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ABSTRACT

We implement and evaluate a Bayesian detector for opaque
subpixel hyperspectral targets of unknown abundance. Us-
ing both simulated and real hyperspectral backgrounds, we
compare this detector to the more conventional generalized
likelihood ratio test (GLRT) approach, identifying theoretical
differences and observing numerical similarities. Among the
theoretical advantages provided by the Bayesian detector is
admissibility, which means that no detector can be uniformly
superior to it. Potential disadvantages include the need to
choose a prior distribution, and the computation required to
integrate that distribution. For solid subpixel targets, the uni-
form prior is a natural choice, and we find that adequately-
accurate numerical integration can be achieved with only a
few evaluations of the likelihood function. We show results
for targets implanted in both simulated and real data.

Index Terms— Algorithm, Hyperspectral imagery, Tar-
get detection, Likelihood ratio, Composite hypothesis testing,
Bayes, GLRT, Multivariate t distribution

You often learn more by being wrong for the right reasons
than right for the wrong reasons.

-— Norton Juster, The Phantom Tollbooth

1. TARGET DETECTION

For an opaque subpixel hyperspectral target with reflectance
spectrum given by t, subpixel abundance a (defined as the
fraction of the pixel covered by the target), and atop a back-
ground spectrum z, the observed mixed spectrum will be
given by the replacement model [1]:

x = (1− a)z+ at. (1)

Under the null hypothesis, the target is absent and x = z.
If the target abundance a were known in advance, we could
derive the optimal detector in terms of the likelihood ratio:

L(x) =
Ptarget(x)

Pbkg(x)
=

(1− a)−dPbkg

(
x− at
1− a

)
Pbkg(x)

. (2)

For the multivariate t distribution with mean µ and covari-
ance R, we use:

Pbkg(x) =
[
(ν − 2) + (x− µ)′R−1(x− µ)

]− d+ν2 , (3)

while for the non-parameteric model, we use a variable-width
kernel density estimator:

Pbkg(x) =

N∑
n=1

1

rdk(yn)
κ

(
x− yn

rk(yn)

)
, (4)

where {yn} is a sample of N pixels from the image, and
rk(yn) corresponds to the distance from yn to its kth near-
est neighbor among that sample. Following Ref. [2], we use
the Epanechnikov kernel, take k = 75, and let N correspond
to all pixels in the image except the pixel under test.

1.1. GLRT DETECTOR

Because the target abundance is unknown a priori, however,
this is a composite hypothesis testing problem, and there is no
single optimum solution. The traditional approach is to em-
ploy the generalized likelihood ratio test (GLRT). That is: find
â that maximizes the likelihood in Eq. (2), and use L(â,x) as
the detector. That is:

DGLRT(x) = maxaL(a,x) = L(â,x). (5)

For the likelihood function in Eqs. (2,3), which corresponds
to the replacement model with an elliptically-contoured mul-
tivariate t-distributed background, it turns out that it is possi-
ble to solve for â analytically and to thus obtain a closed-form
solution for the detector in Eq. (5) [3, 4]. For different mod-
els and/or more complicated backgrounds, however, a closed-
form solution may not be possible.

1.2. BAYESIAN DETECTOR

The Bayesian approach is, first, to posit a prior pa(a) which
corresponds to what we might know about the target abun-
dance a priori; that is, before we see the data. Then, instead



Fig. 1: In the matched-pair method of implanting targets, two im-
ages are utilized. The first is treated as background (corresponding
to null hypothesis H0), and the second is a copy of the first but with
targets implanted at a specified abundance a into every pixel (cor-
responding to alternative hypothesis H1). The detector is applied to
both images, forming the two histograms of detector values. In some
experiments here, we used the urban highway image as background,
and in other experiments, we simulated the background with draws
from an EC distribution. Note that this figure also shows the RIT
SHARE 2012 image used in the numerical experiments, as well as
the target spectrum that was implanted.

of taking the peak value of the likelihood function, we take
the weighted average over the range 0 ≤ a ≤ 1:

DBayes(x) =

∫ 1

0

L(a,x)p(a)da. (6)

A natural choice, given that we do not have a priori infor-
mation about target abundance, is to use the uniform prior:
p(a) = 1. With this choice, we have not obtained a closed
form solution for DBayes(x). But we have found that an ade-
quate estimate for this integral can be obtained numerically,
with relatively few evaluations1 of L(a,x).

Thus the GLRT and Bayesian approaches both consider
the likelihood curve. Informally, we might say that a “larger
likelihood” indicates a higher confidence in target presence
– and while the GLRT looks at the peak of the curve, the
Bayesian detector looks at the area under it.

1.3. Admissibility

Following Kay [6] (and more formally, Lehmann and Ro-
mano [7]), we say that one detector is more powerful than

1Results here are based on only five values: a ∈ {0.1, 0.3, 0.5, 0.7, 0.9}.
Furthermore, since detections are based on likelihood ratios, we do not need
absolute accuracy. Another way to think of it is that we are computing the ex-
act Bayesian detector for a slightly different prior (sum of five delta functions
instead of uniform); it may not exactly agree with the result obtained with a
uniform prior, but it is still guaranteed to be admissible. Indeed, reasonable
detectors can be derived from Bayesian priors that are comprised of a single
well-chosen delta function [5].
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Fig. 2: Likelihood as a function of a, for true abundance values
a = 0 (left) and a = 0.5 (right). We sampled five points at random
(the same five points in both plots – one with and one without target
present) and show how likelihood varies with a. The vertical dashed
lines correspond to GLRT values â for each of the five points. Note
that the points with target present (in the right panel) have larger
likelihoods than the points with target absent (in the left panel).

another if it produces an unambiguously better Receiver-
Operator Characteristic (ROC) curve – that is to say: the
detection rate is better over the full range of false alarm rates.
A detector is uniformly more powerful if it is more powerful
for every value of a. The holy grail of composite hypothesis
testing is to find a uniformly most powerful (UMP) detector,
but most composite hypothesis testing problems – including
this one – do not admit a UMP solution. For these problems,
no one detector is always best. The goal for the practitioner,
then, is to find a detector that is best for the scenario(s) of
interest.

One of our motivations for investigating the Bayesian de-
tector is that Bayesian detectors are known to be admissi-
ble [6, 7]. A detector is admissible if no other detector is
uniformly more powerful. This is a good thing – if a detector
is not admissible, that means there’s an unambiguously better
detector out there, somewhere. It does not follow, however,
that an admissible detector is uniformly more powerful than
all other detectors.

As will be shown in the numerical experiments, the ad-
missible Bayesian detector is not always better than the ad
hoc GLRT detector. It very often achieves performance that
is nearly identical to the GLRT, and in some cases, particu-
larly in the low false alarm rate regime, it is the GLRT that is
better.

1.4. Other advantages

In addition to the theoretical advantages, there are also some
practical advantages to Bayesian detectors.

One advantage is straightforwardness. Once we are out-
side the realm of trying to find a closed-form solution, the
integral in Eq. (6) is straightforward to numerically estimate.
(We note that numerical estimates of the peak can also be
done straightforwardly.)

Another advantage arises when the background distri-
bution does not admit an analytical model. In that case,
matched-pair machine learning [8, 9] can be used to imple-



ment the detector by first implanting targets of abundances
drawn from the prior and then by using binary classification
to distinguish background from background+target.

2. EXPERIMENT AND RESULTS

2.1. Fully simulated data
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Fig. 3: Comparison of GLRT and Bayesian detectors in detect-
ing implanted plumes on a simulated multivariate t-distributed back-
ground, with parameters d = 360, ν = 3, and target strength T =
0.25. (a) ROC curves ares shown for GLRT (dotted lines), Bayesian
(dashed lines), and clairvoyant detectors (solid lines). From these
ROC curves, single scalar parameters can be derived. In (b), the
AUC (area under the ROC curve; actually one minus AUC) is plotted
as a function of a for all three detectors; as expected, the clairvoyant
detector has the best performance (highest AUC, or lowest 1-AUC),
and we observe that the Bayesian detector slightly outperforms the
GLRT detector. In (c), the detection rate is plotted, and again the
clairvoyant is best, while the Bayesian and GLRT are nearly identi-
cal. In (d), the FAR (false alarm rate) corresponding to a detection
rate of 0.5 is plotted. Here the differences are very small; again the
clairvoyant is best, and it appears that the GLRT just edges out the
Bayesian detector.

Although the ultimate proof of the pudding is performance
in real target detection scenarios, direct comparisons of algo-
rithms in such scenarios are inevitably anecdotal, and it is
important to understand the behavior of those algorithms as
conditions change. In this section, we consider an elliptically-
contoured (EC) multivariate t-distributed background, with
targets implanted according to Eq. (1). In this idealized set-
ting, we can consider whitened data, which means that we can
assume the background data has zero mean and unit covari-
ance.

To assess performance of different algorithms (and our

main interest here is the GLRT and Bayesian variants of the
EC-FTMF algorithm), the parameters we need to consider
are: spectral dimension d, EC non-Gaussianity parameter ν,
target abundance a, and a measure of target strength, T =
(t− µ)′R−1(t− µ)/d.

In Fig. 2, we illustrate some typical likelihood functions,
L(a,x) plotted as a function of a. The GLRT detector is
based on peaks of these curves, while the Bayesian detector
is based on the areas of these curves.

In Fig. 3, we compare the GLRT and the Bayesian detec-
tors for plausible parameters d = 360, ν = 3, and T = 0.25.
In this case we see different performance when using the AUC
statistic; the Bayesian detector does a better job over all val-
ues of a. The FAR@DR=0.5 however shows nearly identical
performance, with the GLRT marginally better. We remark
that for practical target detection, low false alarm rates are re-
quired, and the AUC does a poor job of characterizing the low
false alarm rate regime.

2.2. Real data with real targets artificially implanted

The dataset employed in this study uses an image from the
RIT SHARE 2012 campaign acquired by a SpecTIR sensor
over downtown Rochester, NY [10, 11], shown in Fig. 1. In
order to draw ROC curves, we employed the target implan-
tation method [8, 12, 13], sketched in Fig. 1. Basically, we
fractionally implanted a selected target spectrum in each pixel
of the image with a given target abundance, according to the
replacement model of Eq. (1). The detectors were then ap-
plied to both the original (target-absent) image and the treated
(target-present) image using the implanted target spectrum.
The corresponding detection statistics were thresholded for
ROC curve evaluation. The target spectrum was acquired
over a green wooden panel during the RIT SHARE 2012 cam-
paign. In order to make the target more difficult to detect, here
we chose to implant an attenuated target: t′ = (1−f)µ+ft,
with f = 0.05. We observe in Fig. 4 that the Bayesian
detector does outperform the GLRT detector, but the more
important observation is that the difference is miniscule. In-
deed, both detectors also outperform the clairvoyant detec-
tor (again, by a very small amount). Because the clairvoyant
detector’s optimality depends on the background distribution
being multivariate t, this optimality is no longer guaranteed
when applied to real data. This example demonstrates that
GLRT vs Bayes is not the whole story; modeling the back-
ground distribution is always important [14].

In Fig. 4(f), we also compute ROC curves using both
Bayesian and GLRT-based non-parametric detectors de-
rived from the Variable-bandwidth Kernel Density Estimator
(VKDE) [2]. We observe that the non-parametric detector
achieves higher detection rates when the false alarm rate is
also moderately large, but that the EC appears to do a better
job at the very lowest false alarm rates.
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Fig. 4: (a) Typical spectra from the image of downtown Rochester, along with the original target spectrum t, and the attenuated spectrum t′

that was implanted into the image. Performance of Bayesian (dashed lines) and GLRT (dotted lines) detectors are compared to the Clairvoyant
detector (solid lines): (b) using the EC-model of background in Eq. (3), and (c) using the non-parameteric model of background in Eq. (4).
We see that Bayesian and GLRT detectors have very similar performance, and that that performance is not much different from that of the
clairvoyant detector. On the other hand, we see a considerable difference in the two background models. The EC-based model appears to be
better at very low false alarms, while the NP-based detector is better for false alarm rates larger than 0.001.

3. DISCUSSION AND CONCLUSIONS

Based on our numerical experiments, we found that the ad-
missibility advantage nominally provided by Bayesian detec-
tors did not always lead to substantially better performance
in parameter regimes that correspond to practical target de-
tection. Indeed, in the low false alarm rate regime, we of-
ten observed the GLRT very competitive with (and in some
cases, even outperforming) the Bayesian detector. Even here,
however, we found that the Bayesian and GLRT performances
were not only very similar to each other, but were very nearly
as good as the (formally) unattainable optimum provided by
the clairvoyant detector.

We remark that the experiments here were based on the
uniform prior. Future experiments with priors that put more
weight on smaller values of a may prove to be more compet-
itive. The potential flexibility of the prior may enable us to
engineer detectors that optimize properties that we can spec-
ify in advance.
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