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Abstract

We investigate how stack filter function
classes like weighted order statistics can be
applied to classification problems. This leads
to a new design criteria for linear classifiers
when inputs are binary-valued and weights
are positive. We present a rank-based mea-
sure of margin that is directly optimized as
a standard linear program and investigate its
relationship to regularization. Our approach
can robustly combine large numbers of base
hypothesis and has similar performance to
other types of regularization.

1. Introduction

We investigate the two-class classification problem
when the classifier is a weighted order statistic. In
two-class classification we find a function f(�x) : R →
{−1, 1} that minimizes the probability of misclassifi-
cation defined on a distribution G over RD × {−1, 1}:

PrG[yf(�x) < 0] (1)

This probability is called generalization error and is
usually approximated with a loss function based on a
training set. A training set is a sample

S = 〈(�x(1), y(1)), (�x(2), y(2)), . . . , (�x(N), y(N))〉 (2)

where examples are chosen independently and at ran-
dom from the distribution G. One approximation that
is often used is misclassification error on the training
set:

PrS [yf(�x) < 0]. (3)

Recently, theoretical and practical results have sug-
gested loss functions that consider sample margins
sometimes improve approximation to generalization

error (Mason et al., 2000). In this case, the loss func-
tion also includes the distance of each sample to the
decision boundary, yf(x). A number of theorems from
the probably approximately correct machine learning
framework bound (1) in terms of sample margins, for a
number of function classes. These theorems generally
take the following form (Schapire et al., 1998):

Theorem: For δ > 0 with probability 1 − δ over the
random choice of the training set S, every function
f(�x) in a function class F satisfies the following bound
for all γ > 0:

PrG[yf(�x) ≤ 0] ≤ PrS [yf(�x) ≤ γ] + ε(δ,N, |F|, γ).
(4)

In this inequality, generalization error PrG is bound
by training error PrS at margin γ and a second term
ε that depends, among other things, on a complexity
measure for the function class F , |F|. For a num-
ber of function classes, an increase in γ reduces ε by
decreasing the complexity term |F|. In practice, in-
creasing γ will also increase PrS and the appropriate
trade-off must be chosen by the learning algorithm.
Several learning algorithms parameterize the tradeoff
with a single parameter e.g. introducing a regulariza-
tion term into the loss function (3).

Theorems that characterize the precise relationship (4)
are developed for specific function classes F e.g. linear
classifiers and other neural networks. In this paper, we
suggest a similar relationship exists for weighted order
statistic, and other stack filter derived function classes.

We present a brief account of weighted order statis-
tic literature in Section 2. In Section 3, we show how
weighted order statistic classifiers reduce to binary do-
main classifiers due to thresholding. This links the
weighted order statistic classifier to other binary do-
main classifiers that are associated most often with
ensemble methods.
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We will propose a new type of margin for these func-
tion classes called rank-order margin. Our results ap-
ply to a large number of ordered function classes in-
cluding all digital mappings {0, 1}D → {0, 1} (Lin
& Coyle, 1990). In Section 4, we investigate the re-
lationship between rank-order margin, regularization
and generalization with two synthetic experiments.
We compare our approach to boosting with real-world
data sets from the UCI machine learning repository.
We summarize and discuss future research efforts in
Section 5.

2. Background

Generalized median or weighted order statistic (WOS)
filters are an active research topic in non-linear digi-
tal filtering (Astola & Kuosmanen, 1997). Their ro-
bustness to impulsive noise has made them a popular
alternative in applications where linear filters perform
poorly. The linear classifier, or thresholded linear fil-
ter, is a direct generalization of the weighted average
and sample mean. In a similar way, the median filter
is generalized to weighted median and the WOS fil-
ter. A more detailed analogy was presented by Arce
(1998). In this paper we consider WOS classifiers, or
thresholded WOS filters.

Our analysis and method of optimization are based
on techniques known as threshold decomposition and
stacking. These techniques were suggested for analy-
sis and design of non-linear digital filtering. Our novel
contribution is to apply these techniques to large mar-
gin loss functions to solve classification problems.

Our approach was inspired by Preston (1990), who
described thresholded rank-order filters for a target
detection problem. Several other classifiers are related
to WOS classifiers, namely min-max classifiers (Yang
&Maragos, 1995), and morphological networks (Ritter
& Sussner, 1996).

WOS classifiers also relate to binary domain classifiers
used in ensemble methods. The median, or majority
vote is used by bagging (Breiman, 1996). A weighted
order statistic is used to combine weak hypothesis in
the adaboost m.1 algorithm (Schapire et al., 1998).
Direct optimization of margin for this function class
was suggested by Mason et al. (2000) and finding the
maximum, minimum margin solution was considered
by Grove and Schuurmans (1998). Tumer and Ghosh
(1999) investigated the performance of order statistics
for combining ensembles. In this paper we consider
the weighted order statistic, and stack filter combiners
and suggest a mechanism to control complexity.
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Figure 1. Threshold decomposition architecture for a
three-input median filter

2.1. Threshold Decomposition

Threshold decomposition is an important tool for the
analysis and design of non-linear digital filters (Fitch
et al., 1984). We describe threshold decomposition for
D inputs: �x = [x1, x2, . . . , xD] where each input takes
on values from a finite set of quantization levels: xi ∈
{−q+1, . . . ,−1, 0, 1, . . . , q}. Threshold decomposition
was presented for real-valued inputs by Yin and Neuvo
(1994) and Arce (1998). It is convenient to define a
threshold function based on the indicator function:

T (�x, t) = [I(x1 ≥ t), I(x2 ≥ t), . . . , I(xD ≥ t)] (5)

Threshold decomposition applies the threshold func-
tion to the inputs at each quantization level. The
original inputs can be exactly recovered from this de-
composition by

xi = −q +
q∑

t=−q+1

Ti(�x, t) (6)

where Ti is the i’th component of the vector function
output (5).

2.2. Stack Filters

If we define a binary function f(�u) : {0, 1}D → {0, 1}
and apply it to each level of the threshold decomposi-
tion then the function:

Sf (�x) = −q +
q∑

t=−q+1

f(T (�x, t)) (7)

defines a stack filter when f(�u) satisfies the stacking
constraints. The stacking constraints are:

f(�u) ≤ f(�v) whenever ui ≤ vi for all i. (8)

A necessary and sufficient condition for f(�u) to sat-
isfy the stacking constraints is that it is a Positive
Boolean Function (PBF) (Wendt et al., 1986). PBFs



are the subset of Boolean functions that can be ex-
pressed without complements of the input variables.
Figure 1 illustrates the stack filter architecture, and
corresponding PBF for a three input median function.

2.3. Weighted Order Statistics

Weighted order statistic filters are a useful sub-class
of stack filters. In this case, f(�u) is restricted to a
linearly separable positive boolean function:

f(�u) = I(�w�uT ≥ b) (9)

where wi, b ∈ {0} ∪ R+ for all i.

By choosing weights and threshold b, median, order
statistic, weighted median and weighted order statis-
tic function classes can be implemented (Yli-Harja
et al., 1991). In figure 1, the linear seperable PBF
for a 3 input median function has all wi = 1 and
b = 1.5. WOS functions, like the median, can be
implemented directly in the real domain with sort-
ing (Arce, 1998). However when targeting specialized
hardware, like Field Programmable Gate Arrays, ex-
tremely efficient implementations of the threshold de-
composition architecture are possible (Chen, 1989).

2.4. Data Dependent Threshold
Decomposition

We have described threshold decomposition where in-
puts take on quantization values from a finite set. A
useful property of stack filters is that the filter output
is always equal to one of the filter inputs. This means
a more general decomposition can be defined that can
be applied to inputs with arbitrary range and preci-
sion. We first define some new notation. For an input
vector �x = [x1, x2, . . . , xD] where xi ∈ R, we define

x(i) = i
th smallest value in �x (10)

For example, sorting elements of the vector �x into as-
cending order would produce a vector:

[x(1), x(2), . . . , x(D)] (11)

Let SIf (�x) be a stack filter defined as:

SIf (�x) =

D∑
t=1

f(T (�x, x(D))) (12)

There is a one-to-one correspondence between a stack
index filter and a stack filter:

Sf (�x) = x(SIf (�x)). (13)

3. Stack Filter and WOS Classifiers

We threshold the stack filter at 0 to produce a stack
filter classifier which outputs class labels y ∈ {0, 1}:

y = I(Sf (�x) ≥ 0). (14)

Since the stack filter output is always one of the inputs,
if xi >= 0 for all i then the stack filter must assign the
sample to class y = 1. This may not be a limitation in
some applications, however in other cases, a more flex-
ible method of combination is required e.g. inputs cor-
respond to randomly generated features. One simple
way to increase the model complexity is to supplement
the stack filter inputs with mirrored input samples:

�x← [x1, x2, . . . , xD,−x1,−x2, . . . ,−xD]. (15)

For the rest of this paper we assume a mirrored in-
put space is used. This approach was suggested in the
context of a mirrored threshold decomposition archi-
tecture by Paredes and Arce (2001). For classification,
the mirrored input space provides an absolute refer-
ence point for the stack filter. That is, the median
filter, when applied to the mirrored input space aug-
mented with 0, will always output 0 (the additional 0 is
not necessary in practice). An alternative interpreta-
tion, suggested by the weak-ordering property of stack
filters around the median (Lin et al., 1994), is that the
hard decision boundary at 0 has been replaced with a
relative boundary defined by the median.

We reformulate the stack filter classifier (14) using the
stack index filter definition (12). Since zero is guaran-
teed to lie between x(D) and x(D+1) we have:

y = I

(
2D∑
t=1

f
(
T (�x, x(t))

)
≥ D + 1

)
(16)

and applying the stacking property,

y = f(T (�x, 0)). (17)

Observe in (17) that the stack filter classifier reduces
to a binary domain classifier, which is applied to inputs
thresholded at zero. This is an important observation
since it links stack filter classifiers to other techniques
in machine learning that build binary domain classi-
fiers. It also provides some insight into the complex-
ity of stack filter classifiers compared to more popular
function classes e.g. the WOS classifier is equivalent
to thresholding all inputs at zero and then applying a
linear classifier.

3.1. Rank-Order Margin

In this section we apply the concept of margin to stack
filter and WOS classifiers. It is convenient to return to
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Figure 2. Example of rank-order margin.

class labels y ∈ {−1, 1}. The stack filter output is one
of the input samples, and therefore sample margins
ySf (�x) take values from a finite, discrete set:

ySf(�x) ∈ {x1, x2, . . . , xD,−x1,−x2, . . . ,−xD}. (18)

The classifier decision boundary is at 0, and we mea-
sure the distance to the decision boundary by rank or-
der. Figure 2 is an example of the rank-order margin
in the context of the threshold decomposition archi-
tecture. The mirrored input sample �x belongs to class
y = 1. A particular stack filter Sf (�x) produces a cor-
rect classification Sf (�x) = 7 with rank-order margin
γ = 3.

3.2. Loss Functions

We now write a loss function for the stack index filter
that includes rank-order margin. Training error (3)
follows from (17):

Prs[(f(T (�x, 0)) 	= 1, y = 1) ∪ (19)

(f(T (�x, 0)) 	= 0, y = −1)].

The stacking property means training error at rank-
order margin γ can be defined as:

Prs[(f(T (�x, x(D+γ))) 	= 1, y = 1) ∪ (20)

(f(T (�x, x(D+2−γ))) 	= 0, y = −1)]

where γ ∈ [1, 2, . . . , D]. The rank-order loss functions
are illustrated in Figure 3.

3.3. Optimization

The loss function (20) applies to the stack filter func-
tion class. Wendt et al. (1986) show that under the
mean absolute error criteria, stack filter optimization
can be posed as a linear programming problem. The
same linear program can be applied to the loss func-
tion (20) however the number of variables in the linear
program grows exponentially with the input dimen-
sion. For the remainder of this paper we investigate
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Figure 3. Rank-order margin loss functions.

the WOS classifier subclass where the number of vari-
ables is linear with input dimension.

Optimizing (20) for the WOS subclass (9) is a linear
classifier design problem, subject to the stacking con-
straints: �w, b ≥ 0. We approximate misclassification
error with the perceptron criteria and then use a lin-
ear or quadratic program, depending on the type of
regularization that we choose.

Training samples for the linear classifier are binary vec-
tors that depend on the rank-order margin γ. For each
pair �x(n), y(n) in the training sample (2) we define:

�v(n) =



T
(
�x(n), x(n)(D+γ)

)
when y(n) = 1

T
(
�x(n), x(n)(D+2−γ)

)
otherwise

(21)
We augment and transform the binary domain training
set and weight vector:

�z(n) = [y(n)�v(n)|y(n)] (22)

�w = [w1 . . . w2D|b]. (23)

The optimization problem is:

min
�τ, �w
C

N∑
n=1

τn + 
(�w)

subject to (24)

τn ≥ 1− �w�z
T (n),

�τ ≥ 0, and �w ≥ 0

where 
(�w) = |�w| for L1 regularization and the solu-
tion is found with a linear program, or 
(�w) = ‖�w‖
for L2 regularization and the solution is found with a
quadratic program.

We suggest using rank-order margin γ as a free pa-
rameter to control the complexity of WOS classifiers.
In experiments we will fix the parameter C at 500 and



then select the optimization problem by varying γ in
(21). We compare this approach to regularization in
which case we fix γ at 0 and then select the optimiza-
tion problem by varying C in (24).

3.4. Expansion on Training Samples

For some classification problems the choice of regular-
ization 
(�w) can significantly affect classifier perfor-
mance. We will see examples of this in our synthetic
experiments. When using rank-order margin as the
free parameter the choice of regularization may have
little effect since C is fixed at 500. We used two opti-
mization problems to investigate this further. The first
optimization problem was presented in (24) where we
solve for �w, b and find a classifier of the form:

f(�u) = I(�w�uT ≥ b) (25)

where �u = T (�x, 0). We call this the primal problem.

We propose a second optimization problem called the
expansion problem that explicitly expands �w in terms
of the training samples, and solves for new variables,
�α and b:

f(�u) = I


 ∑
{n|Y (n)=1}

αn

(
2D∑
i=1

ui(n) ∧ ui

)
+

∑
{m|Y (m)=−1}

αm

(
2D∑
i=1

ui(m) ∨ ui

)
≥ b


 (26)

This expansion has two significant properties. First,
the mapping is explicit and therefore when solving (24)
in terms of �α and b the regularization is applied to the
new variables: 
(�α). Second, the expansion (26) sat-
isfies the stacking constraints. Other expansions often
reduce to hamming distances in the binary domain,
which do not satisfy the stacking constraints.

4. Experiments

4.1. Comparison to Regularization

The first synthetic problem is similar to the thresh-
old max (TM) problem presented by Perkins et al.
(2003). The problem has 100 dimensions, �x ∈ R100

and each dimension is uniformly distributed between
−1.866 and 0.134. We use the first 10 dimensions of
each sample to determine class labels according to the
following rule:

y =

{
1 if max(x1, x2, . . . , x10) ≥ 0
−1 otherwise

(27)

The range of the uniform distribution is such that (27)
will assign approximately half the samples to Class 1.

Table 1. Free parameters associated with the four methods.

Method Sol
N

Regularization C Margin γ

M1 LP 500 [1, . . . , 10]
M2 QP 500 [1, . . . , 10]

R1 LP [1.0, 0.5, 0.1, 0.05, 0

R2 QP 0.01, 5e − 3, 1e− 3 0

5e− 4, 1e− 4, 5e− 5]

Observe that after thresholding input vectors at 0, the
problem is separable with a linear classifier and hence
separable with a WOS classifier.

The second synthetic problem was used by Cannon
et al. (2003). The problem has 50 dimensions and
samples are drawn from Gaussian class conditional
probabilities with equal covariance and class means:

�µ1 = �0 and �µ−1 = 0.276(�1) (28)

The class marginal probabilities are Pr(y = 1) = 2
3

and Pr(y = −1) = 1
3 and the Bayes error for this

problem is 0.15.

We investigate four methods to control complexity of
the weighted order statistic classifier. These methods
are summarized in Table 1. The first two methods
use rank-order margin as the free parameter. The two
rank-order methods, M1 and M2, differ in the type of
regularization that is applied in (24). The R1 and R2
methods threshold the input data at zero, and then
solve the binary input linear classifier design problem.
Complexity is controlled by regularization and the free
parameter is C from (24).

For each synthetic problem we will solve for both �w
and b in (25) and �α and b in (26). We have four
problems in total, and four methods for each prob-
lem. Training and validation sets of size 30, 60, 120,
240, and 480 are investigated. The test set in all cases
is 5000 samples. In each experiment, a training set is
used to optimize a classifier at each value of the free
parameter in Table 1. We choose the classifier that
performs best on the validation set and calculate its
error on the test set. Results were averaged over 10
trials and are summarized in Figure 4.

4.2. Comparison to Boosting

The second experiment is similar to one used by Ma-
son et al. (2000) to investigate DOOM. We use four
two-class data sets from the UCI Machine Learning
Repository (Blake & Merz, 1998). Each problem is di-



Table 2. Testing, validation, and test set sizes.

Data Training Validation and

Set Samples Testing Samples

Ionosphere 100 125

Sonar 58 75

Breast Cancer 182 250

Heart Disease 96 100

Table 3. Average test errors after model selection.

Data Set Boosting M1

Ionosphere 0.11 0.08

Sonar 0.32 0.32

Breast Cancer 0.35 0.35

Heart Disease 0.40 0.41

vided randomly into training, validation and test sets
of size specified in Table 2.

We use data centered spheres (Cannon et al., 2003) to
generate weak learners for the boosting procedure. A
new pattern �x is mapped to an N dimensional vector
k = [k1, k2, . . . , kN ], kn ∈ R, based on training sam-
ples:

kn = ‖�x− �x(n)‖ − tn (29)

for n = 1, . . . , N and ‖ • ‖ is the Euclidean distance.
We use the adaboost m.1 algorithm to incrementally
construct base hypotheses. The weak learner selects,
through exhaustive search, kn from k and the thresh-
old tn to minimize training error. For tn we con-
sider N + 1 discrete values based on the training data
(i.e. the average value of consecutive training points
after projection). After 100 iterations we augment
the model with mirrored (or negative) input samples.
Weights are then reoptimized using the M1 method
varying margin γ from 1 through to 50. We averaged
over 10 trials and the training and test errors are shown
in Figure 5.

During boosting we evaluate the ensemble at each iter-
ation using the validation set. We choose the iteration
with lowest error and report the test error for the 10
trials. We use the same approach to select the best
value for rank-order margin and results are summa-
rized in Table 3.

4.3. Discussion of Results

With only 10% of the features relevant, the TM-primal
problem is solved best by the M1 and R1 methods with

L1 regularization. M2 had similar performance to R2
despite the fact that C was fixed at 500. This indicates
the TM-primal problem is very sensitive to the choice
of regularization. For the TM-expansion problem we
observe a significant decrease in performance for all
methods, which can be attributed to the large number
of noisy or irrelevant features. For the Gaussian primal
problem the R2 method had the best performance. In
this experiment there was little difference between M1
and M2, and both had similar performance to R1. We
see a similar result for the Gaussian-expansion prob-
lem, and in this case M1, M2 and R1 have similar
performance to the Gaussian-primal R2 solution.

The γ-margin curves in Figure 5 are consistent with
the hypothesis that rank-order margin is related to
generalization error. The Breast Cancer result illus-
trates that rank-order margin sacrifices substantial
training error as margin is increased to improve test
error. Boosting and the M1 method had similar per-
formance in Table 3. The largest improvement was
made on the Ionosphere data set. However in Figure 5
we observe that boosting may not have converged and
therefore with additional iterations the boosting result
would be expected to improve.

5. Conclusions and Future Work

We have a presented a new concept of margin for stack
filter derived function classes. Rank-order margin has
three significant properties: (1) There are a finite set
of rank-order margin loss functions that can be di-
rectly optimized. (2) Rank-order margin and L1, L2
regularization appear to be different, but related mech-
anisms for controlling WOS classifier complexity that
obtain similar performance. (3) Rank-order margin re-
quires real-valued inputs for training (21), even though
the final binary domain classifier is applied to inputs
threshold at zero. In contrast, regularization is ap-
plied directly to the binary domain classifier and does
not consider the real-valued inputs. If the classifica-
tion problem has only binary inputs, the rank-order
margin mechanism cannot be applied.

Future research will determine if stack filter based clas-
sifiers and rank-order margin have a practical pay-
off. In the synthetic experiments we solved linear and
quadratic programs that have similar complexity to
those used to design linear classifiers. However, since
WOS classifiers threshold inputs at zero before apply-
ing the linear classifier, approximation error can be
high. Mapping to larger feature spaces can reduce ap-
proximation error, but this must be done efficiently
(e.g. kernel methods) so that the optimization prob-
lem remains computationally reasonable. Construc-



tive approaches like boosting are one way to search
larger feature spaces efficiently. However, the features
and thresholds found by boosting may not be ideal for
the WOS classifier, and as observed in experiments,
the performance gains may not be significant.

The approximation problem also manifests itself in
nonlinear digital filtering and several researchers have
suggested hyrbid linear / weighted order statistic fil-
ters to address the problem (Yin & Neuvo, 1994). Our
future research will explore some of these ideas and
aims to combine non-linear digital filtering and ma-
chine learning research efforts to benefit both fields of
study.
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Figure 4. (top left) TM-primal, (top right) TM-expansion, (bottom-left) Gaussian-primal and (bottom right) Gaussian-
expansion.
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Figure 5. (top left) Ionosphere, (top right) Sonar, (bottom left) Breast Cancer and (bottom right) Heart Disease.


