reflectance also depends on both the angle from
which it is illuminated and the angle from which it is
observed. Those dependencies are encapsulated in the
Bidirectional Reflectance Distribution Function (BRDF)
[13]-[15], which is a function of four variables that
defines how light reflects off of an opaque surface [16]:

L(0o, ¢o)

E(0;, ¢i)
Here, the bidirectional reflectance 7, is the ratio of
the radiance L(6,, ¢,) to the irradiance F(6;, ¢;), where
L is scattered into the direction described by the ori-
entation angles 6, and ¢,, and E is irradiance from
the 60;, ¢; direction (see Fig. 2 for an illustration of
BRDF geometry). The function in Eq. (1) describes the
bidirectional reflectance values for every combination of
input/output angles, and, although not explicitly captured
in the equation here, also changes as a function of
wavelength.

The simplest BRDF is constant with respect to the
input and output angles; such a surface is termed Lam-
bertian.

Although the assumption of an ideal diffusely-
reflecting surface may not truly be achieved in prac-
tice, it is often a useful approximation, and a natural
starting point for more sophisticated models. Some of
these BRDF models are theoretical physics-based models
based on simulations of light scattering from multi-
faceted and/or multi-layered reflecting rough surfaces,
while others are empirical models that provide simple
formulations capable of reproducing specific kinds of
reflective behaviors. Often these models involve free
parameters that are fit to comprehensive experimental
measurements made using sophisticated goniometers and
gonioreflectometer systems; the challenge there is that

TsroF =

[sr1]. (1)



those systems are only recently being designed for
practical deployment in challenging environments [17],
[18]. The more complex models are often employed in
computer graphic design to render realistic surface illus-
trations [19], while simpler models are more commonly
adopted in remote sensing. Schowengerdt [20] argues
that most natural surfaces are approximately Lambertian
for viewing angles (i.e., 0, in Fig. 2) within 20° to 40°
from the zenith. But BRDF also depends on the illumi-
nation angle, with most surfaces brighter in the specular
and backscatter directions and darker elsewhere. Trees
and canopies, for instance, have a strong return from
the backscatter direction [16]. Choosing the Lambertian
model certainly simplifies hyperspectral data analysis,
but it just as clearly under-estimates the spectral variabil-
ity that will be observed in both target and background
materials.

Intimate mixtures present their own set of challenges,
as their spectra result from complicated and varying
underlying phenomenology (e.g., reflections and scatter-
ings between grains of different materials). A common
model for these nonlinear spectral interactions is Hapke’s
radiative transfer model for intimate mineral mixtures
[21], [22]. This model considers several contributions
to the spectra of intimate mixtures: single volume scat-
tering, multiple volume scattering, coherent backscatter-
ing, the shadow hiding opposition effect, macroscopic
roughness, and compactness. All of these contributions
can result in highly variable resulting spectra. A number
of approaches have been explored for applications to
hyperspectral unmixing, with particular focus on kernel-
based methods [23]-[27].

B. Extrinsic target variability

The signal observed at the sensor depends not only
on the nature of the material, but also on how much
material there is. For solid sub-pixel targets, the target
size relative to the pixel size matters; for gas-phase
plumes or thin layers of powder, concentration or thick-
ness matters. In the long-wave infrared (LWIR) the
temperature matters as well (warmer materials emit more
radiation, and appear brighter at the sensor).

Perhaps the simplest, and probably the most common,
expression for how much material is in a pixel is given
by the additive model [1]:

X =12+ €t 2)

where x is the observed spectrum at a pixel, z is the
spectrum of the background material in that pixel, t is the
spectral signature of the target material, and € is a scalar
quantity that corresponds to how much of the target is
present.

For opaque subpixel targets, the larger the target,
the more of the background it obscures, and a more

appropriate expression is the replacement model [1]:
x=(1-a)z+at 3)

where 0 < a < 1 corresponds to the fraction of the pixel
that is taken up by the target material.

While the additive and replacement models are the
most popular choices, the actual interaction of target
and background can be more complicated. For chemical
plumes, for instance, the additive model is popular, but it
is only an approximation — accurate in the weak-plume
limit [28] — to the actual Beer’s law absorption rule
[29]. This approximation is often valid, but it is also
motivated by the fact that target detection algorithms
are more easily derived under the assumptions of the
additive model.

The scaled replacement model, which is a kind of
hybrid of additive and replacement, considers a target
that can both occlude the background and have variable
strength:

x = (1 — a)z + aet. “)

In the LWIR, this could for instance be due to temper-
ature variation. An example in the visible wavelengths
arises when a target in the shade exhibits a lower appar-
ent reflectance than that same target in the bright sun.
More sophisticated models (e.g., that reduce the depen-
dence on the temperature [30] or achieve temperature-
emissivity separation [31], or that explicitly account for
shadows [32]) may ultimately be preferable to the scaled
replacement, but they are also more complicated.

C. Environmentally-induced target variability

Target spectral variability does not only depend on
the target itself but is also caused by the surrounding
environment. In this subsection, we examine some of
the most important environmental sources of spectral
variability by considering the typical remote sensing
scenario of a hyperspectral sensor that is mounted on
board a platform (such as an aircraft or a satellite) and
is imaging the targeted surface materials.

1) Main radiative transfer model equations: The
radiative transfer between a surface target and a
sensor across the visible and near infrared (VNIR,
~400-1000nm) and short-wave infrared (SWIR, ~1000-
2500nm) spectral ranges (i.e., VNIR-SWIR) can be ex-
pressed by the following simplified physics-based model
for the sensor-reaching radiance L*(\) [16], [33]-[36]:

L(\) = L8 (\) + L*()) 6)
L8 (X) = LT (\) + LT (\) + LP1(\)  (6)
L(N) = LP(\) + LO9Y(\). (7)



A sketch of the various radiation contributions entering
the sensor is provided in Fig. 3, with Table I summariz-
ing the major radiometric terms involved. In the above
equations, the total ground-reflected spectral radiance
L8"(A) includes the contributions that are reflected by
the target towards the sensor, and the solar scattered
spectral radiance L*“(\) includes the contributions that
are scattered towards the sensor without having inter-
acted with the targeted surface. L4"(\) and L9 ()\) are
the major contributors to L8"(\) and represent, respec-
tively, the direct and diffuse (downwelling) solar spectral
radiances reflected by the target towards the sensor —
also accounting for the multiple reflections between the
adjacent material surface and the atmosphere due to
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multiple scattering [16]. The ground reflected radiance
also includes the spectral radiance L°*'(\) arriving on
the target due to secondary illumination from potential
nearby objects and obstacles in view of the target (such
as trees and buildings) [35]. The solar scattered radi-
ance L*“()) includes the so-called path radiance LP()),
i.e., the solar spectral radiance that is scattered by the
atmosphere towards the sensor, and the adjacency term
L% ()\), accounting for the direct and diffuse solar spec-
tral radiances reflected from the materials adjacent to the
target towards the sensor (including the aforementioned
multiple reflections phenomenon).

By expanding the first two terms on the right
hand side of Eq. (6), we obtain [16], [33], [36]:

TU(A) — Qsh ESM()\)T()\)

L= ra)SOY

ES(\) = E"(\) cos § TH(\).

In Egs. (8,9), E**()\) is the solar unscattered (direct)
irradiance incident on the surface, with E?()\) as the
solar exo-atmospheric spectral irradiance at the top of
atmosphere incident on a surface orthogonal to the
Sun’s rays, 6 as the Sun zenith angle (subtended by
the Sun’s rays and the surface normal), and T%()\) as
the downward atmospheric transmittance of the Sun-
to-surface path. The term E4()\) is the downwelling
spectral irradiance from the sky incident on the surface,
which undergoes a scaling by the sky view factor (or
shape factor) F' € [0, 1] accounting for the fraction of
sky-dome visible from the target [35], [36]; r()\) is the
diffuse spectral reflectance (or albedo) of the targeted
surface (assumed Lambertian; i.e., 7(\) = ryepr(N) - 7);
rq(A) is the diffuse spectral reflectance of the material
adjacent to the target; S()) is the atmospheric spherical
scattering albedo (i.e., the effective diffuse reflectivity of
the sky to upwelling radiation); and 7%(\) is the upward
atmospheric transmittance of the target-to-sensor path.
The denominator in the first term of Eq. (8) is due to
the multiple reflections between the adjacent material
surface and the atmosphere from multiple scattering.
This phenomenon, also known as the “trapping effect,”
has been modeled for a flat and homogeneous surface
as the summation of infinite terms of reflected contri-
butions leading to a geometric series that converges to
[1 —74(A)S(\)]~". This effect has been found negligible
for clear sky conditions and low reflectivity of adjacent
materials (i.e., 7, (A)S(A) < 0.02 [16]). The second term
in Eq. (8) accounts for potential shadowing of the direct
solar unscattered term, with o, = 1 for full shadowing
and a,, = 0 for full illumination [33].

E™(\; z,y) = E(\) cos B (a, y)] T(N)
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From the point of view of spectral remote sensing,
the factor we care most about in these equations is
r(A), the reflectance. This is what corresponds to the
intrinsic properties of the material on the ground, i.e., the
material we are trying to find or identify or characterize.
Extracting () from the sensor-reaching radiance L*(\)
is no small feat, as in doing so we not only have to
estimate all of the other terms and factors in Egs. (5-9),
but we also have to deal with the variability of each of
those terms and factors.

The terms L°P%!()\) and L% ()\) in Egs. (6,7) are not
expanded here, but details can be found in Refs. [16],
[35], [37], [38]. L*I()\) has basically the same form
as Eq. (8), with r,()) in place of r(A) and with the
diffuse upward transmittance instead of T%()\). As to
LPst()\), this has been modeled taking into account that
the presence of a nearby object that obstructs part of the
sky-dome viewable from the target and, thus, the average
spectral radiance reflected by the object itself is scaled
by a factor (1 — F') [16], [35]. Depending on the relative
position of the Sun, target, and obstacle, Lobst (\) may
also include the solar direct radiation reflected by the
nearby object towards the target.

a) Topographic effects: So far we have assumed
a flat surface, but topographic effects and their possi-
ble incorporation into the model have been thoroughly
studied (see [34], [37], [39]-[42]), and Eqgs. (8,9) can
be modified accordingly. Specifically, for a local target
surface at location (z, y) tilted by a slope angle 0, (x,y)
(subtended by the surface normal and the vertical direc-
tion), Eqs. (8,9) should be modified by accounting for
the local direct and diffuse irradiances at (z,y):

(10)
cos Bz, ) ar

cos
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Fig. 3. Sketch of the radiative transfer model along the Sun-to-target-
to-sensor path, as described in Section II-C1. The individual terms are
listed in Table I.

Here ¢ (z,y) is the azimuth angle of the local
sloped terrain at (z,y), ¢ is the Sun azimuth angle,
and 6;;(z,y) is the local (actual) target illumination
angle. In Eq. (11), the diffuse component is expressed
as a linear combination of two terms: one circumsolar
diffuse irradiance from the solid angle near the Sun and
one isotropic contribution from the remaining sky-dome
[37], [39], [40]. The term A()) is the anisotropy index
giving the proportion of diffuse radiation to be treated
as circumsolar and isotropic and has been modeled as
AN) = (1 — agn)TAN) [37], [39], [40]. The sky-view
factor for the tilted target surface in Eq. (11) should be
evaluated from digital elevation models (DEMs) [40],
[43], though simplified expressions have also been de-
rived (e.g., for an infinitely-long slope [40]). It should
be noted that Egs. (10-12) can be modified or enriched
in order to account for topography at different levels
such as for mountainous terrain [37] or for the combined
effect of topography and structured forests [41], [42].
Additionally, some works employ a sky radiance fraction
function instead of scaling the downwelling irradiance
by the sky-view factor in Egs. (8,11), in turn obtain-
ing a wavelength-dependent and angle-dependent term
accounting for the non-Lambertian nature of the sky
reflectance [44].

As shown in the equations above, many factors are
involved in the radiative transfer process. Each of these
factors affects the spectral intensity and shape of the
sensor-measured radiance spectrum, and can ultimately
result in a significant amount of spectral variability. The
sources of variability may be broadly categorized into
four areas: atmosphere, illumination, acquisition geome-
try, and adjacent environment. In the following section,
a detailed analysis of the effects of this variability are
examined based on the radiative transfer model equations

TABLE I
SUMMARY OF THE RADIOMETRIC TERMS INVOLVED IN RADIATIVE
TRANSFER MODELING.

Spectral Radiance

LS (1) Sensor reaching spectral radiance
L™ (A) Total ground reflected spectral radiance
L) Solar scattered spectral radiance
LT (2) Direct solar spectral radiance
L4 Q) Diffuse (downwelling) solar spectral radiance
1953t () Nearby obstacles/objgcts §pec.tral radiance
(secondary illumination)
LP (1) Solar path scattered radiance (path radiance)
L2% () Adjacency spectral radiance

Spectral Irradiance

Exo-atmospheric spectral irradiance and the

toa
B¢ top of atmosphere
ESU(A) Solar unscattered (direct) spectral irradiance
incident on the surface
E4Q0) Downwelling spectral irradiance from the sky
incident on the surface
Solar unscattered spectral irradiance incident
Esu .
@; %) on a tilted surface @ (x,y)
E4(A; x, ) Downwelling spectral irradiance incident on a

tilted surface @ (x,y)

Spectral transmittance

Upward atmospheric transmittance (target-

u
*@ to-sensor path)

Downward atmospheric transmittance (Sun-

d
Y to-surface path)

Spectral reflectance

Spectral reflectance of the target (assumed

) Lambertian)
r, (D) Spectral reflectance of the adjacent material
N Atmospheric spherical scattering albedo

just described.

2) Analysis of environmentally-induced variability:
Most of the variability in an observed spectrum is due
to atmosphere and illumination, and these sources of



variability have indeed been the most widely investigated
[36], [45]-[48]. Many have shown, either by simulation
or by field experiments, how much the spectral radiance
for a single material can vary under different atmospheric
conditions (e.g., aerosol/gas types and concentrations, or
water vapor profiles) [46] and illumination conditions
(e.g., shadowing, or sky-dome obstruction) [36], [45],
[47], [48]. In order to investigate adjacency effects and
secondary illumination, Goa et al. [48] looked at radi-
ance measurements of targets that were placed between
tree lines and exposed to different illumination condi-
tions; these measurements were then compared to syn-
thetic radiance spectra simulated according to a model
based on Egs. (5-7). Results revealed the importance of
accounting for the secondary illumination term L”b‘”(/\),
which is often neglected, and showed that it can play an
important role in cases where, for instance, the target
is in shadow and surrounded by tall and brightly lit
objects [35]. Similar considerations can be made for the
effects of adjacent materials both in terms of L*/()\) and
[1 —rqa(A)S(N)]. They may not be negligible, especially
when 74(X) > r(A) [37], i.e., when adjacent materials
are more reflective than target materials (such as targets
surrounded by brighter backgrounds and, in particular,
targets in shadow) [35], [49]. Viewing conditions and
acquisition geometry also play an important role in
spectral variability of materials [50], [46], especially
topographic effects that may considerably increase or
decrease the direct and diffuse illumination of the target.
For example, consider a Sun zenith angle of 25°, a slope
angle of the target surface of 15° away from the Sun,
and a null azimuthal difference between the Sun and
the slope orientation. In this case, the direct illumination
would decrease about 15% compared to the flat terrain
case. For the same geometry but with a Sun zenith angle
of 45°, the decrease would be about 30%.

The atmospheric effects of transmittance and visi-
bility in general tend to vary slowly with respect to
spatial position, and are often assumed to be stationary
over a full scene. This assumption can fail for wide-
area remote sensing or with shallow slant-angled views
(oblique sensing) [50], [51], where the target-to-sensor
path distance may vary considerably over a scene. Other
sources of variability, such as columnar water vapor [52],
clouds, shadows, and obstacles (e.g., leafy canopies
and buildings) can be quite spatially non-stationary.
Topographic effects also exhibit a strong spatial non-
stationarity within a scene. In part, this is because of
the increased range of sensor viewing angle within a
scene [50], [51], but a further effect of oblique sensing is
that surfaces that were previously hidden become visible
(e.g., walls of a building as well as the roof, or trunks of
a tree as well as the canopy) [51]. Adjacency effects are
intrinsically non-stationary, of course, as they depend on

the spatial variations of surface materials in the examined
scene.

A summary of the considerations above is reported in
Table II. Graphical examples showing how these sources
of variability manifest themselves on the sensor-reaching
radiance are provided in the following section.

a) Illustrative examples of environmentally-induced
variability effects: An example experiment is shown in
Fig. 4, where at-sensor radiance spectra in the VNIR
were synthetically generated by exploiting spectral sig-
natures from the ASTER spectral library [53]. The
spectral reflectance 7,(\) of copper was used for the
target material. This was chosen because it has a smooth
reflectance spectrum and exhibits both low reflectivity
(in the blue/green portions of the VIS) and medium/high
reflectivity (in the red and NIR). To illustrate the effects
of adjacent and obstacle materials with respect to the
copper, we used a rangeland reflectance spectrum 7;(\)
with very low reflectivity across the full VNIR; an olive
canopy reflectance spectrum 7,,(\) with high reflectivity
in the NIR only; and an aluminum reflectance spectrum
ry(A) with higher reflectivity across the full VNIR. A
plot of these four spectra is shown in Fig. 4(a).

In this example, the MODerate resolution TRANs-
mission (MODTRAN) 5 radiative transfer code [54]
was employed for simulating radiation transfer in the
atmosphere in combination with the physical models
expressed by Eqs. (10-12). A typical airborne remote
sensing scenario was reproduced by making reference to
a real hyperspectral data collection campaign performed
in May 2013 with the SIM.GA hyperspectral sensor
(511 spectral channels in the VNIR with a full width at
half maximum [FWHM] of about 2 nm) flying over the
city of Viareggio, Italy [55]. The employed parameters
are listed in Table III, where the values of the varied
parameters are reported in curly brackets. One single
parameter was varied each time by keeping the others
fixed at the basic configuration value highlighted in bold
red. In Fig. 4(b-h), the spectra corresponding to the basic
configurations are displayed in blue in each plot. The
other colors are assigned to the variations expressed in
each plot legend.

Specifically, we varied: the horizontal visibility (the
surface meteorological range VIS parameter in MOD-
TRAN) in Fig. 4(b); the water vapor (WV) scaling
factor (H2OSTR in MODTRAN) in Fig. 4(c); the sensor
viewing angle 6, (ANGLE in MODTRAN) in Fig. 4(d);
shadowing (by means of ayj) in Fig. 4(e); topography
(by taking ¢ — ¢ = 0 and varying 6) in Fig. 4(f);
adjacency effects (using a null albedo or olive or range-
land or aluminum signature for the adjacent material)
in Fig. 4(g); and obstacles and obstruction (employing
a null albedo or olive or aluminum signature for both
15% and 30% sky-dome obstructions) in Fig. 4(h). With



TABLE I
CATEGORIZATION OF ENVIRONMENTALLY-INDUCED SOURCES OF VARIABILITY

Constituents, E), IP (1), T2 (R),
gases, aerosols (D), S()
Clouds, water TS (1), T I
vapor EYD), S
Adjacent adj
materials )
Nearby objects dif obst
and obstacles B QY
Shadows D)
. B,
E Sun position DL (1),
2 194 ) TR, TH()
z ES(D), 14 (1)
§ Topography L9bst(2), [94) (})
=) .
g Sensor viewing T“Q), 1P ()

angle

respect to the basic configuration of VIS = 23km (the
typical default value in MODTRAN for good visibil-
ity conditions), visibility variations strongly impact the
spectra, as shown in Fig. 4(b). The major effects can
be observed in the low wavelength region for low VIS
values, where the low target reflectivity combined with
the increased scattering phenomena due to the hazier
conditions results in considerable increases of the at-
sensor spectral radiance. For higher wavelengths, where
not only is scattering generally weaker but the copper
target also has higher reflectance, the general effect on
the at-sensor radiance is a decrease of the signal for
low VIS values due to the less transparent atmosphere
(lower transmittance). The result is a completely dis-
torted signal. In contrast, in Fig. 4(c) the effects of WV
can be seen to be mostly confined to the WV absorp-
tion bands, with decreased signal (more absorption) for
more humid atmospheres (higher WV scaling). Oblique
sensing (Fig. 4(d)) plays a significant role only for very
slanted views (e.g., 6, = 120°), which mostly impact
lower wavelengths with an increased at-sensor radiance
due to the increased scattering phenomena occurring
in the longer target-to-sensor atmospheric path. Very
oblique views also impact, though to a lesser extent,

Stationary over .
) o Seasonality
wide areas

Non-stationary Non-stationary

Non-stationary Stationary

Non-stationary Stationary

Non-stationary Hourly variations
Stationary over

. Hourly variations
wide areas

Non-stationary Stationary

Stationary** Stationary

*except for wide imaged areas and situations with extremely wide-angle views, or very shallow slant angled views
** except for situations with extremely wide-angle views

the signal in the major absorption bands (e.g., at 940
nm) where decreased signal intensities can be observed
due to the higher absorption. The reduction of the direct
solar illumination due to shadowing entails consider-
able variability over the at-sensor spectral radiance in
Fig. 4(e), with a general decrease of the at-sensor signal
throughout the VNIR range. Similar variations can be
observed in Fig. 4(f), where varying the inclination of
the targeted surface determines a general increase (if the
surface is rotated towards the Sun) or decrease (if it is
rotated away from the Sun) of the at-sensor signal. In the
simulated scenario the Sun zenith angle is 0 = 60; ~ 31°
and thus an inclination of 6, = 30° is close to the
condition of maximum illumination due to topography.

The adjacency effects shown in Fig. 4(g) illustrate
how much those effects depend on the properties of
the adjacent material itself. In this example, the low-
reflectivity rangeland spectrum hardly impacts the result-
ing at-sensor radiance. Conversely, for adjacent materials
with stronger reflection properties, such as the olive
or the aluminum materials, adjacent effects are more
significant. The olive signature “colors” the at-sensor
radiance according to its own spectral characteristics,
with adjacency effects mostly manifesting themselves



TABLE III
PARAMETERS EMPLOYED IN THE EXAMPLE IN FIGURE 4

ATMOSPHERIC MODEL  MidLatitude Summer VISIBILITY [Km] {5,10,23,35}
AEROSOL MODEL Maritime WV SCALING FACTOR (W V) {0.5,1,2}
SENSOR ELEVATION [Km] 1.250 ADJACENCY 1o = {0, 7oy Trp Tar)
TARGET ALTITUDE [Km] 0 %fSTTARCULg?g:\Id :‘fb:; {OO;OZT;;;
TARGET LATITUDE [] 43.85 North VIEWING ANGLE (6,) [°] {120,140, 160, 180}
TARGET LONGITUDE [*] 10.25 East SHADOWING (ap,) {0,0.5,1}
DAY May 9 2013 SLOPE ELEVATION (85;) [°] {0,+15, +30}
GMT TIME [h] 12.65 SL. REL. AZIMUTH (5, — ¢) [°] 0

in the NIR spectral range; in the VIS these effects are
negligible, as the olive material and copper have a null
contrast in that range of the spectrum. The aluminum ob-
ject, which has higher reflectivity than copper throughout
the spectral range, causes a general increase in the at-
sensor signal. Similar considerations can be found for
the secondary illumination due to nearby objects (see
Fig. 4(h)), which cannot be considered negligible for
high-reflectivity objects. Here the shape factor induces
variability as well, with an increasing secondary illumi-
nation impact for higher obstruction levels.

Although BRDF effects are intrinsic to the target
material (and have been described in section II-A),
spectral variability due to BRDF also has an environ-
mental flavor. Indeed, variability due to variations in
illumination and acquisition geometry is deeply inter-
twined with variability due to the non-Lambertian nature
of target materials. Thus, in order to provide some
insight into environmentally-induced spectral variability
for non-Lambertian targets, a further illustrative exam-
ple, using the same parameters as previously, is shown
in Fig. 5. Two glossy targets taken from the Cornell
BRDF data base [56] are considered here: specifically,
a target painted with a ‘Garnet red’ lacquer (top panels,
Fig. 5(a,b)) and a glossier target painted with a ‘Mys-
tique’ lacquer (bottom panels, Fig. 5(c,d)). Here, the left
panels, in Fig. 5(a,c), plot the target BRDFs for a fixed
illumination direction (as before, 6, = 6 ~ 31°) for
varying orientation angle 6,. Here, the values of 0, were
chosen to correspond to the same sensor-viewing angles
6, = 180° — 6, employed in the previous example. Note
that the oblique specular geometry (6, = 149°) is not
included in the analysis, since the Cornell BRDF data
do not include measurements of specular reflectance (if
needed, however, they could be introduced by adding a
term ruled by the Fresnel reflectance [57]). As is evident

from the target BRDFs, the non-Lambertian effects are
different for the different targets. In Fig. 5(a), the effect
is mostly just a scaling of the reflectance function for
the ‘Garnet red’ target, with higher reflectance for nadir
viewing. But in Fig. 5(c), the effect produces actual
changes of color for the ‘Mystique’ target, which exhibits
a strong reflectance contribution around 500 nm for
nadir and 20° off-nadir views and strong contributions at
shorter and higher wavelengths for the 40° and 60° off-
nadir views. Fig. 5(b,d) plot the sensor-reaching radiance
for the sensor-viewing angles matching the orientation
angles varied in Fig. 5(a,c). The figures clearly show that
environmental effects blend with the BRDF effects in the
at-sensor spectral radiances. In fact, whereas the mostly
path-radiance-driven effects already observed in Fig. 4(d)
(i.e., increased radiance especially at shorter wavelengths
for longer paths due to oblique sensing) are clearly evi-
dent (and stronger with respect to the previous examples
due to the very low reflectance of the targets), these
are combined with the effects of the different spectral
characteristics that the target materials intrinsically have
for different viewing angles. By looking at Fig. 5(b), the
path-radiance-driven spectral radiance increase at shorter
wavelengths, strongly evident for the most oblique case
(0, = 120°), is less evident for the other off-nadir
viewing angles because the higher overall reflectance
for a nadir view (evident in Fig. 5(a)) determines a
stronger radiance contribution even though the increase
due to path radiance is lower than the off-nadir cases.
Similar considerations can be made for Fig. 5(d), where
the stronger reflectance contributions around 500 nm for
the ‘Mystique’ target at nadir and 20° off-nadir views
provide to radiance contributions around 500 nm that
are stronger than or equal to the 40° off-nadir case.
These simple examples demonstrate that the causes
of non-negligible spectral variability are multi-fold, and



the corresponding effects on the target spectra manifest
themselves in complicated ways that can go beyond
straightforward scaling or offsets. The aggregation of
multiple diverse environmental effects — in addition to
the spatial non-stationarity and temporal non-stationarity
of the sources of these effects — makes environmentally-
induced spectral variability a true challenge for effective
hyperspectral image exploitation.

So far we have examined the major sources
of environmentally-induced variability occurring when
spectral radiance is measured in the VNIR-SWIR range.
If data collection takes place with a sensor operating in
the LWIR, a different radiation transfer model should be
considered [58], [59] and a further source of variability
comes into play, which is the temperature (primarily of
the surface, but also of the atmosphere and the adjacent
areas), and which exhibits further temporal and spatial
non-stationarity.

We conclude this section, which is focused on the
main sources of variability for the sensor-reaching spec-
tral radiance L°()\), with a reminder that L°(\) as
expressed here is the radiance entering the sensor, which
is not precisely equal to the spectral radiance actually
measured by the sensor. While beyond the scope of
this survey, radiance collection by the sensor acquisition
system can introduce further variability on the measured
signal (e.g., due to sensor noise, smile and keystone
effects, pixel non-uniformity, point spread function, and
lens distortions) [1], [60].

III. MODELS FOR SPECTRAL VARIABILITY

In attempting to capture the complex spectral variabil-
ity that is observed in target materials, most models fall
into two classes: statistical methods, which involve fitting
a probability distribution function (pdf) to the variability;
and geometrical methods, which invoke structures such
as subspaces, simplexes, and manifolds. Some of these
are sketched in Fig. 6, and described in a little more
detail in the subsections below.

“Never tell me the odds.”
— Han Solo

A. Probabilistic models

Spectral variability amounts to the same thing as
spectral uncertainty, and the most natural tool for charac-
terizing uncertainty is the probability distribution func-
tion (pdf). When ab initio physical models are lack-
ing, generic distributions are appealing, and for char-
acterizing complex backgrounds, probabilistic models
are the dominant choice [61]. For characterizing the
spectral variability of specific target materials, however,
we often have more physical insight (e.g., as detailed

in Section II). Incorporating that physical insight into
algorithms is often a challenge, however, and proba-
bilistic models are widely employed. The Gaussian pdf
has many advantages [62], and several authors [63],
[64] have considered a Gaussian target variability that
matches (except for offset and scale) the covariance of
the background variability. There may not be a strong
physical argument to expect the target and background
covariances to line up in this way, but it simplifies the
analysis (whitening the background has the effect of
whitening the target as well), and is at least more realistic
than assuming the target has zero covariance. In other
work employing the Gaussian distribution to model the
spectral variability of different target materials, each spe-
cific material was considered having its own covariance
matrix [65].

Tyo et al. [66] evaluated several monovariate distribu-
tions besides Gaussian for modeling both the single-band
spectral radiance and the total radiance (summed across
all bands) extracted from multiple instances of a same
object in a hyperspectral image. It was observed that the
extracted data exhibited a skewed distribution and thus
Lognormal, Gamma, and Weibull pdfs were employed
for fitting. Experiments showed that none of the tested
pdfs did a very good job in accurately modeling the
statistical variability of the spectral signature (with a
slight advantage of the Lognormal distribution when
the total radiance was modeled) and suggested testing
other more complex distributions. In [67], the univariate
Beta distribution was found effective at modeling the
spectral variability affecting target material reflectances
at each spectral dimension while incorporating distri-
butional skew and assuring that the reflectance values
of the target materials are constrained to a physically
realistic range. In order to approximate any distribution
that the target materials may exhibit, such as multi-
modal distributions very commonly found in real data, a
mixture of Gaussian distributions was employed in [68].
These models based on beta and mixture of Gaussian
distributions were specifically employed in unmixing
applications in the context of endmember spectral vari-
ability [67] [68]. Simplex-based distributions have also
been suggested for anomaly detection [69].

B. Unconstrained subspace models

Subspaces have been widely utilized to model the
spectral variability of observed material spectra [36],
[45], [46], [70], [71]. With a subspace model, the target
material vector is restricted to vary in a K-dimensional
subspace of the d-dimensional data space (with K < d).
The amount of variability allowed increases as K in-
creases from K = 1 (scalar variability in one dimension)
to K = d (the spectral vector is allowed to vary over all
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Fig. 4. Example showing the major effects of environmental variability sources over the spectrum of a copper object. (a) Spectral signatures
employed. The dotted signature r¢, () is the reflectance of the copper object that served as target. The other signatures were used to simulate
adjacency effects and secondary illumination by obstructing obstacles. (b) Effects of visibility (VIS). (c) Effects of water vapor scaling factor
(WVgp). (d) Effect of sensor viewing angle, measured from the zenith (6, = 180° — 6,; note that 6, = 180° corresponds to the nadir view).
(e) Shadowing effects. (f) Topographic effects. (g) Adjacency effects. (h) Effects due to secondary illumination by obstacles.
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Example showing the effects of sensor viewing angle variation for two non-Lambertian targets. (a,b) Target painted with ‘Garnet red’

lacquer. (c,d) Target painted with the glossier ‘Mystique’ lacquer. (a,c) BRDF of the targets plotted for a fixed illumination angle (6; = 6)
and different orientation angles 6,. In the ‘Garnet red’ target, BRDF effects mostly consist in scaling of the reflectance functions with varying
orientation angles, whereas the ‘Mystique’ target actually changes color depending on 6,. (b,d) Corresponding at-sensor radiances for sensor
viewing angles 6, = 180° — 6, matching the orientation angles shown in (a,c).

of R%). This can be written as:

K
t= Z arty = Ta
k=1

where t € R? is the material spectrum, T is the
d x K target subspace matrix, and a € R is a
vector of coefficients. According to Eq. (13), the target
material spectrum is expressed as a linear combination
of the subspace basis vectors {tk},f:l weighted by the
elements of the coefficient vector a. If rank{T} =K,
then the basis vectors are linearly independent, and a
given t will uniquely define the coefficients ay.

The affine model [72] is a useful extension to the
subspace model that is obtained by adding a nonzero
offset; i.e.,

13)

t =t, + Ta. (14)

One scenario where this arises is when the coefficient a
corresponds to the amount of direct solar illumination,
and t, corresponds to the spectrum of the target in the
shade.

C. Constrained subspace models

In Eq. (13), the coefficients in the vector a are uncon-
strained. If they are to be interpreted as physical quan-

tities (such as abundances), however, then constraints
can be used to produce more realistic models of target
variability. In particular, non-negativity and sum-to-one
constraints for the {ak}szl coefficients can be imposed,
thus leading to a simplex model:

K
t = Zakek = Ea
k=1

a=0
1Ta=1

5)

where 1 is a K-dimensional column vector including all
ones, the superscript T denotes the transpose operator,
and the columns e, of the d x K matrix E can be
interpreted as the K vertices (or endmembers) of the
K — 1 dimensional simplex, inside of which the target
t is constrained to lie. This is essentially identical the
linear mixing model, first proposed by Boardman [73],
and now very widely used for background modeling [61],
[74]. If the target is being used in an additive model, then
the overall magnitude is not important, and there is no
reason to enforce the sum-to-one constraint. In this case,
the constraining geometry becomes an uncapped simplex
(i.e., a polyhedral cone with K edges) [71].

With constraints imposed, it is not strictly necessary
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Fig. 6. Sketch of target variability models: (a) probabilistic, in which target vectors are drawn from a probability distribution on t, (b) subspace,
in which target vectors are linear combinations of t;1 and tg, (c) constrained subspace, in which target vectors are positive linear combinations
of t1 and t2, and (d) manifold, in which the target vectors lie in a potentially intricate and convoluted structure that locally appears Euclidean.

that the target subspace be of lower dimension than the
ambient dimension of the data. The simple geometric
approach adopted by Yang er al. [75] defines a ball
B(to,e) = {t | ||t — to]| < e} centered on a nominal
target spectrum t,, and having a radius ¢ corresponding
to the variability of the target. The target spectrum is
assumed to lie within the ball, and in deriving a detection
algorithm, the optimization is constrained by t € B.

A different way to constrain a subspace model is by
imposing a sparsity constraint on the coefficients. The
model becomes a union of lower-dimensional subspaces,
and has been employed to produce target detection
algorithms (e.g., [76]).

D. Topological manifolds

While the variability of material spectra can some-
times be well-modeled by low-dimensional linear sub-
spaces, the inherent non-linearities of many physical
processes that lead to this variability (e.g., that are
discussed in Section II) suggest that a more suitable
model might be a “curved subspace” or non-linear man-
ifold [77], [78]. Manifolds can be linear or non-linear,
and manifold learning refers to approaches that attempt
to recover (i.e., “learn”) a lower-dimensional manifold
assumed to be embedded in a higher dimensional space
[79]. Although hyperspectral data are more commonly
modeled with linear manifolds (i.e., constrained and
unconstrained subspaces), some hyperspectral data sets
have been shown to be more effectively fit with non-
linear manifolds [80], [81].

Within this framework, non-linear manifold learning
attempts to derive a coordinate system that parameterizes
the manifold by, in the words of Bachmann et al
[77], “following its intricate and convoluted structure
with the hope of achieving a better data representation.”
In non-linear manifold learning, the concept of linear
distance is replaced by that of geodesic distance [82],

which corresponds to the length of the shortest path, on
the manifold, between two data points. In practice this
means that the manifold coordinate system resides on
the manifold itself, so that the distances are measured
by following the curves of the manifold trajectory and,
thus, any geodesic distance along the manifold turns out
to be a simple linear distance in the manifold coordinate
system [77]. Formally, an m-dimensional manifold M
is defined by stating that for each point y € M, there is
an open subset (often called a neighborhood) S C M,
with y € S, that is homeomorphic to an open subset (or
neighborhood) S’ in an m-dimensional Euclidean space
R™:; that is, S < S’, where ¢ is the homeomorphic
mapping function. Thus, even though a manifold might
have a complex non-linear global structure, locally it
looks like Euclidean space [77].

Well-known manifold learning algorithms include
Kernel PCA [83], Isometric Mapping (ISOMAP) [84],
Locally Linear Embedding (LLE) [85], [86], and Lapla-
cian Eigenmaps [87]. They have been applied to a variety
of hyperspectral image exploitation tasks [77], [80],
[81], [88]-[95], but manifold learning in hyperspectral
imaging is still a growing research topic [78].

“Stay on target.”
— Gold Five

IV. MANAGING SPECTRAL VARIABILITY IN
HYPERSPECTRAL ANALYSIS

As we have seen, spectral variability takes many
forms, and there have consequently been many ap-
proaches for dealing with this variability in hyperspectral
data analysis. In this exposition, we divide those strate-
gies into two categories. The first, which we explore in
Section IV-A, is to design algorithms that are robust to
this variability. This section will emphasize algorithms



for target detection, but we note that classification,
segmentation, and unmixing are tasks that also require
attention to spectral variability of materials. The second
kind of strategy is to pre-process the data in order to
reduce (in some cases, to “project out”) the variability
due to factors that are not part of our analysis. In
this section, we describe both physics-based approaches,
such as atmospheric compensation, and more data-driven
approaches, such as in-scene target characterization.

Modeling spectral variability of materials is par-
ticularly important for target detection. Much of the
target detection literature has been focused on how
to incorporate variability of the background into the
detection algorithms [61], but there remains a need
to account for the variability of the target material
as well. Even though variability effects for the target
material may be milder than those of background, if
not properly accounted for they will unavoidably lead to
performance degradation. One reason target variability
is more difficult to model is the scarceness of labeled
training samples, often consisting of a single library
spectrum for each material. When, instead, a greater
number of labeled training samples are available (as
in classification), these may be representative, albeit
partially, of the spectral variability to be experienced
in the scene. Another difficulty with target detection is
the need to transform between reflectance and radiance
domains (spectral libraries are in reflectance; remote
sensing measurements are in radiance), and this leads
to a host of environmental (e.g., atmospheric absorption
and scattering, angle of illumination, clouds, shadows,
etc.) sources of variability.

A. Developing algorithms that are robust to spectral
variability

The most mathematically straightforward way to ex-
press variability is as an explicit probability density
function, and the basic organizing principle for obtaining
target detectors is the Likelihood Ratio Test (LRT) [96],
which optimally distinguishes between two hypotheses
defined by likelihood functions.

For instance, consider the simple case in which a solid
(i.e., opaque) target with spectral signature t covers at
least a full pixel. Then the test of whether a given pixel
contains a target is of the form:

Ho:x=1z (16)
Hi:x=t a7
where x is the measured spectrum at the pixel of interest,
and z represents the background. If we write p;(x) as

the distribution that corresponds to target variability and
p.(x) is the distribution of the background, then the ratio

Cp(x|Hy)  pe(x)

PO = ) ~ pax)

(18)

defines an optimal detector for the target in this back-
ground. For a given threshold 7), we have that D(x) > 7
corresponds to the declaration that there is target at this
location (alternative hypothesis #1), whereas D(x) < 7
indicates that the target is absent (null hypothesis H).
Observing that any monotonic function of a detector
is an equivalent detector, we could also employ, for
instance, log D(x). Note that if both p;(x) and p.(x) are
Gaussian distributions, then the log likelihood detector
is in general a quadratic function of x [97]. If the means
are (nearly) equal but the covariances are different,
then a Fukunaga-Koontz [98] detector is called for;
the Fukunaga-Koontz transform can also be used for
dimension reduction for this quadratic detector [99].

If p¢(x) and p,(x) are Gaussian distributions with the
same covariance, then the optimal detector is linear —
indeed, this is the Fisher linear discriminant [97]:

Dx) = (6 — ) R (x — ).

Here, R is the common covariance, t is the mean target
value, and p is the mean background value. Although
linear detectors are popular and often effective, the
argument above is a poor motivation, because there is
little physical reason to expect target and background to
have the same covariance.

19)

“An elegant weapon for a more civilized age.”
— Obi-Wan Kenobi

(in reference, no doubt,
to clairvoyant fusion)

1) Composite hypothesis testing: When the distinc-
tion has to be made between two families of hypotheses
[100], composite hypothesis testing is required. To illus-
trate with an example, consider the additive model in
Eq. (2) as a hypothesis test:

(20)
2L

Ho:x=12
Hi:x=2z+¢et, with e #0

The likelihood ratio leading to an optimal detector is
given by

’D(G X) = pz;):(;)et)

but in order to employ this expression, one has to know
what value of € to use in the numerator. In general, one
does not know € (indeed, if € were actually known, there
would be no need to test for whether ¢ were nonzero).
For this reason, the detector in Eq. (22) is called a
“clairvoyant” detector [96]. The hypothesis that € # 0 is
a composite hypothesis because it encompasses a family
of simple hypotheses corresponding to specific values
of e. What this means is that the LRT in Eq. (22) is

(22)



insufficient; we don’t know e so we need a detector D(x)
that does not depend on e.

In what follows, we will describe several strategies
for producing an e-independent D(x), but first we will
consider how to evaluate the quality of such a detector.
This is not entirely trivial, either, because the perfor-
mance of D(x) does depend on e. For any given €, we
know the pdf for the target and background classes and
from that, we can determine the power of a detector (its
detection probability at a given false alarm rate) and can
tell whether one detector is more powerful than another.
If the one detector is more powerful than the other for all
values of ¢, then it is said to be uniformly more powerful.
Further, if there is a detector that is uniformly more
powerful than any other detector, then it is a uniformly
most powerful (UMP) detector. The UMP detector is the
holy grail of composite hypothesis testing; if you can
get it, that is the detector you want. Unfortunately, not
all problems admit a UMP detector.

One of the few problems that do admit a UMP detector
is the additive target model with a Gaussian background
distribution. In this special case, the optimal detector
D(e;x) defined in Eq. (22) is effectively independent
of e. In particular, for any value of ¢, one can obtain
D(e;x) from a simple monotonic rescaling of

D(x) =t R (x—p) (23)
which is the Adaptive Matched Filter (AMF) [101]-
[103]. The AMF and the Fischer discriminant in Eq. (19)
are similar in appearance, differing only in their leading
factor — t for AMF versus (t — p) for Fisher — and
the Fisher discriminant is sometimes referred to as a
“matched filter” (e.g., in [97]). But it is important to
remember that they are derived under quite different
assumptions.

A more typical case arises when, for instance, p. (x) is
a multivariate ¢ pdf. One can still derive an expression
for D(e;x) in that case, but the different values of e
will be different detectors; they cannot be rescaled into
a common e-independent detector.

The most widely used approach for dealing with the
composite hypothesis problem is the Generalized LRT
(GLRT), in which the variability is parameterized and
maximum likelihood estimates of the parameters are
sought [96]. In the case of the additive model, the
detector becomes D(é;x), where é is the maximum
likelihood estimator:

€(x) = argmax,_ p,(x — et). (24)
Thus, the GLRT detector is given by
R max. p,(x — et
Dix) = D(e(x);x) = TP ) o

When the background distribution p, is Gaussian, this
likelihood ratio leads trivially to the AMF. If the back-
ground distribution is a fatter tailed elliptically-contoured
multivariate t-distribution, one can solve Eq. (24) ex-
plicitly, and obtain a closed-form solution for the GLRT
detector [104]. In the heavy-tailed limit, this GLRT de-
tector becomes the Adaptive Coherence Estimator (ACE)
detector:

tTR ' (x — p)
V= )TR 1 (x — p)
ACE is a detector that had previously been derived using
different assumptions [105], and that nonetheless has
enjoyed remarkable success in many situations that are
in clear violation of those initial assumptions [106].

If instead of the additive target model we use the
replacement target model in Eq. (3), then we cannot have

a UMP detector. Here, « is the nuisance parameter, and
to obtain a GLRT solution, we must solve

D(x) =

(26)

& = argmax,, ps(x|a)

X—at

T, ). (27)
It turns out that this can be solved in closed form
when p, is Gaussian [107], leading to the finite target
matched filter (FTMF) detector. The result has been
further extended to a family of elliptically-contoured
background distributions [108], [109].

A generalization of the GLRT concept is the clairvoy-
ant fusion (CF) approach [110], [111]. In this approach,
one begins with a clairvoyant detector; i.e., the detector
D(e;x) that is optimal if € is the nonzero value in the
alternative hypothesis. Then we can express the result in
Eq. (25) by writing

= argmax,, (1 — )~ %p.(

D(x) = max D(e; x). (28)

We observe that this GLRT detector is a “max-fusion”
over clairvoyant detectors. Recognize, however, that if
A(e) is any positive function of €, then D*(e;x) =
A(€)D(e; x) is also a clairvoyant detector, since it is just
a monotonic rescaling. We can now do a max-fusion over
this new family of clairvoyant detectors to create a new
CF detector:

D(x) = max. D*(e; x) (29)
= max, A(e)D(¢; x) (30)
_ max, Ale)p.(x — et). 31)

p=(x)

Because the choice of A(e) is virtually limitless (it
only matters that it is positive for all values of e),
the CF framework provides great flexibility in deriving
a detector. There is unfortunately little guidance with
respect to the “best” choice of the function A(e), but



a clever practitioner may be able to craft a A(e) that
enables the inversion

€(x) = argmax_ A(€)D(e; x) (32)

to be analytically tractable, thus leading to a closed-form
solution for the detector.

When prior probability density functions are available,
Bayesian composite hypotheses testing can be performed
[100], [112]. Here, instead of taking a maximum over
clairvoyant detectors, one takes a weighted average.
Again using the additive target model as an example,
we have, in contrast to Eq. (25) or Eq. (31):

[ dem(e) po(x — et)
p=(x)

where 7(€) is the prior; it is an arbitrary non-negative

function of € that is chosen by the practitioner.

None of these three approaches — GLRT, CF, or
Bayesian — can be counted on to produce a UMP
detector, because such detectors very often simply do
not exist. But when UMP is not available, a next-most-
desirable trait in a detector is that it be admissible. A
detector is admissible if there does not exist another
detector that is uniformly more powerful than it is. Al-
though the integral in Eq. (33) often makes the Bayesian
detectors less convenient than GLRT or CF detectors
that are associated with closed-form expressions, the
Bayesian detectors have the following important theo-
retical advantage: they are provably admissible [100].
By contrast, some GLRT and CF detectors are not
admissible [111].

The notion of “admissible” detectors is of great theo-
retical importance, but it is often remarked that perfectly
respectable (i.e., useful) detectors may still be formally
inadmissible.

While beyond the scope of this review, a natural
follow-on would be to determine the sensitivity of
different algorithms to material variability; algorithms
that are more “sophisticated” (i.e., more finely-tuned to
optimizing performance with respect to a special case)
may be less robust to deviations from those special cases.
That is, the simpler algorithms may in practice perform
better.

(33)

D(x)

2) Invariant approaches: By imposing the constraint
on a target detector that it be explicitly invariant to some
aspect of that target’s variability, we thereby obtain an
effective robustness to that variability. This means that
we are allowed to have a given amount of ignorance
of the variables that alter the target spectrum amplitude
and shape [113]. Formally, if we consider that the
target spectrum t depends on some variable parameters
enclosed in the vector ®, an invariant detector should
ideally produce the same output (in terms of declaring

Ho or Hi) regardless of ®. This condition is assured
only in some special cases (see below) [114]. In many
other cases, the condition is relaxed to obtain a detector
that is robust (though not strictly invariant) to target vari-
ability. In striving toward obtaining invariant detectors,
researchers have invoked a variety of models that are
described in Section III.

Through the exploitation of probabilistic models (see
Section III-A), GLRT invariance has been widely inves-
tigated [100], [113]-[116]. The GLRT has been found
to be invariant (in terms of the condition stated above)
with respect to a group of transformations if, upon trans-
formation, the pdfs conditioned to the two hypotheses
remain in the same family and the parameter spaces are
preserved [100], [114]. Formally, we can write [114]:

fer
p(x; ®) =p(fx; f®) = D(fx)=D(x)
050

(34
where © is the parameter vector that belongs to the
parameter spaces {2y and €7 under the null and al-
ternative hypotheses, respectively, and f € F is the
set of transformations with respect to which the GLRT
is invariant. A proof is given in [114]. In [115], the
relationships between the GRLT and the UMP invariant
(UMPI) tests are described. Other approaches to find
UMPI tests are illustrated in [113].

Aside from GLRT and UMPI tests, the most widely
employed invariant approaches are invariant in a broader
sense, in that they are robust to variability (i.e., their
performances are not as degraded as conventional detec-
tors), while not strictly assuring the same detector output
upon variation of the target signature. Nonetheless, in the
literature they are called “invariant methods” and we will
adhere to this nomenclature.

One straightforward way to impose invariance is by
invoking (unconstrained) subspace models (see Sec-
tion III-B). If 7 is a subspace, then it can be param-
eterized by a matrix M, so that t € T is equivalent to
the existence of a vector of coefficients p with t = Mp.

One general approach for finding this target subspace
is to obtain (by measurement or simulation or both)
a discrete (and ideally large) set 7 = {t(i) }¢C=1 of
radiance spectra for a given target material. This set
should span the range of variation over which robustness
is desired, and can include intrinsic, extrinsic, and/or en-
vironmental variability [13], [35], [36], [45]-[47], [117].
For example, Fig. 4 illustrates spectral variability under
a range of atmospheric conditions by producing such an
ensemble of individual spectra.

The idea of using a low-dimensional subspace is that
for some () < C, we can find a model characterized by a
@ x d matrix M that spans a subspace that approximates



each of the target spectra in the set, i.e.,

Q
60 ~ 3 pfmy = Mp. (35)
k=1

From the subspace defined by M we can invoke, for
instance, subspace versions of AMF or ACE [97], [116].
This approach has been extensively pursued in the litera-
ture [13], [35], [36], [45]-[47], [71], [117], [118]. Here,
the set of target radiance spectra have generally been
synthetically generated by radiative transfer modeling
and variability has been incorporated by varying the
environmental, acquisition geometry, and illumination
parameters, together with variations of the BRDF by
exploiting suitable physics-based models [13], and in
some cases also exploiting in-scene information [117]
or large spectral library databases [3].

It should be said that having to identify a low-
dimensional linear subspace poses the perennial chal-
lenge of estimating the “optimal” subspace dimensional-
ity. If the dimension is too small, then the approximation
in Eq. (35) becomes poor; but as the dimension increases,
the subspaces can harbor ever larger numbers of false
alarms [71]. Another general drawback of this approach
is that, regardless of its dimensionality, the size of the
subspace spanned by the basis vectors is not constrained
because the coefficients p,(j) can take any (even unphys-
ical) values [119].

One way to deal with subspace high dimensionality
issues is to constrain the subspace by imposing condi-
tions on the coefficients pg), as for instance is done
with constrained subspace or simplex modeling (see
Section III-C). Various approaches have been explored
for simplex-based variable target detection [71], [119],
[120], e.g. by enforcing only the additivity constraint
[71], by enforcing both constraints [119], or by perform-
ing simultaneous linear unmixing on the target and back-
ground spectra together to obtain physical abundances
[120]. This has led to methods such as Simplex ACE
or Simplex AMF [71], which have exhibited detection
performances that, in contrast with their unconstrained
subspace-based counterparts, are stable with respect to
increasing amounts of spectral variability and increasing
sizes of the target subspace.

More recent approaches to building invariant algo-
rithms resort to non-linear models, such as manifolds
(see Section III-D). As previously noted, not all variabil-
ity effects on spectra can be adequately captured by em-
ploying low-dimensional /inear models, but the variable
target spectra often “live” within a lower-dimensional
non-linear manifold. In [89], the target radiance spectra
{t(i)}iczl are assumed to lie within a manifold, and
a graph-based manifold learning approach is employed
to perform invariant target detection. Resorting to non-

linear manifolds is often necessary in underwater hyper-
spectral remote sensing as well — where water spectra
change non-linearly upon variations of depth and water
inherent optical properties [81]. Non-linear dimensional-
ity reduction by manifold learning has been successfully
exploited in several hyperspectral underwater remote
sensing applications, such as underwater object detection
[81] and hyperspectral bathymetry [90].

One challenge with using radiative transfer modeling
to create a very large set of variable target spectra is
that the computation can be prohibitive. It is worth
mentioning that some “emulation” approaches have been
proposed, in which a reduced number of available vari-
able target spectra is used to learn a stochastic model
function of a given number of predictor variables. The
learned model is then employed to generate an arbitrary
number of variable target spectra with potential real-time
applications [121].

3) Matched-pair machine learning approach: As is
evident in, for instance, the additive and replacement
models, the observed spectrum at a given pixel is
often a combination of target and background. As a
consequence. target variability is often mixed up with
background variability. Further, while target variability
can be informed by ab initio physics modeling, the
background variability is best estimated by looking at
actual background pixels. The aim of the matched-pair
machine learning (MPML) framework [109], [122] is to
produce a target detection algorithm that is customized
to the observed background while at the same time
exploiting a model of target variability and how the target
and background interact. In MPML, every background
pixel z is paired with a background-plus-target pixel
x = z+ ¢t (in the case of the additive target model), and
a training set of these matched pairs is used to construct
a machine learning classifier to distinguish background
from background-plus-target. Spectrally-variable targets
can be dealt with very naturally in this framework; the
t that is used to create the target-present half of the
matched pair is drawn from a distribution p;(t) that
characterizes target spectral variability.

In fact, MPML can be run in a “transductive” mode
[123], in which the classifier is trained on the same data
to which it is applied. Normally this is problematic,
but it works here because MPML does not actually
use labeled data. When the classifier is applied to the
original hyperspectral image pixels, it will identify those
pixels that are most like the artificial background plus
target pixels in the training set; that is, it will find
pixels in the original image that are likely to have target
in them. There is an implicit assumption that the vast
majority of the pixels in the original image are target-
free background pixels, so the contamination effect of the



few target-containing pixels in the training step will be
minimal. It is important that the classifier is not overfit
to the data (and cross-validation is useful or assessing
that); an overfit classifier will classify all the original
pixels as target-free, even those few that do have target.

4) Other machine learning approaches: 1t is expected
that machine learning approaches, and non-parametric
fitting in general, will continue to garner attention as
tools for modeling variability. Hyperspectral target detec-
tion is enhanced by using these tools for characterizing
the background in a local [124] or context dependent
[125], [126] manner.

5) Robustness to variability in other hyperspectral
image analysis tasks: Although we have focused here
on robustness to variability for target detection, many
efforts can be found throughout the hyperspectral image
analysis literature for coping with spectral variability of
materials. Endmember extraction and unmixing methods,
for instance, in their simplest forms, assume “pure”
endmembers, but for good performance on more real-
istic hyperspectral data, algorithms require robustness
to variability within the endmember classes [74], [127],
[128]. Clustering and material discrimination methods
have also been developed to handle intra-class spectral
variability [128], [129]. The variability due to noise
and bottom reflectance materials has been taken into
account in retrievals of sub-surface reflectance in shallow
water remote sensing [130]. Change detection algorithms
require suppressing the pervasive differences between
images (due to environmental effects, sensor calibrations,
shadows, efc.) in order to identify the interesting changes
[131]-[133].

B. Mitigating spectral variability in hyperspectral data

Instead of designing exploitation methods that are
robust to variability, sometimes it may be worth trying
to remove or mitigate the variability prior to proceeding
with the hyperspectral image exploitation task. In the
literature, this approach has mostly been pursued to
back out environmentally-induced variability such as
atmospheric and illumination effects [134], shadows
[32], [135], and clouds [136], but approaches aimed at
mitigating variability due to material morphology and
composition have also been proposed [137], [138]. In
the following, we provide a brief overview of these
approaches.

1) Atmospheric compensation: The most widely em-
ployed pre-processing step aimed at removing the
environmentally-induced variability is undoubtedly At-
mospheric Compensation (AC). Literally, AC refers to

the procedure of obtaining an approximate ground-
leaving reflectance image starting from the calibrated
spectral radiance hyperspectral data cube [134]. This
approach is generally preferred by image analysts such
as geologists or spectroscopists, although in some ap-
plications where a target material needs to be searched
for within a hyperspectral image, the so-called forward
modeling AC approach of converting the spectral library
reflectance into an at-sensor radiance spectrum may be
pursued [36]. AC methods can be broadly divided into
two categories: empirical scene-based methods [139]-
[144] and radiative transfer modeling based methods
[38], [134], [145]-[147], although some hybrid ap-
proaches may be found as well [148]. Empirical methods
exploit data directly from the radiance image such as the
average spectrum of the scene [139], or the spectrum
of a “spectrally flat” material within the scene [143],
or vegetation and shade spectra [149]. Among these,
the popular Empirical Line Method (ELM) [142], [144]
requires filed measurements of reflectance spectra for
at least one dark and one bright reference material and
linearly regresses the imagery radiance data against the
reflectance field measurements; this enables the deriva-
tion of gain and offset curves that are then applied to
each image pixel. Like most empirical methods, ELM
does not require absolute radiometric calibration, but
does require further adjustments if the atmospheric and
illumination conditions are not stationary within the
scene [150].

Whereas empirical methods are widely applied in
operational scenarios [151], over the years researchers
have put their efforts towards “forever improving the
physical model” [152] to provide increasingly more ac-
curate radiative transfer modeling based AC techniques.
The AC approaches belonging to this category are based
on an analytic model for the radiation transfer in the
atmosphere such as that explored in Section II-C, and
thus need to estimate the various model parameters and
then invert the model to retrieve the surface reflectance.
Model parameter estimation is generally accomplished
by (i) resorting to radiative transfer codes such as MOD-
TRAN [54] or 5S [153], or (ii) exploiting the imaged
radiance in certain bands to estimate visibility, spatially
variable parameters (e.g., water vapor and aerosols), and
adjacency effects. One of the first AC techniques led
to the atmospheric removal program (ATREM) [145],
which did not explicitly account for adjacency effects.
This was instead incorporated in the approach Fast Line-
of-sight Atmospheric Analysis of Spectral Hypercubes
(FLAASH) [154], which is a very popular commercial
AC software package. More recently, the Atmospheric
and Topographic Correction algorithm (ATCOR) [147]
has been developed which also features a correction for
topographic effects (provided that a digital elevation map



[DEM] of the scene is available).

2) Shadow and cloud removal: Shadows and clouds
are among the most non-stationary sources of variability
in hyperspectral imagery, both in space and in time.
Whereas the effects of clouds are mostly significant
for high-altitude acquisitions (e.g., from spaceborne sen-
sors), the impacts of shadows are stronger for high
spatial resolution imagery, especially in the urban en-
vironment.

Approaches to shadow removal are typically based on
specific transformations that are applied to the imaged
data [32], [155]. For instance, a transformation from
Cartesian to hyperspherical coordinates allows the data
to be separated into d — 1 angular components related to
spectral information content, and one radial component
whose magnitude represents the overall brightness level
[32]. By segmenting the image and identifying those
clusters with the lowest magnitude of the radial com-
ponent, a shadow mask can be obtained [32]. Another
approach to remove shadows is to exploit ancillary data,
such as light detection and ranging (LIDAR) 3D point
clouds [135] [44].

For clouds, their detection is essentially based on find-
ing pixels in which the cloud optical depth is greater than
a specific threshold [136], or evaluating a combination of
threshold tests [156]. This enables generation of a cloud
mask. When possible, the radiative effects (e.g., changes
in illumination, shadows, temperature variations, spatial
structure, enhanced adjacency effects) of cloud layers are
corrected [136].

3) Spectral reflectance decomposition with multiple
Gaussian curves: A physics-inspired spectral character-
ization for material reflectance spectra was presented
by Lanker et al. [137], with the aim of suppressing
variability due primarily to material morphology and
composition. Inspiration was drawn from the Lorentz os-
cillator model applied to the material dielectric function
(i.e., how, as a function of wavelength, the optical index
of refraction varies). Each Lorenz oscillator, roughly
speaking, corresponds to a spectral “line” (though for
solid materials, unlike gases, individual lines can be very
broad); thus, a model of material spectral reflectance
with multiple Lorentz oscillators identifies multiple lines
in a spectrum. In [137], the authors choose to fit the
curve of reflection versus wavelength using Gaussian
line shapes — this was found to be simpler and less
computationally intense than fitting the complex dielec-
tric function with Lorentz oscillators). This is similar
to the curve fitting approaches performed in mineral
spectroscopy [157].

Indeed, it was experimentally found that whereas
the Gaussian amplitudes were subject to considerable

variations upon varying atmospheric, illumination, and
viewing conditions as well as material morphology and
composition, the locations and widths of the Gaussian
functions were much less affected [137], [138]. These
findings suggest that alternative profiles based on loca-
tions and widths of the Gaussian functions used to fit the
spectra could be adopted for robust characterization of
target material spectra, and potentially for background
spectral variability as well.

4) In-scene target signature characterization: In
some circumstances, the problem of target variability
can be bypassed by directly estimating from the image
the most discriminative target spectral signature for a
given scenario and material by means of a multiple-
instance machine learning approach [158]. This can be
accomplished when at least imprecisely-labeled train-
ing samples are available - for instance, when Global
Positioning System (GPS) coordinates for the targets
are known and general regions of pixels containing the
targets can be identified (GPS precision is generally
limited by the co-registration accuracy and thus pixel-
level ground truthing is hardly ever achieved). With a
simple iterative algorithm with a closed-form solution
for the update rule, the Multiple Instance Learning (MIL)
approach is capable of retrieving the target signature that
maximizes the cosine spectral similarity (more robust in
case of mixed training data) between the estimated signa-
ture and the positive (target-including) instances, while
minimizing the similarity with the non-target labeled
instances. As a byproduct, the estimated signature helps
in uncovering the discriminative spectral characteristics
and features of the target class, otherwise deeply buried
within the mixed and imprecisely-labeled training pixels
[158].

“Only a Sith deals in absolutes.”
— Obi-Wan Kenobi

V. CONCLUSIONS

Spectral variability fundamentally underlies the whole
problem of analyzing, understanding, and interpreting
hyperspectral imagery.

Of course, spectral variability is not all bad. It is
the variability between different materials that allows us
to distinguish them in spectral remote sensing. In this
discussion, we have emphasized designing algorithms
that are robust to variability, but for some applications
we might want algorithms that are sensitive to variability,
even within the same material. For instance, in our search
for the perfect beach, we may want to find sand of a very
particular type, not just sand as a single class.



Our aim in analyzing hyperspectral imagery is to
enhance the distinctions we care about (natural vs.
man-made, healthy vegetation vs. senescent, target vs.
background, efc.) while suppressing the distinctions that
needlessly confound our analysis (sunlit vs. shadow,
humid atmosphere vs. dry, nadir vs. slant angle view,
etc.), with the realization that what matters and what
distracts both depend on the application at hand.

In this survey, we have discussed many of the causes
of spectral variability that complicate algorithms for
hyperspectral analysis, we have described some of the
models used to characterize that variability, and we
have reviewed a number of strategies for dealing with
this variability. In many cases, those strategies are a
direct consequence of having an explicit model for the
variability.

The spectral variability of materials is a topic of rele-
vance for many aspects of hyperspectral image analysis.
It arises in land-cover classification, crop health charac-
terization, image segmentation, endmember extraction,
spectral unmixing, change analysis, and — of particular
interest to the authors of this paper — target detection.
We argue that many of the approaches for dealing with
spectral variability in target detection carry over to other
problems, though their use in target detection is often
more straightforward and illustrative.

“Sorry about the mess.”
— Han Solo

ACKNOWLEDGMENTS

JT and AZ acknowledge the support of the United
States Department of Energy’s NA-22 Hyperspectral
Advanced Research and Development for Solid Mate-
rials (HARD Solids) project as well as the Los Alamos
Laboratory Directed Research and Development (LDRD)
program. We are also grateful to Max Theiler for literary
Star Wars consultation.

REFERENCES

[1] D. Manolakis, R. Lockwood, and T. Cooley, Hyperspectral
Imaging Remote Sensing: Physics, Sensors, and Algorithms,
Cambridge University Press, 2016.

[2] K. Z. Doctor, C. M. Bachmann, D. J. Gray, M. J. Montes, and
R. A. Fusina, “Wavelength dependence of the bidirectional re-
flectance distribution function (BRDF) of beach sands,” Applied
Optics, vol. 54, pp. F243-F255, 2015.

[3] R.F. Kokaly, R.N. Clark, G.A. Swayze, K.E. Livo, T.M. Hoefen,
N.C. Pearson, R.A. Wise, W.M. Benzel, HA. Lowers, R.L.
Driscoll, and A.J. Klein, “USGS spectral library version 7,”
Data Series 1035, U.S. Geological Survey, 2017.

[4] J. F. Mustard and J. E. Hays, “Effects of hyperfine particles on
reflectance spectra from 0.3 to 25 um,” Icarus, vol. 125, pp.
145-163, 1997.

[5S] T. A. Blake, C. S. Brauer, M. R. Kelly-Gorham, S. D. Burton,
M. Bliss, T. L. Myers, T. J. Johnson, and T. E. Tiwald, “Mea-
surement of the infrared optical constants for spectral modeling:
n and k values for (NH4)2SO4 via single-angle reflectance and
ellipsometric methods,” Proc. SPIE, vol. 10198, pp. 101980J,
2017.

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

[23]

[24]

[25]

M. 1. Mishchenko, G. Videen, V. A. Babenko, N. G. Khlebtsov,
and T. Wriedt, “T-matrix theory of electromagnetic scattering
by particles and its applications: a comprehensive reference
database,” J. Quantitative Spectroscopic Radiation Transfer, vol.
88, pp. 357-406, 2004.

T. L. Myers, C. S. Brauer, Y.-F. Su, T. A. Blake, R. G. Tonkyn,
A. B. Ertel, T. J. Johnson, and R. L. Richardson, “Quantitative
reflectance spectra of solid powders as a function of particle
size,” Applied Optics, vol. 54, no. 15, pp. 48634875, 2015.
T. N. Beiswenger, T. L. Myers, C. S. Brauer, Y.-F. Su, T. A.
Blake, A. B. Ertel, R. G. Tonkyn, J. E. Szecsody, T. J. Johnson,
M. O. Smith, and C. L. Lanker, “Experimental effects on IR
reflectance spectra: particle size and morphology,” Proc. SPIE,
vol. 9840, pp. 984001, 2016.

T. A. Reichardt and T. J. Kulp, “Radiative transfer modeling of
surface chemical deposits,” Proc. SPIE, vol. 9840, pp. 98400M,
2016.

T. J. Gibbs and D. W. Messinger, “Contaminant mass estimation
of powder contaminated surfaces,” Proc. SPIE, vol. 10198, pp.
101980M, 2017.

T. L. Myers, R. G. Tonkyn, T. O. Danby, M. S. Taubman, B. E.
Bernacki, J. C. Birnbaum, S. W. Sharpe, and T. J. Johnson,
“Accurate measurements of the optical constants n and k for a
series of 57 inorganic and organic liquids for optical modeling
and detection,” Applied Spectroscopy, vol. 72, no. 4, pp. 535—
550, 2018.

T. A. Blake, T. J. Johnson, R. G. Tonkyn, B. M. Forland, T. L.
Myers, C. S. Brauer, Y.-F. Su, B. E. Bernacki, L. H. Hanssen,
and G. Gonzalez, “Methods for quantitative infrared directional-
hemispherical and diffuse reflectance measurements using an
FTIR and a commercial integrating sphere,” Applied Optics,
vol. 57, no. 3, pp. 432446, 2018.

E. J. Ientilucci and M. Gartley, “Impact of BRDF on physics
based modeling as applied to target detection in hyperspectral
imagery,” Proc. SPIE, vol. 7334, 2009.

S. Adler-Golden, D. Less, X. Jin, and P. Rynes, “Modeling and
analysis of LWIR signature variability associated with 3D and
BRDF effects,” Proc. SPIE, vol. 9840, pp. 98400P, 2016.

J. Svejkosky, E. Ientilucci, S. Richtsmeier, M. Parente, and
C. Bachmann, “A hyperspectral vehicle BRDF sampling ex-
periment,” Proc. SPIE, vol. 9840, pp. 98401D, 2016.

J. R. Schott, Remote sensing: the image chain approach, Oxford
University Press, USA, 2007.

J. D. Harms, C. M. Bachmann, J. W. Faulring, and A. J. Ruiz
Torres, “A next generation field-portable goniometer system,”
Proc. SPIE, vol. 9840, pp. 98400J, 2016.

J. D. Harms, C. M. Bachmann, B. L. Ambeau, J. W. Faul ring,
A. J. Ruiz Torres, G. Badura, and E. Myers, “Fully automated
laboratory and field-portable goniometer used for performing
accurate and precise multiangular reflectance measurements,”
J. Applied Remote Sensing, vol. 11, no. 4, pp. 1-15, 2017.

R. Montes and C. Urena, “An overview of BRDF models,”
Tech. Rep. LSI-2012-001, University of Granada, 2012.

R. A. Schowengerdt, Remote Sensing: Models and Methods for
Image Processing, Elsevier: Academic Press, Burlington,MA,
USA, 3rd edition, 2007.

B. Hapke, “Bidirectional reflectance spectroscopy: 1. theory,” J.
Geophysical Research: Solid Earth, vol. 86, no. B4, pp. 3039—
3054, 1981.

B. Hapke, Theory of Reflectance and Emittance Spectroscopy,
Cambridge University Press, 2 edition, 2012.

J. Broadwater and A. Banerjee, “A comparison of kernel func-
tions for intimate mixture models,” Proc. Ist IEEE Workshop
on Hyperspectral Image and Signal Processing: Evolution in
Remote Sensing (WHISPERS), 2009.

J. Broadwater, A. Banerjee, and P. Burlina, “Kernel methods for
unmixing hyperspectral imagery,” in Kernel Methods for Remote
Sensing Data Analysis, G. Camps-Valls and L. Bruzzone, Eds.,
pp. 249-270. Wiley Chichester, 2009.

J. Broadwater and A. Banerjee, “A generalized kernel for areal
and intimate mixtures,” Proc. 2nd IEEE Workshop on Hy-



[26]

[27]

[28]

[29]

[30]

[31]

[32]

[33]

[34]

[35]

[36]

[37]

[38]

[39]

[40]

[41]

[42]

[43]

[44]

perspectral Image and Signal Processing: Evolution in Remote
Sensing (WHISPERS), 2010.

J. M. Nascimento and J. M. Bioucas-Dias, “Unmixing hyper-
spectral intimate mixtures,” Proc. SPIE, vol. 7830, pp. 78300C,
2010.

R. Heylen and P. Gader, “Nonlinear spectral unmixing with a
linear mixture of intimate mixtures model,” IEEE Geoscience
and Remote Sensing Letters, vol. 11, no. 7, pp. 1195-1199,
2014.

A. Hayden, E. Niple, and B. Boyce, “Determination of trace-gas
amounts in plumes by the use of orthogonal digital filtering of
thermal-emission spectra,” Applied Optics, vol. 35, pp. 2802—
2809, 1996.

A. Beer, “Bestimmung der absorption des rothen lichts in
farbigen flussigketiten,” Ann. Physik, vol. 162, pp. 78-88, 1852.
M. Diani, M. Moscadelli, and G. Corsini, “Improved alpha
residuals for target detection in thermal hyperspectral imaging,”
IEEE Geoscience and Remote Sensing Letters, vol. 15, pp. 779—
783, 2018.

N. Wang, H. Wu, F. Nerry, C. Li, and Z.-L. Li, “Temperature
and emissivity retrievals from hyperspectral thermal infrared
data using linear spectral emissivity constraint,” IEEE Trans.
Geoscience and Remote Sensing, vol. 49, no. 4, pp. 1291-1303,
2011.

E. A. Ashton, B. D. Wemett, R. A. Leathers, and T. V. Downes,
“A novel method for illumination suppression in hyperspectral
images,” Proc. SPIE, vol. 6966, pp. 69660C, 2008.

A. V. Mariano and J. M. Grossmann, “Hyperspectral mate-
rial identification on radiance data using single-atmosphere or
multiple-atmosphere modeling,” J. Applied Remote Sensing, vol.
4, no. 1, pp. 043563, 2010.

L. Guanter, R. Richter, and H. Kaufmann, “On the application of
the MODTRAN4 atmospheric radiative transfer code to optical
remote sensing,” Int. J. Remote Sensing, vol. 30, no. 6, pp.
1407-1424, 2009.

T. V. Haavardsholm, T. Skauli, and I. Kasen, “A physics-based
statistical signature model for hyperspectral target detection,”
in Proc. IEEE Int. Geoscience and Remote Sensing Symposium
(IGARSS), 2007, pp. 3198-3201.

S. Matteoli, E. J. Ientilucci, and J. P. Kerekes, “Operational
and performance considerations of radiative-trasnfer modeling
in hyperspectral target detection,” IEEE Trans. Geoscience and
Remote Sensing, vol. 49, pp. 1343-1355, 2011.

R. Richter, “Correction of satellite imagery over mountainous
terrain,” Applied Optics, vol. 37, no. 18, pp. 4004-4015, 1998.
C. Miesch, L. Poutier, V. Achard, X. Briottet, X. Lenot, and
Y. Boucher, “Direct and inverse radiative transfer solutions for
visible and near-infrared hyperspectral imagery,” IEEE Trans.
Geoscience and Remote Sensing, vol. 43, no. 7, pp. 1552-1561,
2005.

J. E. Hay, “Calculation of monthly mean solar radiation for
horizontal and inclined surfaces,” Solar Energy, vol. 23, no. 4,
pp. 301-307, 1979.

S. Sandmeier and K. I. Itten, “A physically-based model to
correct atmospheric and illumination effects in optical satellite
data of rugged terrain,” IEEE Trans. Geoscience and Remote
Sensing, vol. 35, no. 3, pp. 708-717, 1997.

D. Gu and A. Gillespie, “Topographic normalization of Landsat
TM images of forest based on subpixel sun-canopy-sensor
geometry,” Remote Sensing of Environment, vol. 64, no. 2, pp.
166-175, 1998.

J. R. Dymond, J. D. Shepherd, G. Gu, and A. Gillespie, “Com-
ment on ‘Topographic normalization of Landsat TM images
of forest based on subpixel sun-canopy-sensor geometry,” by
Gu and Gillespie (Remote Sens. Environ. 64:166-175, 1998),”
Remote Sensing of Environment, vol. 69, no. 2, pp. 194, 1999.
J. Dozier, “Rapid calculation of terrain parameters for radiation
modeling from digital elevation data,” IEEE Trans. Geoscience
and Remote Sensing, vol. 28, no. 5, pp. 963-969, 1990.

K. Ewald, E. J. Ientilucci, A. Buswell, and J. Jacobson,

[45]

[46]

[47]

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

[58]

[59]

[60]
[61]

[62]

[63]

“Improved atmospheric retrievals of hyperspectral data using
geometric constraints,” Proc. SPIE, vol. 9611, 2015.

G. Healey and D. Slater, “Models and methods for automated
material identification in hyperspectral imagery acquired under
unknown illumination and atmospheric conditions,” IEEE Tran.
Geoscience and Remote Sensing, vol. 37, pp. 2707-2717, 1999.
E. J. Ientilucci and J. R. Schott, “Target detection in a structured
background environment using an infeasibility metric in an
invariant space,” Proc. SPIE, vol. 5806, pp. 491-502, 2006.
M. A. Kolodner, “Automated target detection system for
hyperspectral imaging sensors,” Applied Optics, vol. 47, pp.
F61-F70, 2008.

P. E. Goa, T. Skauli, and I. Kasen, “Physical subspace models
for invariant material identification: subspace composition and
detection performance,” Proc. SPIE, vol. 5573, pp. 203 — 214,
2004.

R. Richter, M. Bachmann, W. Dorigo, and A. Miiller, “Influence
of the adjacency effect on ground reflectance measurements,”
IEEE Geoscience and Remote Sensing Letters, vol. 3, pp. 565—
569, 2006.

P-H. Suen, G. Healey, and D. Slater, “The impact of viewing
geometry on material discriminability in hyperspectral images,”
IEEE Trans. Geoscience and Remote Sensing, vol. 39, no. 7,
pp. 1352-1359, 2001.

J. P. Bishoff, D. W. Messinger, and E. J. Ientilucci, “Oblique
hyperspectral target detection,” Proc. SPIE, vol. 7086, pp.
708600, 2008.

Y. J. Kaufman and B.-C. Gao, “Remote sensing of water vapor
in the near IR from EOS/MODIS,” IEEE Trans. Geoscience
and Remote Sensing, vol. 30, no. 5, pp. 871-884, 1992.

A.M. Baldridge, S.J. Hook, C.I. Grove, and G. Rivera, “The
ASTER spectral library version 2.0,” Remote Sensing of
Environment, vol. 113, no. 4, pp. 711-715, 2009.

A. Berk, G. P. Anderson, P. K. Acharya, L. S. Bernstein, L. Mu-
ratov, J. Lee, M. Fox, S. M. Adler-Golden, J. H. Chetwynd,
M. L. Hoke, R. B. Lockwood, J. A. Gardner, T. W. Cooley, and
P. E. Lewis, “MODTRANS: A reformulated atmospheric band
model with auxiliary species and practical multiple scattering
options,” Proc. SPIE, vol. 5425, pp. 341-347, 2004.

N. Acito, S. Matteoli, A. Rossi, M. Diani, and G. Corsini,
“Hyperspectral airborne ’Viareggio 2013 Trial’ data collection
for detection algorithm assessment,” IEEE J. Selected Topics in
Applied Earth Observations and Remote Sensing, vol. 9, no. 6,
pp. 2365-2376, 2016.

Cornell  University Program of Computer Graphics,
“Measurement Data,” http://www.graphics.cornell.edu/online/
measurements/, 2006.

R. L. Cook and K. E. Torrance, “A reflectance model for
computer graphics,” ACM Trans. Graphics, vol. 1, pp. 7-24,
Jan. 1982.

J. P. Kerekes and J. E. Baum, “Full-spectrum spectral imaging
system analytical model,” IEEE Trans. Geoscience and Remote
Sensing, vol. 43, no. 3, pp. 571-580, 2005.

M. Shimoni, R. Haelterman, and P. Lodewyckx, “Advancing
the retrievals of surface emissivity by modelling the spatial
distribution of temperature in the thermal hyperspectral scene,”
Proc. SPIE, vol. 9840, pp. 984000, 2016.

M. T. Eismann, Hyperspectral Remote Sensing, SPIE, 2012.
S. Matteoli, M. Diani, and J. Theiler, “An overview background
modeling for detection of targets and anomalies in hyperspectral
remotely sensed imagery,” IEEE J. Selected Topics in Applied
Earth Observations and Remote Sensing, vol. 7, pp. 2317-2336,
2014.

K. Kim and G. Shevlyakov, “Why Gaussianity: An attempt to
explain this phenomenon,” IEEE Signal Processing Magazine,
vol. 25, no. 2, pp. 102-113, 2008.

R. S. DiPietro, D. G. Manolakis, R. B. Lockwood, T. Cooley,
and J. Jacobson, “Performance evaluation of hyperspectral
detection algorithms for sub-pixel objects,” Proc. SPIE, vol.
7695, pp. 76951W, 2010.



[64]

[65]

[66]

[67]

[68]

[69]

[70]

[71]

[72]

[73]

[74]

[75]

[76]

[771

[78]

[79]

[80]

[81]

[82]

[83]

[84]

A. Schaum, “Continuum fusion solutions for replacement target
models in electro-optic detection,” Applied Optics, vol. 53, pp.
C25-C31, 2014.

A. Zare, P. Gader, and G. Casella, “Sampling piecewise convex
unmixing and endmember extraction,” IEEE Trans. Geoscience
and Remote Sensing, vol. 51, pp. 1655-1665, 2013.

J. S. Tyo, J. Robertson, J. Wollenbecker, and R. C. Olsen,
“Statistics of target spectra in HSI scenes,” Proc. SPIE, vol.
4132, pp. 306-314, 2000.

X. Du, A. Zare, P. Gader, and D. Dranishnikov, “Spatial and
spectral unmixing using the beta compositional model,” IEEE
J. Sel. Topics Appl. Earth Observ., vol. 7, pp. 1994-2003, 2014.
Y. Zhou, A. Rangarajan, and P. D. Gader, “A gaussian mixture
model representation of endmember variability in hyperspectral
unmixing,” IEEE Trans. Image Processing, vol. 27, pp. 2242—
2256, 2018.

J. Theiler, “Ellipsoid-simplex hybrid for hyperspectral anomaly
detection,” Proc. 3rd IEEE Workshop on Hyperspectral Image
and Signal Processing: Evolution in Remote Sensing (WHIS-
PERS), 2011.

J. C. Harsanyi and C.-I. Chang, “Hyperspectral image classi-
fication and dimensionality reduction: an orthogonal subspace
projection approach,” IEEE Trans. Geoscience and Remote
Sensing, vol. 32, pp. 779-785, 1994.

A. Ziemann and J. Theiler, “Simplex ACE: a constrained
subspace detector,” Optical Engineering, vol. 56, pp. 081808,
2017.

A. Schaum and R. Priest, “The affine matched filter,” Proc.
SPIE, vol. 7334, pp. 733403, 2009.

J. W. Boardman, “Automating spectral unmixing of AVIRIS
data using convex geometry concepts,” in Summaries of the
Fourth Annual JPL Airborne Geoscience Workshop, R. O.
Green, Ed., 1994, pp. 11-14.

A. Zare and K. C. Ho, “Endmember variability in hyperspectral
analysis: Addressing spectral variability during spectral unmix-
ing,” IEEE Signal Processing Magazine, vol. 31, pp. 95-104,
2014.

S. Yang, Z. Shi, and W. Tang, “Robust hyperspectral image
target detection using an inequality constraint,” IEEE Trans.
Geoscience and Remote Sensing, vol. 53, no. 6, pp. 3389-3404,
2015.

Y. Chen, N. M. Nasrabadi, and T. D. Tran, “Sparse represen-
tation for target detection in hyperspectral imagery,” [EEE J.
Selected Topics in Signal Processing, vol. 5, pp. 629-640, 2011.
C. M. Bachmann, T. L. Ainsworth, and R. A. Fusina, “Exploit-
ing manifold geometry in hyperspectral imagery,” IEEE Trans.
Geoscience and Remote Sensing, vol. 43, no. 3, pp. 441-454,
2005.

D. Lunga, S. Prasad, M. M. Crawford, and O. Ersoy, “Manifold-
learning-based feature extraction for classification of hyperspec-
tral data: A review of advances in manifold learning,” IEEE
Signal Processing Magazine, vol. 31, pp. 55-66, Jan 2014.

Y. Ma and Y. Fu, Manifold Learning Theory and Applications,
CRC Press, 2011.

D. Gillis, J. Bowles, G.M. Lamela, W.J. Rhea, C.M. Bachmann,
M. Montes, and T. Ainsworth, “Manifold learning techniques
for the analysis of hyperspectral ocean data,” Proc. SPIE, vol.
5806, pp. 342-351, 2005.

D. B. Gillis, “A nonlinear modeling framework for the detection
of underwater objects in hyperspectral imagery,” Proc. SPIE,
vol. 9840, pp. 98401B, 2016.

J. Bouttier, P. Di Francesco, and E. Guitter, “Geodesic distance
in planar graphs,” Nuclear Physics B, vol. 663, no. 3, pp. 535—
567, 2003.

B. Scholkopf, A. Smola, and K.-R. MAGEller, “Nonlinear
component analysis as a kernel eigenvalue problem,” Neural
Computation, vol. 10, no. 5, pp. 1299-1319, 1998.

J. B. Tenenbaum, V. De Silva, and J. C. Langford, “A global
geometric framework for nonlinear dimensionality reduction,”
Science, vol. 290, no. 5500, pp. 2319-2323, 2000.

[85]

[86]

[87]

[88]

[89]

[90]

[91]

[92]

[93]

[94]

[95]

[96]

[971

[98]

[99]

[100]

[101]

[102]

[103]

[104]

[105]

S. T. Roweis and L. K. Saul, “Nonlinear dimensionality
reduction by locally linear embedding,” Science, vol. 290, no.
5500, pp. 2323-2326, 2000.

L. K. Saul and S. T. Rowels, “Think globally, fit locally:
Unsupervised learning of low dimensional manifolds,” J.
Machine Learning Research, vol. 4, no. 2, pp. 119-155, 2004.
M. Belkin abd P. Niyogi, “Laplacian eigenmaps and spectral
techniques for embedding and clustering,” Advances in Neural
Information Processing Systems, vol. 14, 2001.

A. K. Ziemann, J. Theiler, and D. W. Messinger, “Hyper-
spectral target detection using manifold learning and multiple
target spectra,” in Proc. 44th IEEE Applied Imagery Pattern
Recognition (AIPR) Workshop, 2015.

J. A. Albano and D. W. Messinger, “Spectral target detection
using a physical model and a manifold learning technique,”
Proc. SPIE, vol. 8743, pp. 874318, 2013.

C. M. Bachmann and T. L. Ainsworth, “Bathymetric retrieval
from manifold coordinate representations of hyperspectral im-
agery,” in Proc. IEEE Int. Geoscience and Remote Sensing
Symposium (IGARSS), 2007, pp. 1548 —1551.

A. K. Ziemann and D. W. Messinger, “An adaptive locally linear
embedding manifold learning approach for hyperspectral target
detection,” Proc. SPIE, vol. 9472, pp. 947200, 2015.

H. L. Yang and M. M. Crawford, “Domain adaptation with
preservation of manifold geometry for hyperspectral image
classification,” IEEE J. Selected Topics in Applied Earth
Observations and Remote Sensing, vol. 9, no. 2, pp. 543-555,
2016.

D. Hong, N. Yokoya, and X.X. Zhu, “Learning a robust local
manifold representation for hyperspectral dimensionality reduc-
tion,” IEEE J. Selected Topics in Applied Earth Observations
and Remote Sensing, vol. 10, no. 6, pp. 2960-2975, 2017.

L. Zhang, L. Zhang, D. Tao, and X. Huang, “Sparse transfer
manifold embedding for hyperspectral target detection,” IEEE
Trans. Geoscience and Remote Sensing, vol. 52, no. 2, pp. 1030-
1043, 2014.

L. P. Dorado-Munoz and D. W. Messinger, “Initial study of
Schroedinger eigenmaps for spectral target detection,” Optical
Engineering, vol. 55, no. 8, 2016.

S. M. Kay, Fundamentals of Statistical Signal Processing:
Detection Theory, vol. 11, Prentice Hall, New Jersey, 1998.

D. Manolakis, “Taxonomy of detection algorithms for hyper-
spectral imaging applications,” Optical Engineering, vol. 44,
pp. 66403, 2005.

K. Fukunaga and W. L. G. Koontz, “Application of the
Karhunen-Loeve expansion to feature selection and ordering,”
IEEE Trans. Computers, vol. C-19, pp. 311 — 318, 1970.

X. Huo, M. Elad, A. G. Flesia, R. R. Muise, S. R. Stanfill,
J. Friedman, B. Popescu, J. Chen, A. Mahalanobis, and D. L.
Donoho, “Optimal reduced-rank quadratic classifiers using
the Fukunaga-Koontz transform with applications to automated
target recognition,” Proc. SPIE, vol. 5094, pp. 59-72, 2003.
E. L. Lehmann and J. P. Romano, Testing Statistical Hypotheses,
Springer, New York, 2005.

I. S. Reed, J. D. Mallett, and L. E. Brennan, “Rapid convergence
rate in adaptive arrays,” IEEE Trans. Aerospace and Electronic
Systems, vol. 10, pp. 853-863, 1974.

E. J. Kelly, “An adaptive detection algorithm,” IEEE Trans.
Aerospace and Electronic Systems, vol. 22, pp. 115-127, 1986.
F. C. Robey, D. R. Fuhrmann, E. J. Kelly, and R. Nitzberg, “A
CFAR adaptive matched filter detector,” IEEE Trans. Aerospace
and Electronic Systems, vol. 28, pp. 208-216, 1992.

J. Theiler and B. R. Foy, “EC-GLRT: Detecting weak plumes
in non-Gaussian hyperspectral clutter using an elliptically-
contoured generalized likelihood ratio test,” in Proc. IEEE Int.
Geoscience and Remote Sensing Symposium (IGARSS), 2008,
vol. I, pp. 221-224.

S. Kraut, L. L. Scharf, and R. W. Butler, “The Adaptive Coher-
ence Estimator: a uniformly most-powerful-invariant adaptive
detection statistic,” IEEE Trans. Signal Processing, vol. 53, pp.
427438, 2005.



[106]

[107]

[108]

[109]

[110]

[111]

[112]

[113]

[114]

[115]

[116]

[117]

[118]

[119]

[120]

[121]

[122]

[123]

[124]

[125]

[126]

[127]

[128]

D. Manolakis, M. Pieper, E. Truslow, T. Cooley, M. Bruegge-
man, and S. Lipson, “The remarkable success of adaptive cosine
estimator in hyperspectral target detection,” Proc. SPIE, vol.
8743, pp. 874302, 2013.

A. Schaum and A. Stocker, “Spectrally selective target detec-
tion,” in Proc. Int. Symposium on Spectral Sensing Research
(ISSSR), 1997, pp. 23-30.

J. Theiler, B. Zimmer, and A. Ziemann, “Closed-form detector
for solid sub-pixel targets in multivariate ¢-distributed back-
ground clutter,” in Proc. IEEE Int. Geoscience and Remote
Sensing Symposium (IGARSS), 2018, pp. 2773-2776.

A. Ziemann, M. Kucer, and J. Theiler, “A machine learning
approach to hyperspectral detection of solid targets,” Proc.
SPIE, vol. 10644, pp. 1064404, 2018.

A. Schaum, “Continuum fusion: a theory of inference, with
applications to hyperspectral detection,” Optics Express, vol.
18, pp. 8171-8181, 2010.

J. Theiler, “Confusion and clairvoyance: some remarks on the
composite hypothesis testing problem,” Proc. SPIE, vol. 8390,
pp. 839003, 2012.

A. Schaum, “Hyperspectral target detection using a Bayesian
likelihood ratio test,” Proc. IEEE Aerospace Conference, vol.
3, pp. 1537-1540, 2002.

A. Schaum, “Invariance concepts in spectral analysis,” Proc.
SPIE, vol. 10198, pp. 101980H, 2017.

S. M. Kay and J. R. Gabriel, “An invariance property of
the generalized likelihood ratio test,” IEEE Signal Processing
Letters, vol. 10, no. 12, pp. 352-355, 2003.

J. R. Gabriel and S. M. Kay, “On the relationship between the
GLRT and UMPI tests for the detection of signals with unknown
parameters,” IEEE Trans. Signal Processing, vol. 53, no. 11,
pp. 4194-4203, 2005.

L. L. Scharf and B. Friedlander, “Matched subspace detectors,”
IEEE Trans. Signal Processing, vol. 42, no. 8, pp. 2146-2157,
1994.

M. Axelsson, O. Friman, T. V. Haavardsholm, and I. Renhorn,
“Target detection in hyperspectral imagery using forward mod-
eling and in-scene information,” ISPRS J. Photogrammetry and
Remote Sensing, vol. 119, pp. 124-134, 2016.

B. Thai and G. Healey, “Invariant subpixel material detection
in hyperspectral imagery,” IEEE Trans. Geoscience and Remote
Sensing, vol. 40, no. 3, pp. 599-608, 2002.

S. Adler-Golden, J. Gruninger, and R. Sundberg, “Hyperspectral
detection and identification with constrained target subspaces,”
in Proc. IEEE Int. Geoscience and Remote Sensing Symposium
(IGARSS), 2008, vol. II, pp. 465-468.

J. Broadwater and R. Chellappa, “Hybrid detectors for subpixel
targets,” IEEE Trans. Pattern Analysis and Machine Intelli-
gence, vol. 29, pp. 1891-1903, 2007.

E. J. Ientilucci and P. Bajorski, “Stochastic modeling of
physically derived signature spaces,” J. Applied Remote Sensing,
vol. 2, no. 1, pp. 023532, 2008.

J. Theiler, “Matched-pair machine learning,” Technometrics,
vol. 55, pp. 536-547, 2013.

J. Theiler, “Transductive and matched-pair machine learning for
difficult target detection problems,” Proc. SPIE, vol. 9088, pp.
90880E, 2014.

J. Theiler and B. Wohlberg, “Regression framework for
background estimation in remote sensing imagery,” Proc. 5th
IEEE Workshop on Hyperspectral Image and Signal Processing:
Evolution in Remote Sensing (WHISPERS), 2013.

H. Jenzri, H. Frigui, and P. Gader, “Context dependent hyper-
spectral subpixel target detection,” Proc. IEEE Int. Conf. on
Image Processing (ICIP), pp. 5062-5066, 2014.

T. Glenn, “Context-dependent detection in hyperspectral im-
agery,” Diss. University of Florida, 2013.

B. Somers, G. P. Asner, L. Tits, and P. Coppin, “Endmember
variability in spectral mixture analysis: A review,” Remote
Sensing of Environment, vol. 115, pp. 1603-1616, 2011.

T. Uezato, R. J. Murphy, A. Melkumyan, and A. Chlingaryan,
“A novel endmember bundle extraction and clustering approach

[129]

[130]

[131]

[132]

[133]

[134]

[135]

[136]

[137]

[138]

[139]

[140]

[141]

[142]

[143]

[144]

[145]

[146]

for capturing spectral variability within endmember classes,”
IEEE Trans. Geoscience and Remote Sensing, vol. 54, pp. 6712—
6731, 2016.

C.-I. Chang, “An information-theoretic approach to spectral
variability, similarity, and discrimination for hyperspectral im-
age analysis,” IEEE Trans. Information Theory, vol. 46, pp.
1927-1932, 2000.

S. Jay, M. Guillame, A. Minghelli, Y. Deville, M. Chami,
B. Lafrance, and V. Serfaty, “Hyperspectral remote sensing
of shallow waters: Considering environmental noise and bot-
tom intra-class variability for modeling and inversion of water
reflectance,” Remote Sensing of Environment, vol. 200, pp. 352—
367, 2017.

A. Schaum and A. Stocker, “Long-interval chronochrome target
detection,” Proc. ISSSR (International Symposium on Spectral
Sensing Research), 1998.

M. T. Eismann, J. Meola, and R. C. Hardie, “Hyperspectral
change detection in the presence of diurnal and seasonal vari-
ations,” IEEE Trans. Geoscience and Remote Sensing, vol. 46,
no. 1, pp. 237-249, 2008.

J. Theiler, “Quantitative comparison of quadratic covariance-
based anomalous change detectors,” Applied Optics, vol. 47,
pp. F12-F26, 2008.

B.-C. Gao, M. J. Montes, C. O. Davis, and A. F. H. Goetz,
“Atmospheric correction algorithms for hyperspectral remote
sensing data of land and ocean,” Remote Sensing of Environ-
ment, vol. 113, no. SUPPL. 1, pp. S17-S24, 2009.

G. Tolt, M. Shimoni, and J. Ahlberg, “A shadow detection
method for remote sensing images using VHR hyperspectral
and LIDAR data,” in Proc. IEEE Int. Geoscience and Remote
Sensing Symposium (IGARSS), 2011, pp. 4423-4426.

J. G. Shanks and B. V. Shetler, “Confronting clouds: Detection,
remediation and simulation approaches for hyperspectral remote
sensing systems,” in Proc. 29th IEEE Applied Imagery Pattern
Recognition (AIPR) Workshop, 2000, pp. 25-31.

C. L. Lanker and M. O. Smith, “Identification of solid materials
using HSI spectral oscillators,” Proc. SPIE, vol. 9840, pp.
98400U, 2016.

C. L. Lanker and M. O. Smith, “Enhanced detection of solids
from Gaussian spectral features,” in Proc. IEEE Int. Geoscience
and Remote Sensing Symposium (IGARSS), 2017, pp. 1340—
1343.

F.A. Kruse, “Use of airborne imaging spectrometer data to map
minerals associated with hydrothermally altered rocks in the
northern grapevine mountains, Nevada, and California,” Remote
Sensing of Environment, vol. 24, no. 1, pp. 31-51, 1988.

A. M. Filippi, K. L. Carder, and C. O. Davis, “Vicarious
calibration of the ocean phills hyperspectral sensor using a
coastal tree-shadow method,” Geophysical Research Letters,
vol. 33, no. 22, pp. L22605, 2006.

L. S. Bernstein, X. Jin, B. Gregor, and S. M. Adler-Golden,
“Quick atmospheric correction code: Algorithm description and
recent upgrades,” Optical Engineering, vol. 51, no. 11, pp.
111719, 2012.

G. M. Smith and E. J. Milton, “The use of the empirical line
method to calibrate remotely sensed data to reflectance,” Int. J.
Remote Sensing, vol. 20, no. 13, pp. 2653-2662, 1999.

D. A. Roberts, Y. Yamaguchi, and R. Lyon, “Comparison of
various techniques for calibration of AIS data,” in Proc. 2nd
Airborne Imaging Spectrometer Data Analysis Workshop, 1986,
vol. 86-35, pp. 21-30.

J. E. Conel, R. O. Green, G. Vane, C. J. Brugge, and R. E.
Alley, “AIS-2 radiometry and comparison of methods for the
recovery of ground reflectance,” in Proc. 3rd Airborne Imaging
Spectrometer Data Analysis Workshop, 1987, vol. 95-1, pp. 49—
61.

B.-C. Gao, K. B. Heidebrecht, and A. F. H. Goetz, “Derivation
of scaled surface reflectances from AVIRIS data,” Remote
Sensing of Environment, vol. 44, no. 2-3, pp. 165-178, 1993.
F. A. Kruse, “Comparison of ATREM, ACORN, and FLAASH
atmospheric corrections using low-altitude AVIRIS data of boul-



der, CO,” in Proc. 13th JPL Airborne Geoscience Workshop,
2004, vol. 1.

R. Richter and D. Schlapfer, “Geo-atmospheric process-
ing of airborne imaging spectrometry data. Part 2: Atmo-
spheric/topographic correction,” Int. J. Remote Sensing, vol.
23, no. 13, pp. 2631-2649, 2002.

R. N. Clark, G. A. Swayze, K. B. Heidebrecht, R. O. Green,
and A. F. H. Goetz, “Calibration of surface reflectance of
terrestrial imaging spectrometry data: comparison of methods,”
in Summaries of the 5th Annual JPL Airborne Earth Science
Workshop, 1995, vol. 95-1, pp. 41-42.

M. T. Eismann, “Strategies for hyperspectral target detection in
complex background environments,” in Proc. IEEE Aerospace
Conference, 2006.

B. Bartlett and J.R. Schott, “Atmospheric compensation in the
presence of clouds: An adaptive empirical line method (AELM)
approach,” J. Applied Remote Sensing, vol. 3, no. 1, pp. 033507,
2009.

M. T. Eismann, A. D. Stocker, and N. M. Nasrabadi, “Au-
tomated hyperspectral cueing for civilian search and rescue,”
Proc. IEEE, vol. 97, no. 6, pp. 1031-1055, 2009.

E. J. Ientilucci, “Spectral target detection considerations from a
physical modeling perspective,” in Proc. IEEE Int. Geoscience
and Remote Sensing Symposium (IGARSS), 2017, pp. 1320—
1323.

D. Tanre, C. Deroo, P. Duhaut, M. Herman, J. J. Morcrette,
J. Perbos, and P. Y. Deschamps, ‘“Description of a computer
code to simulate the satellite signal in the solar spectrum: The
5S code,” Int. J. Remote Sensing, vol. 11, no. 4, pp. 659-668,
1990.

S. M. Adler-Golden, M. W. Matthew, L. S. Bernstein, R. Y.
Levine, A. Berk, S. C. Richtsmeier, P. K. Acharya, G. P.
Anderson, G. Felde, J. Gardner, M. Hoke, L. S. Jeong, B. Pukall,
A. Ratkowski, and H.-H. Burke, “Atmospheric correction for

[147]

[148]

[149]

[150]

[151]

[152]

[153]

[154]

short-wave spectral imagery based on MODTRAN4,” Proc.
SPIE, vol. 3753, pp. 61-69, 1999.
[155] T. Haavardsholm, A. Kavara, I. Kasen, and T. Skauli, “Im-

proving anomaly detection with multinormal mixture models in
shadow,” in Proc. IEEE Int. Geoscience and Remote Sensing
Symposium (IGARSS), 2012, pp. 5478-5481.

M. Wang and W. Shi, “Cloud masking for ocean color data
processing in the coastal regions,” IEEE Trans. Geoscience and
Remote Sensing, vol. 44, no. 11, pp. 3196-3205, 2006.

A. J. Brown, “Spectral curve fitting for automatic hyperspectral
data analysis,” IEEE Trans. Geoscience and Remote Sensing,
vol. 44, pp. 1601-1608, 2006.

A. Zare, C. Jiao, and T. Glenn, “Discriminative multiple
instance hyperspectral target characterization,” IEEE Trans.
Pattern Analysis and Machine Intelligence, vol. 40, pp. 2342—
2354, 2017.

[156]
[157]

[158]

AUTHOR BIOGRAPHIES

James Theiler received SB degrees in mathematics
and in physics from MIT in 1981, and a PhD in
physics from Caltech in 1987. He subsequently held
appointments at UCSD, MIT Lincoln Laboratory, Los
Alamos National Laboratory, and the Santa Fe Institute.
He joined the technical staff at Los Alamos in 1994
and was named a Laboratory Fellow in 2005. He is
currently an associate editor for IEEE Transactions on
Computational Imaging. His research interests include
statistical modeling, machine learning, image processing,
and remote sensing.

Amanda Ziemann received BS and MS degrees in
applied mathematics from Rochester Institute of Tech-

nology (RIT) in 2010 and 2011, respectively, as well as
a PhD in imaging science from RIT in 2015. She was
an Agnew National Security Postdoctoral Fellow at Los
Alamos National Laboratory (LANL), and is currently
a staff scientist in the Space Data Science and Systems
Group at LANL. She is a referee for several international
journals. Her research interests include remote sensing,
spectral imaging, signal detection, and data fusion.

Stefania Matteoli received her BS and MS (summa
cum laude) degrees in Telecommunications Engineering
and the PhD in “Remote Sensing” from University
of Pisa, Italy, in 2003, 2006, and 2010 respectively.
She is currently a permanent researcher at the National
Research Council of Italy within the Institute of Elec-
tronics, Computers and Telecommunication Engineering.
She is Associate Editor of IEEE Geoscience and Remote
Sensing Letters, Journal of Applied Remote Sensing, and
American Journal of Agricultural and Biological Sci-
ences. She is a referee for several international journals.
In 2014 she was a recipient of the SPIE Remote Sensing
Europe Best Student Paper Award within the “Remote
Sensing of the Ocean, Sea Ice, Coastal Waters, and
Large Water Regions” conference. Her research inter-
ests include signal and image processing, hyperspectral
remote sensing, underwater lidar remote sensing, and
atmosphere/seawater radiation transfer modeling. She is
a Senior Member of the IEEE.

Marco. Diani received the Laurea degree (cum laude)
in electronic engineering from the University of Pisa,
Italy, in 1988. He is currently a Full Professor with
the Italian Naval Academy, Livorno, Italy. Previously, he
was an Associate Professor with the Department of In-
formation Engineering, University of Pisa, where taught
“Statistical Signal Theory” and “Design and Simulation
of Remote Sensing Systems.” His works covered differ-
ent topics such as data fusion, signal processing in imag-
ing radars, image classification and segmentation, object
detection and tracking in infrared image sequences, and
target detection and recognition in multi-hyperspectral
images. His current research interests include image and
signal processing with application to remote sensing.
Prof. Diani is Associate Editor of the Journal of Applied
Remote Sensing. He is a referee for several international
journals. He is a member of IEEE and of SPIE.



