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ABSTRACT

Los Alamos is currently working toward demonstrating Cubesat-based hyperspectral detection of gas-phase
chemical plumes, a goal initially pursued in the internally funded Targeted Atmospheric Chemistry Observations
from Space (TACOS) project, and now advancing toward space deployment with the NASA-funded Nanosat At-
mospheric Chemistry Hyperspectral Observation System (NACHOS). This paper will present a general overview
of these projects. Bandwidth considerations prevent full datacube downloads, and so processing algorithms in-
clude an on-board processing component to provide matched-filter and RX images for the gases of interest. The
downlinked data will additionally include the full spectrum for a small sample of pixels, and one of the challenges
for ground-based analysis will be to incorporate these different but incomplete “views” of the datacube into a
more physical interpretation/analysis of the downlinked data.
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1. INTRODUCTION

Hyperspectral remote sensing from space provides one way to monitor what is happening on, and what we
collectively are doing to, our venerable planet. NASA’s Ozone Monitoring Instrument (OMI)1 observes the
whole earth in the ultraviolet and visible wavelengths (270–500nm), which permits the detection and quantitative
characterization of various gas species in the atmosphere. OMI provides an invaluable service, but it is a large
and expensive satellite, and it achieves its global coverage by using fairly coarse (12km) pixels.

In the Targeted Atmospheric Chemistry Observations from Space (TACOS) and Nanosat Atmospheric Chem-
istry Hyperspectral Observation System (NACHOS) projects, we have similar aims. An important difference is
that a much smaller (0.4km) pixel size is used, thereby enabling more sensitive detection of smaller sources, such
as individual power plants2, 3 or low-level volcanic emissions.4, 5 The main difference, though, is the size of the
satellite; where OMI weighs 65kg for the instrument alone, the TACOS/NACHOS projects build on a heritage of
compact hyperspectral sensors,6 and will weigh about 4kg, including both the instrument and the satellite bus.
The spectral range of the TACOS/NACHOS imager (300–500nm) is only slightly narrower than OMI, but the
resolution (320 channels, corresponding to 0.6nm per channel) is a little higher. The main driver for this is the
need to resolve the narrow lines in the spectra of both NO2 and SO2. The CCD focal plane is 320×320, which
means that in pushbroom mode, the hyperspectral image will be 320 pixels wide, and may be up to 2000 pixels
in the along-track direction. This works out to about 400 Megabytes per image, which, because our satellite is
cheap and small, is beyond the downlink capacity for a single overpass (approximately 14MB).

In a previous report,7 we described a strategy for limiting the data downlink using onboard computation.
Instead of downlinking the full data cube, we will compute matched filter outputs for each of the target gases of
interest (in addition to NO2 and SO2, we are also interested in tropospheric ozone, formaldehyde, and volcanic
BrO)∗. This computation is performed onboard and the downlinked output images are only one band each,

∗Of course we are also very interested in CO2, but we use NO2 as a “proxy” gas, since it has a shorter timescale in
the atmosphere (on the order of a day, depending on the season, compared to decades and even centuries for CO2), which
leads to its more nonuniform dispersal in the atmosphere, and this makes it a better target for a narrow field-of-view
sensor. Furthermore, the atmospheric background for NO2 is much smaller than that for CO2, as its spectral features lie



compared to the 320 bands of the full datacube. We also downlink an auxiliary Mahalanobis distance band; this
has potential value for anomaly detection but it can also be combined with the matched filter output bands to
produce outputs associated with a variety of target detectors (adaptive matched filter,8–10 adaptive coherence
estimator,11, 12 and many others13–18) as well as the RX anomaly detector.19, 20 The onboard computation
of these quantities was facilitated by two approximations: covariance sparse sampling21 and sparse matrix
transform.22, 23

In addition to the matched filter and Mahalanobis distance band, we will also downlink a small sample of
full-spectrum pixels. Some of these pixels will be chosen at random, as background samples, but we will also
downlink the pixels with highest matched filter values.

Finally, we will consider downlinking a few more single-band images: a matched filter output treating the
mean spectrum as the target signature provides a value that further extends our options for detection algorithms,
particularly for solid targets;24–26 the first (or first few) principal component bands provides valuable information
for reconstructing an approximate full-spectrum hyperspectral data cube.

2. PHYSICS

The physics of radiative transmission in the ultraviolet and visible is in some ways simpler than the radiative
transmission in the infrared, because the radiation is not directly emitted by the materials in the scene, but
reflected directly or indirectly from the sun. The equation

L = Lg exp(−εb) + Ls (1)

describes the radiance L observed at the sensor, as a function of the ground radiance Lg, the scattered radiance
Ls, the plume absorption spectrum b and the plume strength ε. The atmosphere also absorbs some radiation,
but Lg and Ls incorporate this absorption and correspond to the at-sensor radiances due to ground reflection
and scattering. Off plume (with ε = 0), the radiance is given by Lg + Ls.

Although Ls will vary from scene to scene, depending as it does on aerosol content in the atmosphere, it
should be relatively constant over the pixels in a given image. To the extent that it can be estimated, it can be
combined with the observed L to produce a value L−Ls that varies multiplicatively with plume strength ε and
absorption spectrum b.

We have spoken here of radiances, but it is possible to work in reflectance space as well. For instance, in this
case Lg would characterize the reflectance of the ground, diminished by the atmospheric absorption from ground
to sensor, the so-called at-sensor reflectance. But since the actual sensor measurement is a radiance, and since
precise calibration of ground reflectance is not a goal of the project (the ground is the nuisance, the plume is the
target), we will work in radiance space.

3. ALGORITHMS

3.1. Matched filters

A popular algorithm for plume detection is the adaptive matched filter. Given a target signature t, and a pixel
value (measured radiance) x whose off-plume statistics are given by covariance matrix R, we write q = R−1t as
the matched filter vector, and qT(x− µ) as the matched filter output. Here, µ is the mean value of x over the
scene.

Although the matched filter is a popular, and often surprisingly effective, detector, the assumptions behind
the derivation of the matched filter do not really match the physical model we have for an absorptive plume. The
matched filter is associated with an additive model, and Beers-Law absorption is fundamentally multiplicative.

For an absorption spectrum b, and a measure of plume strength (basically, column density) ε, the effect of
plume on a background spectrum z is given by exp(−εb)z, and for a weak plume this can be approximated with

in an otherwise relatively transparent and uncluttered region of the electromagnetic spectrum. We are also interested in
characterizing aerosols, and our wavelength range is appropriate for distinguishing dark, absorbing, sooty aerosols from
primarily scattering aerosols.



z− εb · z, where the operator ‘·’ corresponds to element-wise multiplication. Neglecting atmospheric scattering,
we can express plume detection in a hypothesis testing framework:

Ho : x = z (2)

H1 : x = z− εb · z, (3)

where x is the measured spectral radiance, and z is the off-plume (or background) radiance. The “additive”
term εb · z is not a constant additive term, since it depends on z, but we can approximate z with a constant.
Since gas-phase chemical plumes tend to have spectra with sharp and distinctive features whereas the solid-phase
background tends to have reflectances that vary smoothly with wavelength, a simple choice is to treat z as a
constant flat spectrum. This scalar constant can be incorporated into ε so the additive term becomes εb. Thus,
the matched filter uses the gas absorption spectrum b as the target signature.

We can do a little better than this, with an approximation that is arguably more natural, and that does not
make assertions about the shape of the background spectrum. Here, we approximate z with its mean µ. In this
case, we have a matched filter in which the target spectrum is given by t = b · µ. A potential disadvantage of
this approach is that the target signature depends on the data.

To the extent that the plume truly is purely absorptive, a nominally more accurate approach would be to
work with the logarithm of the radiance. In this case the multiplicative absorption becomes additive and the
matched filter target is the absorption spectrum. Another theoretical advantage is that the small ε assumption
is not necessary. We have not extensively investigated this approach, but are concerned that the additive effect
of scattering will lead to problematic results.

3.2. Stripes

One thing we have observed with OMI data is the visual appearance of (often subtle) stripes in the along-track
direction. These are presumably due to small differences in gain and offset of the individual pixels on the focal
plane.

To first order, we can adjust for these small differences by computing a separate mean µ for each stripe.
Thus, for a pixel in the k’th stripe, we can write qT(x − µk) where µk is the mean associated with the k’th
stripe. This can improve the sensitivity of the matched filter, but it is not always advised. (For example, if there
is a very bright object in the scene, a glint perhaps, the stripe it appears in will have an unrealistically large µ.

Fortunately, this stripe correction can be carried out offline, on the ground, after the data has been downlinked.
If µ, the global mean, is used in the onboard processing, and µk is the mean associated with the k’th stripe,
then the corrected matched filter can be written

qT(x− µk) = qT(x− µ)− qT(µk − µ). (4)

Here the first term is the matched filter output that is downlinked, and the second term is equal to the average
of this matched filter value, with the average take over all the pixels in the k’th stripe. In other words, this is a
scalar quantity that can be computed from the downlinked data. Further, if there is a bright glint and the user
judges that a more robust average be taken by masking out the glint, then this is a decision that can be made
on the ground, long after the data acquisition and downlink. Fig. 1 illustrates the effect of stripe correction in
a small patch of the image. Although the visual difference is subtle, the results of numerical experiments shown
in Table 1 indicate a numerical improvement in detection performance when stripe correction is applied.

3.3. Reconstruction

For what shall it profit a man if
he shall gain the whole spectrum?

In this section we consider the question of reconstructing the full spectrum given the limited information that
is downlinked for the bulk of the pixels in the hyperspectral image. For the primary objectives of the mission
(eg, plume detection), we need to ensure that the specific information we need is downlinked, and our algorithms



(a) uncorrected (b) stripe-corrected

Figure 1. Stripe correction in Eq. (4) reduces the stripe artifacts in the AMF image.

should make use of that information directly. But for secondary applications that may arise after the acquisition
of the data, it may be useful to have a full datacube, even if it is only estimated.

Let x ∈ Rd be the full d-component spectrum at a pixel. Let t1, . . . , tk be the k target spectra whose
matched filters will be downlinked.† We write T = [t1, . . . , tk] as the d × k matrix of target spectra, so then
u = TTR−1(x − µ) is vector of k components that is downlinked for each pixel. (Typically, k � d; otherwise,
we’d just downlink the full spectrum.) We will write v2 = (x− µ)TR−1(x− µ) as the Mahalanobis magnitude
of the pixel x. The aim is to reconstruct x given only the measurements u and v2.

We will consider two approaches: a direct deductive approach that explicitly enforces the constraints, and a
data-driven approach that uses machine learning to infer x as a function of u and v2.

3.3.1. Direct deductive approach

We do not have enough information to fully reconstruct x from the measurements u and v2, so our reconstruction
will have two steps. The first step is to identify the space of possible x values that are consistent with the
measurements, and the second step is to choose a specific x from that set.

To begin, we will transform to whitened coordinates

x̃ = R−1/2(x− µ) (5)

T̃ = R−1/2T (6)

†In addition to the specific targets of interest, we might also include in this list t = µ (so as to obtain the matched
filter output associated with the mean spectrum µ), and t = sk for the first few values of k, where sk is the k’th principal
component – ie, the k’th eigenvector of the covariance matrix R.



As an ansatz, we will write our reconstructed spectrum ̂̃x ≈ x̃:

̂̃x = ATu +BTz, (7)

where A and B are matrices to be determined, u is the set of matched filter measurements, and z is (for now)
wholly unspecified, and represents the degrees of freedom in the solution. We know that TTR−1(x−µ) = T̃Tx̃ = u

for the true spectrum x̃, so we will impose that on our estimate ̂̃x:

T̃T̂̃x = T̃TATu + T̃TBTz = u. (8)

This leads to the requirements that T̃TAT = I and T̃TBT = 0; or equivalently:

AT̃ = I, (9)

BT̃ = 0. (10)

We can satisfy the first condition by making A the pseudoinverse‡ of T̃ ; that is,

A = T̃+ = (T̃TT̃ )−1T̃T (11)

Further, we can take
B = I − T̃ T̃+ = I − T̃ (T̃TT̃ )−1T̃T (12)

and note that BT = B.

Thus, Eq. (7), along with Eq. (11) and Eq. (12), specifies a space of solutions ̂̃x that are consistent with the
matched filter outputs: ̂̃x = ATu +BTz = T̃ (T̃TT̃ )−1u +

(
I − T̃ (T̃TT̃ )−1T̃T

)
z (13)

Recall that in addition to the matched filter values, we also downlink the Mahalanobis distance v2 = (x −
µ)TR−1(x−µ) = x̃Tx̃. Thus, in addition to the constraints in Eq. (8), we want to impose this constraint on ̂̃x.
Starting with Eq. (13), we obtain

v2 =
(
ATu +BTz

)T (
ATu +BTz

)
(14)

= uTAATu + zTBATu + uTABTz + zTBBTz (15)

= uTAATu + zTBBTz = ‖ATu‖2 + ‖BTz‖2 (16)

since the cross-terms vanish; eg,

ABT = (T̃TT̃ )−1T̃T
(
I − T̃ (T̃TT̃ )−1T̃T

)
= (T̃TT̃ )−1T̃T − (T̃TT̃ )−1T̃TT̃ (T̃TT̃ )−1T̃T

= (T̃TT̃ )−1T̃T − (T̃TT̃ )−1T̃T = 0 (17)

If we write z = ζz̃, where ζ is a scalar magnitude, and z̃ is an arbitrary unit-magnitude vector, then Eq. (16)
leads to ζ2 = (v2 − ‖ATu‖2)/‖BTz̃‖2.

This leads to our simplest strategy for reconstructing the full datacube. Let z be an arbitrary vector, chosen
at random from an isotropic distribution (eg, multivariate Gaussian with covariance equal to the identity matrix);

then rescale the magnitude of z to be ζ and use ̂̃x as given by Eq. (13).

‡The pseudoinverse of a matrix Z is written Z+. If Z has k columns and d rows, then Z+ has k rows and d columns,
and satisfies Z+Z = I, though in general ZZ+ 6= I. There may be multiple choices for Z+ that satisfy this property, but
we take the Moore-Penrose pseudoinverse. If Z is of rank k, then we can write Z+ = (ZTZ)−1ZT. Although in general
ZZ+ 6= I, note that ZZ+ is symmetric: (ZZ+)T = ZZ+.



In whitened space, the fraction of “variance” that is specified by the Au component is given by ‖Au‖2/v2.
This specification fixes the equivalent of k components out of d, so one might generally expect this ratio of
variances to be on the order of k/d, which is much less than 1. Further, to the extent that the target directions
are uncorrelated with the high-variance directions in the unwhitened data space [as is often the case for gas
spectra], the variance explained by Au is likely to be a very small fraction of the total variance in the image.
This argues for including a few extra target spectra associated with µ and/or principal components of the
covariance R.

We can be somewhat less arbitrary in our choice of z by adding a further constraint that the choice of z
minimizes the magnitude of x − µ in the original (unwhitened) data space. This is equivalent to choosing z so
as to minimize the magnitude of zTRz subject to z being in the subspace defined by B. This can be achieved
by making z in the direction of the smallest (but nonzero) eigenvalue of BRBT. Note that this z should be
multiplied by either +1 or −1 with equal probability, in order to avoid altering the mean of the data. This
is the lowest-magnitude solution that satisfies the criteria for u and v2, but an undesirable feature is that the
covariance matrix will not agree with that of the original data. To achieve that, we go back to our simpler
strategy of choosing z from an isotropic Gaussian distribution.

3.3.2. Machine learning approach

Another idea for a less arbitrary choice of z is to exploit the sample of full-spectrum pixels that we do have. For
each of these full-spectrum pixels x we also have the matched filter values u and the Mahalanobis measure v2.
So the naive variant of this idea is to “learn” a function that maps u and v2 into x. As we have seen in the
previous section, this is potentially a one-to-many map, in that there are many x values that are consistent with
a given u and v2. The appeal of machine learning is that we can use data from the image to help decide which
x is most likely to occur for a given u and v2.

We can, however, leverage the insights gained in the previous section by re-casting the problem in a way that
leads to a more physics-informed machine learning. Given a training sample x (or, in whitened space, x̃), we
can identify the associated z from the definition in Eq. (7):

BTz = x̃−ATu = x̃−
(

(T̃TT̃ )−1T̃T
)T

(T̃Tx̃) (18)

= x̃− T̃ (T̃TT̃ )−1T̃Tx̃ (19)

=
(
I − T̃ (T̃TT̃ )−1T̃T

)
x̃ (20)

= Bx̃ (21)

Since B is a projection operator, we can constrain our interest to z for which z = Bz; thus, z = Bx̃ defines a
unique z.

This learning-based approach seeks a function f that provides z as a function of u and v2. Given that

function, we can go back and reconstruct ̂̃x = ATu + Bf(u, v2). In fact, we can strictly enforce the condition

that ̂̃xT̂̃x = v2 by taking ̂̃x = ATu +Bζf(u, v2), where ζ2 = (v2 − ‖ATu‖2)/‖Bf(u, v2)‖2.

But a problem with this approach is that, by design, z has mean zero, and in this whitened space, the vector
z is uncorrelated with (though maybe not strictly independent of) the vector Au. Thus, attempting to learn
the high-dimensional z will likely lead to an “average” value that has magnitude near zero, and direction that
is noisy (in fact, given that the magnitude is near zero, the direction will be particularly noisy). The magnitude
of z will be “corrected” when it is multiplied by ζ, but since the magnitude is likely to be small to start with,
one effect of this multiplication will be to enhance the noise. Another problem is that a deterministic function f
will produce a z with nonzero mean, which leads to a reconstructed x with a mean unequal to µ. Thus, in the
end, we rejected this machine learning approach.



(a) NO2 AMF
t = b

(b) NO2 AMF
t = b · µ

(c) NO2 ACE
t = b · µ

(d) SO2 AMF
t = b · µ

(e) SO2 ACE
t = b · µ

Figure 2. Plumes are artificially implanted into OMI images, and shown in these stripe-corrected detection images as a
dark rectangular patch, indicating that the plumes are absorptive.

Table 1. Performance of different detectors. Because the plumes are absorptive, larger negative values are better.

NO2 plume SO2 plume

uncorrected stripe corrected uncorrected stripe corrected

Detector Qave Qmed Qave Qmed Qave Qmed Qave Qmed
AMF t = b -2.117 -1.735 -2.163 -1.776 -2.242 -1.528 -2.285 -1.615

ACE t = b -1.606 -1.366 -1.688 -1.398 -2.238 -1.634 -2.352 -1.746

AMF t = b · µ -2.714 -2.044 -2.739 -2.051 -2.718 -2.127 -2.739 -2.097

ACE t = b · µ -2.054 -1.741 -2.145 -1.763 -2.742 -2.223 -2.794 -2.278

log AMF t = b -1.565 -1.417 -1.582 -1.433 -1.634 -1.320 -1.649 -1.393

log ACE t = b -1.948 -1.567 -1.996 -1.565 -2.184 -1.290 -2.223 -1.324



4. NUMERICAL EXPERIMENTS

In this section, we describe a simple experiment in which we implant an absorptive plume into an OMI image
and compare the detection performance of different algorithms to find the plume. We use two images, and into
one we implant an NO2 plume and in the other an SO2 plume. For a given detector D(x) we compute two
measures of quality:

Qave =
mean [D(on plume)]− mean [D(off plume)]

stdev [D(off plume)]
(22)

Qmed =
median [D(on plume)]− median [D(off plume)]

interquartile range [D(off plume)]
(23)

Since the plumes are absorptive, the Q values are generally negative, with the larger magnitude value corre-
sponding to the better detections. Table 1 lists the performance of the AMF and ACE detectors, based on
target signatures t = b and t = b · µ, where b is the absorption spectrum for the indicated chemical, and µ is
the mean spectrum over the image. Also shown is the performance obtained when the data is logarithmically
scaled; in that case only t = b makes sense. These performance values are computed with and without the stripe
correction described in Eq. (4).

We observe that stripe correction does consistently improve performance, though not substantially. We also
see that t = b ·µ works better than the simpler t = b. We were surprised to observe that the logarithmic scaling
did not outperform the linear scaling, given that the target signature is truly additive in the logarithmic space.
A tentative explanation is that the logarithm throws off what would otherwise be an approximately Gaussian
background distribution, but we have not investigated this explanation any further. In terms of AMF vs ACE,
we see that AMF does a little better on the NO2 plume and ACE is better for the SO2 plume. This provides
further evidence that it is advantageous to downlink both matched filter and Mahalanobis imagery, enabling the
AMF vs ACE decision to be made on the ground, after the acquisition.
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