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ABSTRACT
In recent years, sparse coding has drawn considerable research attention in developing feature representations for visual
recognition problems. In this paper, we devise sparse coding algorithms to learn a dictionary of basis functions from Scale-
Invariant Feature Transform (SIFT) descriptors extracted from images. The learned dictionary is used to code SIFT-based
inputs for the feature representation that is further pooled via spatial pyramid matching kernels and fed into a Support
Vector Machine (SVM) for object classification on the large-scale ImageNet dataset. We investigate the advantage of
SIFT-based sparse coding approach by combining different dictionary learning and sparse representation algorithms. Our
results also include favorable performance on different subsets of the ImageNet database.
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1. INTRODUCTION
The aim of visual recognition is to map pixel inputs to semantic meanings. This effort has become a major focus in
computer vision research, and advancement toward this goal largely depends on learning effective feature representations
from various scales of pixels. Recently, sparse coding has become a popular approach for adaptively learning such feature
representations. Given a set of input signals {x1,x2, ...,xN ∈ Rn×1}, sparse coding seeks to reconstruct each input
signal with a linear combination of over-complete bases D = [D1,D2, ...,Dm] ∈ Rn×m using a sparse coefficient vector
a ∈ Rm×1.

min
D,ai

1

N

N∑
i=1

{
1

2
||xi −Dai||22 + λΩ(ai)

}
(1)

Eq. 1 describes the objective function for sparse coding where Ω(at) is a function to enforce vector sparsity, and λ is
a control parameter. Most sparse coding algorithms break the computation into two steps: (1) Given D, learn the sparse
vector a as a feature representation; (2) Given a, learn a set of basis functions D, also called “weights” or a “dictionary”.

A considerable amount of research assumes a known dictionary D and focuses on learning sparse feature representation
by defining sparsity functions such as ||a||0 or ||a||1. The `0 norm counts the number of non-zero coefficients in a vector,
and is a natural choice to encourage sparsity in vector a. But solving Eq. 1 with the `0 norm is often intractable, so existing
studies often seek an approximate solution using a greedy algorithm (e.g., Matching Pursuit (MP),1 Orthogonal Matching
Pursuit (OMP)2), or else resort to a convex relaxation under certain assumptions. The most common convex formulation
is the `1-decomposition problem, leading to solutions such as Basis Pursuit (BP),3 FOCUSS4 and the Lasso.5

Rather than using pre-defined dictionaries, another line of sparse coding algorithms aims to learn a dictionary of basis
functions, which leads to an alternating minimization for both D and sparse vector a. Well-known examples include the
pioneering work of Olshausen and Field6 to model neuronal responses in the V1 area of the brain, the K-SVD of Elad
and Aharon,7 the Online Sparse Coding of Mairal et al.,8 and others.9–13 The dictionary learning algorithms have two
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paired components: one for updating the dictionary elements and the other for learning the sparse representation. Some
of the greedy searching and convex optimization techniques described above for sparse representation is applied here and
integrated in the dictionary learning scheme.

In this paper, we describe sparse coding algorithms to learn a dictionary from Scale-invariant Feature Transforms
(SIFT) descriptors of images (rather than from raw pixels), and then develop sparse feature representations for SIFT-based
inputs given the learned dictionary. The sparse representation is further pooled via spatial pyramid matching kernels
and fed into a support vector machine (SVM) for object classification on the large-scale ImageNet dataset. SIFT is a
state-of-the-art algorithm in computer vision to detect and describe local areas of images via histograms of orientations.14

Feature representation via sparse coding of SIFT descriptors has shown favorable performances15–18 in various visual
recognition tasks such as MNIST,19 NORB,20 CIFAR-10,21 and Caltech-101,22 but has not demonstrated in a large-scale
visual recognition task like ImageNet.23

As the sparse representation of a SIFT descriptor only represents a local area in an image, we need a mechanism to
combine the local representations for the whole image. A popular approach is the called Bags-of-Words (BoW) model,24

which quantizes the feature representations into “visual words”, and then computes a histogram representation of the
whole image for semantic classification. However, the spatial order of local representations is discarded in the BoW
model, which limits the descriptive power of image representation. A more advanced alternative is called spatial pyramid
matching (SPM),17, 25 which extends the BoW model in multiple scales but maintains spatial order across the scales. SPM
has had remarkable success on the sparse representation of local descriptors in a range of image classification tasks.15, 17, 18

We investigate the SIFT-based sparse coding approach by comparing different pairs of algorithms for dictionary learn-
ing and sparse representation. As mentioned above, dictionary learning algorithms are generally paired specific sparse
representation approaches, but in our experiments, we mix and match the different dictionary learning algorithms with
different sparse representation algorithms. From the comparison, we find that:

(1) From the perspective of learning sparse representations, `1-regularized optimization algorithms on average outper-
form greedy approximation algorithms using `0-based sparsity.

(2) Performance depends predominantly on choice of sparse representation algorithm; choice of dictionary is less im-
portant.

(3) Even using a dictionary with random SIFT patches (without training), the performance is comparable to those using
the trained dictionaries.

In addition, our results show favorable performance on different subsets of ImageNet database, which contains 15M images
in 22K object categories that were designed to exhibit a direct mapping to WordNet language concepts.

2. LEARNING FRAMEWORK
In this section, we will describe the learning framework as a pipeline process, with each computational component at each
subsection.

2.1 SIFT Descriptor
Given an image, SIFT finds the keypoints with respect to local minimum or maximum given the difference of adjacent
Gaussian smoothing operations, where each keypoint is associated with the information regarding its location, local scale
and orientation. Based on the local region around the keypoint, a local image descriptor is computed as 16 histograms of 8
gradient orientations.

In this paper, we use a simpler and faster version of SIFT algorithm, called dense SIFT, which assumes that the
location, scale and orientation of each keypoint is predefined rather than extracted from a scale-space extrema. In our
implementation, 16 × 16 pixel patches were densely sampled from each image on a grid with step size 8 pixels, with the
center of each patch considered the keypoint. This yields a representation of the image as a set of 128-dimensional (8
orientations× 16 histograms) vectors, with one descriptor representing each patch of the grid. Mathematically, each image
Xi is represented as a matrix containing each SIFT descriptor as a column vector, i.e., Yi = [y

(1)
i ,y

(2)
i ...,y

(p)
i ] ∈ R128×p,

where is p is the number of SIFT vectors.



2.2 Dictionary Learning
Given a training set containing a number of images X = {X1,X2, ...,XN}, we have a corresponding training set with
SIFT description, i.e., Y = {Y1,Y2, ...,YN}. Among all the SIFT descriptors for all the images in the training set, we
randomly choose K descriptors, i.e., {y(1),y(2)...,y(K)} (y(k) ∈ R128×1) for the learning of a dictionary D via sparse
coding, such that

min
D,a(k)

1

K

K∑
k=1

{
1

2
||y(k) −Da(k)||22 + λΩ(a(k))

}
(2)

where the dictionary contains 1024 elements, each of dimension 128 (same as a SIFT input), such that D ∈ R128×1024.

We applied three different dictionary learning algorithms in this paper:

1. K-SVD: K-SVD is a simple but efficient dictionary learning algorithm developed by Aharon et al.7 It generalizes
the idea of K-Means and solves Eq. 2 in an alternating manner. First, the sparse vector a is obtained using the
aforementioned Orthogonal Matching Pursuit to approximate the solution to the non-convex `0-regularized sparse
problem. Second, the dictionary is learned via a batch of input samples, where only one column of D is updated at
a time using the singular value decomposition (SVD).

2. Lagrange dual: This is an efficient dictionary learning algorithm proposed by Lee et al.11 that uses a sign-search
algorithm to solve an `1-regularized least squares problem with respect to the sparse vector a in Eq. 2. Then a
Lagrange dual method is used to solve the `2-constrained least squares problem with respect to a dictionary D. Both
problems above are known to be convex.

3. SPAMS: SPAMS is a SPArse Modeling Software package containing an optimization toolbox for various sparse
estimation problems. We used its dictionary learning solver based on the paper published by Mairal et al.,8 where a
Cholesky-based implementation of the LARS-Lasso algorithm26 is utilized to solve the `1-regularized sparse coding
problem with respect to a sparse vector a and a new online optimization algorithm based on stochastic approxima-
tions is developed to learn a dictionary D.

The detailed algorithm of each method is available at the corresponding paper cited above and beyond the scope of this
paper.

2.3 Sparse Representation
We applied the trained dictionary to code every SIFT patch in every image and generate the sparse representation via an
optimization step as below,

∀y ∈ Y, min
a

1

2
||y −Da||22 + λΩ(a) (3)

Note that only the sparse vector a is learned here, with a fixed D. Each sparse vector a ∈ R1024×1 represents one SIFT
path in one image.

We applied three different learning algorithms to compute sparse representation in Eq. 3: 1. Orthogonal Matching
Pursuit;2 2. Sign-search optimization;11 and 3. a variant of the LARS-Lasso algorithm.26 In fact, each learning algorithm
here for sparse representation is used in one of the dictionary learning algorithms above, but it is found that the natural
choice of sparse representation algorithm that matches the dictionary learning (e.g., Orthogonal Matching Pursuit with
respect to K-SVD) is not necessary to provide feature representation for favorable classification performance. In other
words, mismatching the learning algorithms for sparse representation in Eq. 2 and in Eq. 3 may surprisingly deliver more
favorable results.

Given a SIFT description of an image Yi = [y
(1)
i ,y

(2)
i ...,y

(p)
i ] ∈ R128×p, we now have a sparse feature representation

Ai = [a
(1)
i ,a

(2)
i ...,a

(p)
i ] ∈ R1024×p via Eqs. 2 and 3.



2.4 Spatial Pyramid Matching (SPM)
As size of images varies in the training set, the number of SIFT patches varies as well, meaning that we have a different
number of sparse vectors in each feature representation Ai. Thus, further processing is needed, because we need rep-
resentations with identical dimensions in order to feed them into a classification model. Given a set of sparse vectors
{a(1)i ,a

(2)
i ...,a

(p)
i } obtained via Eq. 3 for each image, a popular choice is to quantize the sparse vectors and then compute

a histogram representation. This procedure is called a Bag-of-Words (BoW) model, where each image is represented by
an unordered set of local descriptors.

In a more sophisticated SPM approach, we partition an image into 4× 4, 2× 2, and 1× 1 segments respectively, and
max-poole the sparse vectors within each of the 21 segments, so that in each segment region the d-th element of pooled
vector s is as follows:

sd = max(|a(1)d |, |a
(2)
d |, ..., |a

(q)
d |), (4)

where ad is the d-th element in a sparse vector a, and q ≤ p is the number of sparse vectors in that region.

The pooled vectors from various locations and scales are then concatenated to form a spatial pyramid representation of
the image, which has 21504 (=1024 vector components × 21 scales) dimensions and is able to be fed into a classification
model for decision making.

2.5 Classification Models
We used the libSVM implementation27 of a linear support vector machines (SVM) to classify SPM representations. The
training data is the set {(Xi, ci)}, i = 1, 2, ...N , where Xi is an image input and ci ∈ C = {1, 2, ..., L} is the corresponding
class label of this image. Through the computational steps above, each image Xi is represented as an SPM representation
si. We used a one-against-all strategy to train L binary linear SVMs, each solving the convex optimization problem as
follows

min
w,ξ,b

{
1

2
‖wl‖2 + C

n∑
i=1

ξi

}
(5)

s.t. f(ci)(wl · si − bl) ≥ 1− ξi, ξi ≥ 0

where f(ci)= 1 if ci = l, otherwise f(ci) = −1 (l = 1, 2, ..., L).

In addition to determining the predicted class label for a testing sample, which is given by

arg max
l∈C

(wl · s− bl) (6)

we further employed the libSVM toolbox to calibrate its output to correspond to probability estimates for class predictions.
Thus, the output of a testing sample is a distribution of likelihoods associated with each class.28

3. EXPERIMENTAL RESULTS
In the experiments, we evaluated the learning framework on the ImageNet dataset.23 ImageNet is a publicly available
image database containing 15M labeled images belonging to 22K object categories, which are organized according to the
WordNet hierarchy of meaningful concepts. About 1000 images are included in each category/label, and some of the
images are further annotated for object detection purposes. A subset of ImageNet with 1000 categories (most of which
are from leaf nodes in the semantic hierarchy) are extracted from the ImageNet to establish an annual competition called
the ImageNet Large-Scale Visual Recognition Challenge (ILSVRC) since 2010. In the ILSVRC dataset, there are ∼1.2M
training images, 50K validation images, and 150K testing images.

We selected 14, 64 and 196 categories and their associated images from the ILSVRC-2012 dataset to conduct visual
object recognition using the described learning system. We preprocessed all the images to gray scale. If a shorter size of
the image is larger than 256 pixels, we rescaled the image so that the shorter size is 256.



3.1 ImageNet-14
This is a subset of ImageNet containing 14 object categories, from which we randomly selected 500 images for training and
200 for testing. We utilized the learning framework to learn SIFT-based sparse representations (given a trained dictionary)
and further generated SPM representations for image classification using linear SVMs. This small-scale problem is used
to tune parameters (e.g., λ in Eq. 2 and 3, C in Eq. 5) and evaluate the choice of learning algorithms (i.e., for Eq. 2 and
Eq. 3 respectively) in the described framework.

Table 1 shows how the classification accuracy varies given several choices of parameters, as well as different pairs of
learning algorithms for the dictionary and the sparse representation. Note that we did not explore the parameter space with
all possible values, but referred to empirical studies about favorable settings of sparse coding parameters in visual recog-
nition tasks.16 As discussed in Secs. 2.2 and 2.3, three dictionary learning algorithms (K-SVD, Lagrange dual (LD) and
SPAMS) and three sparse representation algorithms (Sign-search, LARS-Lasso and OMP) are included in this experiment,
which represent state-of-the-art approaches at the current time.

Two numbers are reported for each specific setting (i.e., in each cell of Table 1): The left one is for the top-1 accuracy
rate – the fraction of testing images that is correctly predicted, and the right one is for top-5 accuracy rate – the fraction of
testing images for which the correct label is among the five labels considered most probable by the model. The top-5 rate
was adopted as a useful standard for the ImageNet dataset, since each image typically contains multiple objects.

Table 1. Classification accuracy for ImageNet-14.

Sign Search (λ = 0.15) LARS (λ = 0.15) LARS (λ = 0.3) OMP (L=10) OMP (L=100)
K-SVD 70.21%, 94.93% 69.11%, 94.18% 69.21%, 93.86% 65.36%, 93.14% 54.34%, 89.01%

LD 69.93%, 94.86% 69.00% 94.75% 67.04% 94.11% 65.89% 92.64% 56.11%, 88.62%
SPAMS 69.96%, 94.50% 70.07%, 94.57% 69.50%, 94.64% 65.57%, 93.11% 55.43%, 89.18%

Random 70.36%, 94.32% 68.50%,95.18% 67.82%, 94.62% 63.32%, 92.04% 53.12% , 86.44%

In Table 1, we observe that: (1) When learning sparse representations, `1-regularized optimization algorithms (the
first three columns) on average perform better than greedy algorithms using `0-based sparsity (the last two columns). (2)
Regardless of dictionary choice, learning algorithms for sparse representation mainly result in performance variance, as
indicated in Fig. 1. (3) Even using a dictionary with random SIFT patches (without training), the performance is comparable
to those using the trained dictionaries (see the last row in Table 1).

As discussed in Sec. 2.5, we applied probabilistic estimates of SVM prediction to the output classes. In Fig. 2, we
plotted some examples of testing images, along with their predicted probabilistic outputs for the top 5 classes. The left col-
umn illustrates some easy cases (with high confidence regarding a particular class that is correctly predicted) and the right
column illustrates some tough cases of the same class, showing very different distribution patterns (far more uncertainty,
and many incorrect choices).

3.2 ImageNet-64 and ImageNet-196
The results in Table 1 indicated that a natural choice of sparse representation algorithm that matches the one included in
dictionary learning (e.g., Orthogonal Matching Pursuit with respect to K-SVD) may not be optimal to provide favorable
feature representation for classification performance. Based on the observation of the previous experiment, we selected
the K-SVD algorithm for dictionary learning and Sign-search algorithm for the sparse representation of each input, and
conducted visual recognition with more classes. The regularization parameter of λ and C is set to 0.15 and 10 respectively.

Fig. 3 shows the classification performance with top-5 accuracy rate for ImageNet-14, 64, and 196, using K-SVD and
Sign-search. All the parameters are set the same as suggested above. The classification performance here is, although
inferior to that reported by the winner of ILSVRC-2012,29 much better than the baseline performance initially provided by
the inventor of the datset.30 On-going studies that focus on the fusion of feature representation (especially integrating color
information) and hierarchical decision models (dealing with probabilistic class output for further processing) show great
promise in substantially improving classification performance.

The top-5 accuracy for each class varies in ImageNet-196. We illustrated several examples for the object classes
delivering worst performance (lower than 40%, see Fig. 4) and best performance (higher than 90%, see Fig. 5). These
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Figure 1. Mean and variance of top-5 accuracy rates with respect to (a) the dictionary learning algorithms across different sparse repre-
sentations. (b) the sparse representation algorithms (given various parameters) across different dictionaries.

figures show that examples within each class are highly variable (e.g., different object forms, backgrounds, poses, colors
and light conditions, etc.), which illustrates why identifying the correct label is so challenging.

4. CONCLUSION
In this paper, we performed experiments using the SIFT-based sparse coding and Spatial Pyramid Matching framework
for the visual recognition of ImageNet subsets. We investigated the pairs of algorithms for dictionary learning and de-
velopment of sparse representation. The results show that the algorithms for sparse representation mainly determined the
classification accuracy, and that the choice of dictionary was less important. Matching the sparse representation algorithm
with the one included in each dictionary learning does not guarantee better performance. Instead, the choice of sparsity
itself plays a key role, where `1-regularized sparse optimization in general was found to be superior to greedy approxi-
mation in the `0-based sparse formulation. In fact, even using an unlearned dictionary with imprinted random patches,
once we choose suitable algorithms for sparse representation, we still observed performance comparable to those with ex-
pensively trained dictionaries. Future improvement can be made by integrating sparse representations containing different
information channels, especially colors, which are discarded in the current study. As our learning framework provides
probabilistic likelihood regarding each class, a hierarchical decision model that assesses the distribution of probabilistic
outputs and target the difficult cases for further fine-tuned classification is promising to boost the performance as well.

ACKNOWLEDGMENTS
This work is supported by the Laboratory Directed Research and Development (LDRD) program at Los Alamos National
Laboratory.

REFERENCES
[1] Mallat, S. and Zhang, Z., “Matching pursuits with time-frequency dictionaries,” IEEE Trans. Signal Processing 41,

3397–3415 (1993).
[2] Pati, Y. C., Rezaiifar, R., and Krishnaprasad, P. S., “Orthogonal matching pursuit: Recursive function approximation

with applications to wavelet decomposition.,” in [The 27th Asilomar Conf. on Signals, Systems, and Computers ],
(1993).



(a) (b)

Figure 2. Examples of testing images and predicted probabilistic outputs for top-5 classes. Each row denotes one class, where the left
example shows an easy case and the right one shows a hard case. Each probabilistic output is normalized with respect to the top-5
classes.
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