
Online Feature Selection using Grafting

Simon Perkins s.perkins@lanl.gov
James Theiler jt@lanl.gov

Los Alamos National Laboratory, Space and Remote Sensing Sciences, Los Alamos, NM 87545 USA

Abstract

In the standard feature selection problem, we
are given a fixed set of candidate features for
use in a learning problem, and must select a
subset that will be used to train a model that
is “as good as possible” according to some
criterion. In this paper, we present an inter-
esting and useful variant, the online feature
selection problem, in which, instead of all fea-
tures being available from the start, features
arrive one at a time. The learner’s task is to
select a subset of features and return a cor-
responding model at each time step which is
as good as possible given the features seen so
far. We argue that existing feature selection
methods do not perform well in this scenario,
and describe a promising alternative method,
based on a stagewise gradient descent tech-
nique which we call grafting.

1. Introduction

In the classic formulation of the feature selection prob-
lem, a learning system is presented with a training set
D consisting of (x, y) pairs, where the x values are
represented by fixed-length numeric feature vectors,
and the y values are typically numeric scalars. The
learner’s task is to select a subset of the elements of x
that can be used to derive a mapping function f from
x to y that is as “good as possible” according to some
criterion C, and sparse with respect to x.

This standard formulation assumes that all candidate
features are available from the beginning, but consider
how things change if features are instead only available
one at a time. Assume that we cannot afford to wait
until all features have arrived before learning begins,
and so the problem is to derive an x→ y mapping at
each time step, that is as good as possible using a sub-
set of just the features seen so far. We call this scenario

online feature selection or OFS. The OFS problem is
in some sense a dual to the standard online learning
(SOL) problem. In SOL, the length n of the training
feature vectors is fixed, but the number m of training
examples increases over time. In OFS, the number of
training examples is fixed, but the length of the feature
vectors increases over time.

One approach to OFS is simply to take the set of all
features seen at each time step, and then apply what-
ever standard feature selection technique we like, start-
ing afresh each time. However, given that the set of
features only increases by one every time step, this
is very inefficient. The analogy in SOL would be to
retrain from scratch every time a new training exam-
ple arrived. Therefore we insist that whatever method
we use, it must allow efficient incremental updates.
Specifically, in a true online situation, we usually have
a fixed, limited amount of computational time avail-
able in between each feature arrival, and so we want
to use a method whose update time does not increase
without limit as more features are seen.

Standard feature selection methods can be broadly di-
vided into filter and wrapper methods (Kohavi & John,
1997). How do these approaches adapt to an online
scenario?

Filter methods typically use some kind of heuristic to
estimate the relative importance of different features.
They can be divided into two groups: those that as-
sess the worth of a set of features used together, e.g.
Hall (2000), and those that evaluate each feature in-
dependently, e.g. Kira and Rendell (1992). We can re-
ject the former group for OFS because the time taken
to apply the filter would almost certainly increase as
more features are seen. In the current work we also
reject the second group because we explicitly want to
handle situations where features may only be useful in
conjunction with other features.

Wrapper methods directly evaluate the performance of

Proceedings of the Twentieth International Conference on Machine Learning (ICML-2003), Washington DC, 2003.

a subset of features by measuring the performance of
a model trained on that subset. Under OFS, at each
time step we need to consider the possibility not only
of selecting the most recently arrived feature, but also
of dropping any of the currently selected features. We
may also ask if any previously rejected features should
now be included. A wrapper approach to answering
these questions would require many model retrainings
at each update step, and so we reject wrapper methods
due to online time constraints.

2. OFS Scenarios

Before we introduce our proposed alternative, it is
worth taking a little time to consider under what cir-
cumstances OFS is of practical use.

2.1. When Features are Expensive

Most learning systems assume that all the features as-
sociated with the training data are ready and available
at the start of the learning process. In doing so, they
ignore the often considerable computational cost in-
volved in generating those features.

Consider a texture-based image segmentation prob-
lem. The task is to assign a label to each pixel in the
image according to the texture type that that pixel
lies within. Texture is a property of a pixel’s neigh-
borhood, so imagine that we have a large number of
different “texture filters” that can be applied to each
neighborhood in the image, in order to generate fea-
tures for the pixel. A training image for this task
might easily contain tens of thousands of labeled pix-
els, and each filter might be costly to apply. Rather
than spend a lot of computational effort generating all
those features up front, it might be far more preferable
to generate the features one at a time, and use an OFS
learning system to return to the user a model that is
as good as possible, given the features seen so far. As
time goes on, more and more features are generated,
and the model will become better and better.

2.2. Subset Selection in Infinite Feature Spaces

Consider the texture segmentation task again. Now,
imagine that we dramatically increase the number of
different texture filters that are considered — it is easy
to do so by considering different scales, spatial frequen-
cies and texture models. It may well be the case now
that there are far more features than we can ever af-
ford to generate in a reasonable time. We are going
to have to settle for a solution that depends on only
a subset of available features, and we have to pick a
reasonable subset without generating all the features

first! How is that possible?

One way of managing this situation is to generate fea-
tures, one at a time in a random order, and to use
OFS to select a “best so far” set of features. As time
goes on, the currently selected subset of features and
associated model will get better and better. When the
performance of the model reaches a certain threshold,
we can stop generating features and return the latest
model.

An intriguing variant of this approach is to use the set
of currently selected features to heuristically drive the
choice of what candidate features to generate next. For
instance we might choose to generate new features that
are variations on existing selected features. Perkins
et al. (2001) describe an image segmentation system
that works along these lines, generating spatio-spectral
features that are then combined using a support vector
machine.

3. A Framework for OFS

We now turn our attention to developing a formalism
and framework for online feature selection.

3.1. Regularized Risk Minimization

In recent years, a lot of attention has been given to
the idea that certain forms of regularization may be
used as an alternative to feature subset selection. This
provides the foundation of our incremental approach.
To develop the argument, we begin by considering the
problem of deriving a good mapping, given a full set of
features, as one of regularized risk minimization. That
is, the criterion to be optimized, C, takes the form:

C =
1

m

m∑
i=1

L(yi, fi) + Ω(f) (1)

where L(·, ·) is a loss function, and Ω(f) is a regulariza-
tion term that penalizes complex mapping functions.
We have used fi as a shorthand for f(xi).

3.2. Loss Functions

Different loss functions are appropriate for different
types of learning problem. In this paper we will deal
with binary classification problems, with y taking val-
ues of ±1, and so a suitable loss function is the bino-
mial negative log-likelihood, used in logistic regression
(Hastie et al., 2001, ch. 4):

Lbnll = ln(1 + e
−yf(x))

The BNLL loss function has several attractive proper-
ties. It is derived from a model that treats f(x) as the
log of the ratio of the probability that y = +1 to the
probability that y = −1, which allows us to calculate1

p(y = +1 | x) using the following relation:

p(y = +1 | x) =
ef(x)

1 + ef(x)

The loss function is also convex in f(x), which has
positive implications for finding a global optimum of
C. Finally, it only linearly penalizes extreme out-
liers, which is important for robustness. We denote
the mean loss over all training points as Lbnll.

Most of what follows in this paper applies to other
commonly used loss functions as well, and we indicate
this by dropping the BNLL subscript, except where
we need to be specific. A regression task, for instance,
would be more likely to employ a sum of squared errors
loss function.

3.3. Regularizers

The choice of regularizer in (1) depends upon the class
of models used for f . Here, we will restrict ourselves
to classes of models whose dependence on x is param-
eterized by a weight vector w. Linear models fall into
this category, as do various kinds of multi-layer percep-
trons and radial basis function networks. A commonly
used regularizer for these models is based on a norm
of the weight vector:

Ωp(w) = λ

n∑
j=1

|wj |
p

where λ is a regularization coefficient, p is a non-
negative real number, and n is the length of w. This
type of regularizer is the familiar Minkowski �p norm
raised to the p’th power, and so is usually called an
�p regularizer. If p = 2, then the regularizer is equiva-
lent to that used in ridge-regression (Hoerl & Kennard,
1970) and support vector machines (Boser et al., 1992).
If p = 1, then the regularizer is the “lasso” (Tibshi-
rani, 1994). If p → 0 then it counts the number of
non-zero elements of w.

The p = 1 lasso regularizer has some interesting prop-
erties. Firstly, it is the smallest p for which Ωp is a
convex function of w. This means that, if the loss
function in (1) is also a convex function of weights,
then optimizing C with respect to w using gradient

1Insofar as f(x) is a good model of these log odds, any-
way.

descent is guaranteed to find the global optimum, since
the sum of two convex functions is also convex.

For our work, the second crucial property2 of the �1
regularizer is that there is a discontinuity in its gradi-
ent with respect to wj at wj = 0, which tends to force
a subset of elements of w to be exactly zero at the
optimum of C (Tibshirani, 1994), which is precisely
what we require for a model that is sparse in features.
For these reasons we use the �1 regularizer in our work
here.

Note that the model for f may have additional param-
eters, e.g. bias terms, which we do not include in the
regularization.

With the BNLL loss function and �1 regularization,
the learning optimization criterion becomes:

C =
1

m

m∑
i=1

ln(1 + e−yif(xi)) + λ

n∑
j=1

|wj | (2)

3.4. Normalization

The Ωp regularizer penalizes all weights in the model
uniformly. This only makes sense if all the features
used as input to the model have a similar scale, which
can be achieved by normalizing all features as they
arrive. A convenient and efficient normalization pro-
cess is to linearly rescale each feature so that the mean
of each feature (over all training data) is zero, and the
standard deviation is one, i.e. we rescale incoming fea-
ture values xj to normalized feature values x

′
j , using

the relation:

x′j =
xj − xj
σxj

where xj is the mean raw feature value, and σxj is the
standard deviation. It is obviously necessary to use
the same rescaling when applying the learned model
to new unseen data.

4. Grafting

Perkins et al. (2003) describe a stagewise gradient
descent approach to feature selection in a regularized
risk framework, called grafting.3 The basic grafting
technique is used to build a sparse model from a large
set of pre-calculated features, but the same idea can
be adapted to OFS, where the features arrive one at a
time.

2In fact, this second property holds for all p < 2.
3The name is derived from “gradient feature testing”.

Grafting is related to other stagewise modeling meth-
ods such as additive logistic regression (Friedman
et al., 2000), boosting (Freund & Schapire, 1996) and
matching pursuit (Mallat & Zhang, 1993).

4.1. Basic Approach

Grafting is a general purpose technique that can work
with a variety of models that are parameterized by
a weight vector w, subject to �1 regularization, and
other un-regularized parameters, as described in sec-
tion 3.3 above. We also require that the output of the
model be differentiable with respect to all model pa-
rameters. The basis for grafting is the observation that
incorporating a feature into an existing model involves
adding one or more non-zero weights to that model’s
weight vector. Every non-zero weight wj added to the
model incurs a regularizer penalty of λ|wj |. Therefore,
it can only make sense to add that weight to the model
if the reduction in the mean loss L outweighs the regu-
larizer penalty. More specifically, careful examination
of (1) and (2) reveals that gradient descent will only
take wj away from zero if:

∣∣∣∣ ∂L∂wj
∣∣∣∣ > λ

Figure 1 illustrates the criterion graphically. The
grafting procedure consists of carrying out this gra-
dient test for each weight that might be added to a
model, associated with a newly seen feature. If no
weights pass the test, then the corresponding feature
is discarded. If at least one weight passes the test,
then the weight with the highest magnitude ∂L/∂wj
is added to the model and the model is optimized with
respect to all its parameters. The tests are then re-
peated for all the weights that were just tested, since
the results may change after optimizing the model.

It is instructive to break the loss derivative into pieces
using the chain rule:

∂L

∂wj
=
1

m

m∑
i=1

∂L

∂fi

∂fi

∂wj

This is equivalent (apart from the factor of 1/m) to
a dot product in an m-dimensional function space be-
tween a loss gradient vector ∇fL, and a function gra-
dient vector. The loss gradient vector depends only
upon the loss function and the current output values
of the model, but not on the details of the model. The
function gradient depends only upon the details of the
model. It is only necessary to calculate the loss gra-
dient vector once in between re-optimizations of the

−1 −0.5 0 0.5 1
0

1

2

3

4

Weight

Lo
ss

 /
R

eg
ul

ar
iz

at
io

n
/ T

ot
al Regularization

Regularization + Loss
Loss

Figure 1. Necessary conditions for progress when adding a
weight to the existing model. Downhill progress can only
be made if the magnitude of the slope ∂L/∂wj of the mean
loss with respect to the weight at wj = 0, exceeds the slope
of the regularizer with respect to the weight, which is ±λ.
In this case the conditions are not met: the loss term could
be reduced with a non-zero weight, but the increase in the
regularizer term would more than offset this.

model. This is the key to efficient updates in OFS us-
ing grafting: testing to see whether a weight associated
with a feature should be added to an existing model
simply involves computing a single dot product.

It is also clear from this picture that the magnitude
of the dot product will be maximized when the loss
gradient and the function gradient line up as much as
possible. For the BNLL loss function described earlier,
we have:

∂Lbnll

∂fi
= −

yi

1 + eyifi

4.2. Optimization

Optimization of the model with respect to its param-
eters can be carried out using any standard uncon-
strained optimization algorithm. We currently use
a conjugate gradient (CG) procedure, on account of
its simplicity and low book-keeping overhead. See
Fletcher (1987) for implementation details. The CG
method requires the use of a “black-box” line mini-
mization method but apart from that the code is very
simple.

Before adding any weights to the model, we per-
form a one-time optimization with respect to the un-
regularized parameters. After each weight is added,

the model is optimized with respect to all parameters,
which may result in certain weights going to zero. In
practice care must be taken to catch those weights
which go to zero and explicitly prune them, since the
gradient discontinuity can cause problems for the line
minimization routine.

If the output of the model is a linear function of the
model parameters, and the loss function is a convex
function of the model output values, then the mean
loss is a convex function of the model parameters. All
the models and loss functions described in this paper
meet these criteria. Since the �1 regularizer term is
also a convex function of model parameters, then these
conditions imply that C has a single global optimum
with respect to the model parameters. The question
arises: how close is the solution found by grafting to
this optimal solution?

The grafting solution is at a global optimum with re-
spect to those weights included in the model, since we
do a full re-optimization at each step. However, the
algorithm described so far does not necessarily lead to
the same global optimum that would be found by do-
ing a full optimization including all possible weights
and features seen so far. In order to make the corre-
spondence complete, we must ensure that anytime we
add a feature to the model, we also go back and reap-
ply the gradient test to all features seen in previous
time steps. Although this procedure results in an up-
date time that increases indefinitely as more features
are seen, the time taken to test previous features is
usually very small compared to the time taken to add
a new feature, due to the speed of the gradient test. If
necessary, we can impose a limit on how many times
a feature can be considered and rejected, before it is
removed from future consideration altogether.

4.3. Model Examples

The precise details of the grafting process depend upon
the form of the model for f , so we will illustrate graft-
ing for OFS with two example model classes.

4.3.1. Linear Model

Consider a linear model in n features, parameterized
by n weights and a bias term:

f(x) =

n∑
j=1

wjxj + b

We initialize things by setting n = 0, and performing
a simple 1-D optimization of C with respect to b.

At each time step t, a new feature arrives in the form

of a length m vector:

x(t) = (x1,t, x2,t, . . . , xm,t)
T

where xi,t is the t’th feature for the i’th data point.
We temporarily augment the existing model with a
new weight wt associated with the new feature. The
derivative of the mean loss with respect to wt is:

∂L

∂wt
=

1

m

m∑
i=1

∂L

∂fi
xi,t

=
1

m
∇fL · x(t)

If
∣∣∂L/∂wt∣∣ > λ, then the weight and corresponding

feature are retained in the model, n is incremented,
and we optimize with respect to w and b. Otherwise
the weight is dropped and the feature is rejected.

4.3.2. Non-Linear Model

Various non-linear models could be used for OFS and
grafting. We use a simple model inspired by additive
logistic regression (Hastie et al., 2001) and radial basis
function networks:

f(x) =

n∑
j=1

 Kj∑
k=1

wj,k g (xj − cj,k)

+ b

where g(·) can be an arbitrary non-linear 1-D function,

but is typically a Gaussian: g(x) ≡ 1
σ e
−(x/σ)2 . This

model is a simple sum of non-linear 1-D functions, each
of which is composed of a linear mixture of radial basis
functions. For each feature, the non-linear mixture can
be composed of between 1 and Kmax RBFs, where
Kmax is typically 10. The manner of choosing these
RBFs and their centers cj,k is detailed below.

We start as with the linear model, setting n = 0, and
optimizing with respect to the bias term b.

At each time step t, a new feature arrives. This time,
instead of considering a single weight associated with
the new feature, we consider Kmax of them, corre-
sponding to the weights on Kmax different 1-D RBFs.
The centers of these RBFs, ct,1 through ct,Kmax , are
determined by partially sorting the data points accord-
ing to the value of the t’th feature, in order to find the
boundaries of Kmax−1 equi-percentiles. An RBF cen-
ter is placed at each of these boundaries, and at the
minimum and maximum values. Note that the posi-
tions of these centers are fixed by the data, and are
not adjustable parameters.

We then proceed in the familiar grafting fashion by
calculating derivatives for each of the Kmax candidate
weights:

∂L

∂wj,k
=
1

m

m∑
i=1

∂L

∂fi
g(xi,j − cj,k)

and comparing the magnitudes of these derivatives
with λ. If none of the derivative magnitudes ex-
ceed λ then the feature and corresponding weights are
dropped from the model. If at least one derivative
magnitude exceeds λ, then we incorporate the weight
corresponding the maximummagnitude derivative into
the model, and optimize with respect to all existing
model parameters. The testing process is then re-
peated for the remaining weights until they have either
all been added, or have all been rejected.

5. Experiments and Results

5.1. The Datasets

We used three datasets in these experiments, labeledA
through C. Each dataset consists of a training set and
a test set. Datasets A and B are synthetic problems,
while dataset C is a real world problem, taken from
the online UCI Machine Learning Repository (Blake
& Merz, 1998).

The two synthetic problems are variations of the
threshold max (TM) problem (Perkins et al., 2003).
In the most basic version of this problem, the feature
space contains nr informative features, each of which is
uniformly distributed between -1 and +1. The output
label y for a data point x is defined as:

y =

{
+1 if [maxxi] > 2

(1−1/nr)) − 1
-1 Otherwise

The y = −1 points occupy a large hypercube wedged
into one corner of the larger hypercube containing all
the points. The y = +1 points fill the remaining space.
The constant in the above expression is chosen so that
half the feature space belongs to each class. Variations
of this basic problem are derived by adding ni irrele-
vant features uniformly distributed between -1 and +1,
and nc redundant features which are just copies of the
informative features. After generation, the features
are ordered randomly.

Dataset A is the TM problem with nr = 10, nc =
0 and ni = 90. This dataset explores the effect of
irrelevant features in the TM problem.

Dataset B is the TM problem, with nr = 10, nc =

90 and ni = 0. This dataset explores the effect of
redundant features in the TM problem.

Training and testing sets for each of these problems,
each containing 1000 points, were randomly generated.
For each experiment involving the synthetic datasets,
ten different instantiations of each dataset were gener-
ated and the results shown are mean results.

Dataset C is the “Multiple Features” database from
the UCI repository. This is a handwritten digit recog-
nition task, where digitized images of digits have been
represented using 649 features of various types. The
task tackled here is to distinguish the digit “0” from all
other digits. The training and test sets both consist of
1000 points. The features were all scaled to have zero
mean and unit variance before being used here.4

5.2. The Experiments

Six different experiments, which we denote by the let-
ters (a) through (f), were carried out on each of the
three datasets described above:

(a) OFS/grafting with the linear model.

(b) OFS/grafting with the non-linear model.

(c) Step-wise training of a fully-connected version of
the linear model.

(d) Step-wise training of a fully-connected version of
the RBF model.

(e) Linear SVM applied to all features in batch mode.

(f) Gaussian RBF kernel SVM with default libsvm
kernel parameters, applied to all features in batch
mode.

The grafting algorithms were implemented in Mat-
lab, while the SVM experiments made use of libsvm
(Chang & Lin, 2001), written in C++. Regularization
parameters — λ for the grafting experiments, C for the
SVM experiments — were chosen using five-fold cross
validation on each of the training sets. The non-linear
models used Kmax = 10 and σ = 0.3.

In order to simulate an OFS scenario, the set of fea-
tures for each of the datasets was presented to the
grafting algorithms one-by-one, in a randomly chosen
order.

Experiments (c) and (d) provide a non-grafting ap-
proach to OFS for speed comparison. The models and

4All the datasets used in these ex-
periments can be found online at:
http://nis-www.lanl.gov/~simes/data/icml03/

criteria being optimized correspond exactly to those
in experiments (a) and (b), but no gradient testing
is done to see which weights should be added to the
model. Instead, at each time step we simply add all
possible new weights to the relevant model before re-
optimizing. During the reoptimization process most of
the new weights added drop out due to regularization.

5.3. Results and Conclusions

For the OFS experiments (a), (b), (c) and (d) we
recorded the number of weights in the model, the test
performance and the elapsed processor time. These
measurements are summarized in Figure 2. Since the
SVM code we used was implemented in C++ rather
than Matlab, a direct timing comparison between
batch and online experiments was not performed.

The results show that the stagewise �1 regularized
risk minimization approach is able to select a minimal
yet good set of features for the problem at hand, in
the presence of many irrelevant or redundant features.
The timing experiments demonstrate that grafting is
an efficient way of solving the OFS problem, with an
update time that is almost independent of the number
of features seen so far.

The results also clearly show that the solution obtained
is only as good as the underlying model being used.
While the non-linear model performed excellently on
all problems (outperforming the non-linear SVM in all
cases), the linear models performed relatively poorly
on the highly non-linear synthetic problems. Despite
being fairly flexible, the non-linear model presented
here has the property of having a single global optimal
solution, which the grafting approach is guaranteed to
find.

To summarize, grafting provides an approach to online
feature selection that combines the speed of filters with
the accuracy of wrappers. The “gradient test” used
to decide if a weight should be added to a model, is
an extremely quick test, being essentially just a dot
product of length m. Yet it gives an exact and direct
answer to the question as to whether a given weight
should be added to the current model.

References

Blake, C., & Merz, C. (1998). UCI repos-
itory of machine learning databases.
www.ics.uci.edu/~mlearn/MLRepository.html.
University of California, Irvine, Dept. of Informa-
tion and Computer Science.

Boser, B., Guyon, I., & Vapnik, V. (1992). A train-

ing algorithm for optimal margin classifiers. Proc.
Fifth Annual Workshop on Computational Learning
Theory (pp. 144–152). Pittsburgh, ACM.

Chang, C., & Lin, C. (2001). LIBSVM: A library
for support vector machines. Software available at
http://www.csie.ntu.edu.tw/ cjlin/libsvm.

Fletcher, R. (1987). Practical methods of optimization.
Wiley. 2nd edition.

Freund, Y., & Schapire, R. (1996). Experiments with
a new boosting algorithm. Machine Learning: Proc.
13th Int. Conf. (pp. 148–156). Morgan Kaufmann.

Friedman, J., Hastie, T., & Tibshirani, R. (2000). Ad-
ditive logistic regression: A statistical view of boost-
ing. Annals of Statistics, 28, 337–307.

Hall, M. (2000). Correlation-based feature selection for
discrete and numeric class machine learning. Proc.
Int. Conf. Machine Learning (pp. 359–365). Morgan
Kaufmann.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The
Elements of Statistical Learning. Springer.

Hoerl, A., & Kennard, R. (1970). Ridge regression: Bi-
ased estimation for nonorthogonal problems. Tech-
nometrics, 12, 55–67.

Kira, K., & Rendell, L. (1992). A practical approach
to feature selection. Proc. Int. Conf. on Machine
Learning (pp. 249–256). Morgan Kaufmann.

Kohavi, R., & John, G. (1997). Wrappers for feature
subset selection. Artificial Intelligence, 97, 273–324.

Mallat, S., & Zhang, Z. (1993). Matching pursuit with
time-frequency dictionaries. IEEE Transactions on
Signal Processing, 41, 3397–3415.

Perkins, S., Harvey, N. R., Brumby, S. P., & Lacker, K.
(2001). Support vector machines for broad area fea-
ture classification in remotely sensed images. Proc.
SPIE 4381, Aerosense 2001. Orlando.

Perkins, S., Lacker, K., & Theiler, J. (2003). Graft-
ing: Fast, incremental feature selection by gradi-
ent descent in function space. Journal of Machine
Learning Research. In press. Also at: http://nis-
www.lanl.gov/˜simes/pubs.

Tibshirani, R. (1994). Regression shrinkage and se-
lection via the lasso (Technical Report). Dept. of
Statistics, University of Toronto.

0 50 100
0

0.1

0.2

0.3

0.4

0.5

Dataset A

M
is

cl
as

si
fic

at
io

n
E

rr
or

% Features
0 50 100

0

0.1

0.2

0.3

0.4

0.5

Dataset B

% Features
0 50 100

0

0.02

0.04

0.06

0.08

0.1
Dataset C

% Features

0 50 100
0

20

40

60

80

100

T
im

e
(s

ec
on

ds
)

% Features
0 50 100

0

20

40

60

80

100

% Features
0 50 100

0

100

200

300

400

500

% Features

0 50 100
0

5

10

15

20

N
um

be
r

of
 w

ei
gh

ts

% Features
0 50 100

0

5

10

15

20

% Features
0 50 100

0

5

10

15

20

% Features

Linear Graft
RBF Graft
Linear Step−Wise
RBF Step−Wise
Linear SVM
RBF SVM

Figure 2. Results of OFS experiments, comparing the greedy and exhaustive versions of grafting with a linear model.
Each column of figures relates to one of the three datasets. The graphs show how various measures of the learned model
change as the percentage of the total features seen increases. The step-wise experiments were not carried out for Dataset
C due to the excessive amount of time required for this method.

