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ABSTRACT

An experimental procedure is proposed for measuring the performance of feature selection algorithms in a way
that is not directly tied either to particular machine learning algorithms or to particular applications. The main
interest is in situations for which there are a large number of features to be sifted through. The approach is based
on simulated training sets with adjustable parameters that characterize the “relevance” of individual features
as well as the collective “redundancy” of sets of features. In some cases, these training sets can be virtualized;
that is, having specified their properties, one does not actually have to explicitly generate them. As a specific
illustration, the method is used to compare variants of the minimum redundancy maximum relevance (mRMR)
algorithm, and to characterize the performance of these variants in different regimes.
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Experience has shown, and a true philosophy will always show,
that a vast, perhaps the larger, portion of truth arises

from the seemingly irrelevant. —Edgar Allan Poe

Say something once, why say it again?
—Talking Heads, Psycho Killer

1. INTRODUCTION

Feature selection serves multiple purposes in machine learning, though those purposes are sometimes at cross-
purposes with each other. The first and most tangible purpose is to improve the performance of classification or
regression algorithms by reducing the number of features used by those algorithms; this alleviates the so-called
Hughes effect,1 or as Bellman calls it, the curse of dimensionality.2 A second and somewhat subjective purpose
is to find the most “relevant” features for the problem at hand, and thereby to learn something qualitative about
this problem. While less assessable, this second purpose is in some ways more appealing, because it promises
to get at the underlying mechanism (the “physics”) of whatever it is that is being measured. From columns of
numbers, you get insight – is data science wonderful, or what?

A difficulty with this second enterprise is that “relevance” turns out to be an elusive and not easily quantified
quality. And this complication is amplified when the features are not independent of each other. Are two
redundant features both relevant? Are they as relevant as another pair of features that are independently relevant?
Is the relevance of a set of features equal to the sum of the relevancies of each of the features individually? Is a
mildly relevant feature still relevant if there are not enough training samples to learn how to exploit that feature?

Driven by both of these desires – greater interpretability and lower out-of-sample error – there has been
considerable development of feature selection algorithms and approaches. It is not the intent of this paper
to introduce yet another feature selection algorithm (though the author must sheepishly admit that one new
algorithm – mRMRx – will be introduced here). The primary objective here is to address the problem of
evaluating feature selection algorithms. To this end, a model will be proposed for generating artificial datasets
that can be used for testing feature selection algorithms under conditions that can be carefully controlled.

To begin, however, this paper will take a brief detour in Section 2 to describe a specific feature selection al-
gorithm, the minimum redundancy maximum relevance (mRMR) algorithm. The explicit treatment of relevance
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and redundancy in mRMR motivates the model, developed in Section 3, that allows the generation of features
with pre-specified amounts of relevance and redundancy. In Section 4, this model is used to evaluate several
mRMR-related feature selection schemes in regimes of higher and lower redundancy, and with a higher and lower
range of relevance among the features.

The emphasis in this paper is on problems for which there are many candidate features. It is assumed that
these features are not all equally relevant and not all independent of each other. This assumption is motivated
in part by practical experience. But the assumption is also made because the alternative would be a machine
learning dystopia. If there are many independent and equally relevant features, then each individual feature can
provide only a tiny contribution to the total solution, which means that characterizing that contribution will be
difficult, and in particular will require a lot of training data. And this characterization of weak contributions
will be necessary for all of the many features.

Another issue is that efforts to actually understand the system, to produce models of the system that are
explainable∗, favor a smaller number of features. (As an aside, other practical issues, such as limited computer
memory or the need for fast in situ processing, also favor fewer features.) Getting the lowest error fit of a model
to data, however, often leads to a larger number of features.

2. FEATURE SELECTION

Our ultimate goal is to predict y from its associated x, and the goal for feature selection is to identify a subset
of features of x from which to learn how to make this prediction. That is, if x = [x1, . . . , xM ]T, then we write
S = {s1, . . . , sm} ⊂ {1, . . . ,M} as a subset of features, and xS = [xs1 , . . . , xsm ]T as the feature-selected x from
which we seek to make our predictions.

Filter

Candidate Features

Learning Algorithm

Selected Features

Wrapper

Candidate Features

Selected Features

Learning Algorithm

Figure 1. Two classes of feature selection algorithms. The filter (left) is fast, agnostic to the choice of learning algorithm,
and able to deal with a very large number of features. The wrapper (right) is iterative and therefore slower, but because
it is adaptive to the learning algorithm, it promises potentially better performance.

2.1. Filter vs Wrapper

Feature selection algorithms have traditionally been partitioned into two classes: filters and wrappers.4, 5 Al-
though modern machine learning algorithms (such as LASSO,6 LARS,7 Grafting,8 and Random Forests9)

∗Of course, the term explainable, in the increasingly popular context of explainable machine learning, is itself somewhat
resistant to clear explanation.3
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often combine aspects of both, the distinction – illustrated in Fig. 1 – is still useful. When computation is at
a premium and/or the number of candidate features is especially large, filter-based feature selectors are more
attractive. The filter sifts through the candidate features, selects a subset, and passes this subset off to the
learning algorithm. Although wrapper-based feature selectors often achieve better performance, they are com-
putationally more demanding, particularly when the number of candidate features is very large, and the choice
of features ends up being influenced by the choice of learning algorithm.

2.2. Dependency, Relevancy, Redundancy

From an information theoretic point of view, we want to know how much information a particular subset of
features of x provides about y. We begin with an information-theoretic measure of uncertainty in a single
random variable X whose distribution is given by p(x); this is the entropy:

H(X) = −
∫
p(x) log p(x) dx. (1)

For arbitrary random variables X,Y (in terms of entropy H) we define the mutual information:

I(X,Y ) = H(X) +H(Y )−H(X,Y ) =

∫∫
p(x, y) log

[
p(x, y)

p(x)p(y)

]
dx dy (2)

Observe that I(X,Y ) = H(Y )−H(Y |X), where H(Y |X) is the conditional entropy of Y conditioned on X:
it is the uncertainty in Y if X is known. We’d like to choose the features in X so as to minimize this uncertainty.
This is equivalent to maximizing I(X,Y ).

To find the m best features, what we ultimately want is to maximize I(XS , Y ) over the constraint that
|S| ≤ m. One difficulty with this formulation is that as m grows, there are combinatorially many subsets that
satisfy this constraint. The more immediate difficulty, however, lies in the expression for mutual information
I(XS , Y ) for even just one subset. As m grows, computation of mutual information becomes more expensive,
approximations become less accurate, and estimates from limited training data become increasingly problematic.

The minimum redundancy maximum relevancy (mRMR) approach of Peng et al.10 recognizes this difficulty
and replaces the optimization of this mutual information (called “dependency” in the mRMR paper)

I(S, y) = I({xs1 , xs2 , . . . , xsm}, y)

=

∫∫
· · ·
∫
p(xs1 , xs2 , . . . , xsm , y) log

[
p(xs1 , xs2 , . . . , xsm , y)

p(xs1 , xs2 , . . . , xsm)p(y)

]
dxs1 · · · dxsm dy (3)

with a simultaneous optimization of two other quantities, which the mRMR paper calls “relevancy” and “redun-
dancy.” A key aspect of mRMR is these new quantities depend only on pairwise mutual information computa-
tions. In particular,

Relevancy: D(S, y) =
1

|S|
∑
j∈S

I(xj , y) (4)

Redundancy: R(S) =
1

|S|2
∑
j,k∈S

I(xj , xk) (5)

We seek a subset S with high relevancy (so that the elements of S are highly correlated with – i.e., exhibit
high mutual information with – the output value y) but low redundancy (so the elements of S are relatively
independent of each other). In particular, the mRMR solution is chosen to maximize D(S, y)−R(S).

The additive nature of the expressions in Eq. (4) and Eq. (5) make it straightforward to build up an m-
element set S one element at a time. The first element is the one that is most relevant, the one that maximizes
D({xj}, y) = I(xj , y). Subsequent elements are given by

argmaxj 6∈S [I(xj , y)−meank∈SI(xj , xk)] (6)
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where

meank∈S =
1

|S|
∑
k∈S

. (7)

Thus, as we choose our next feature, we seek one that has high relevancy with respect to y but at the same time
has low average redundancy with respect to the existing features.

Given this formulation, two alternatives naturally present themselves. A strawman formulation suggests that
we should optimize relevance and ignore redundancy. This maximum relevance (MR) selector will maximize

argmaxj 6∈S I(xj , y) (8)

and the relative performance of MR and mRMR tells us how important it is to account for redundancy in
selecting features.

To motivate the second alternative, consider a feature j that is identical to a feature k that has already been
chosen. If this feature is not particularly correlated with other features in the existing set S, then the penalty
for exact redundancy with k will be attenuated by a factor of 1/|S|, and may end up chosen. But an exactly
redundant feature cannot be helpful, so a larger penalty is appropriate for this case. This can be achieved by
replacing the mean operator in Eq. (6) with a max operator. We call this the minimum redundancy maximum
relevance with max (mRMRx) selector:

argmaxj 6∈S [I(xj , y)−maxk∈SI(xj , xk)] (9)

2.2.1. Computation

One of the main advantages of mRMR is that the estimate of pairwise mutual information (e.g., as expressed
in Eq. (2)) is much more reliable than estimates of higher dimensional mutual information (e.g., as expressed in
Eq. (3)), and is computationally much less expensive.

Further, by reducing the feature optimization problem to one involving only pairwise mutual information,
the number of mutual information computations that need to be performed is bounded by O(M2), where M is
the number of available features. Already this is much less than the potentially exponential number of subsets
of features that might be considered by a more exhaustive scheme. But the greedy nature of the algorithms
that construct S one feature at a time means that many of these pairwise mutual informations will never need
to be computed. In the first step, there are the M computations of I(xj , y) but subsequent steps only compute
I(xj , xk) for k ∈ S; this leads to O(Mm) operations to compute m features.

3. GENERATING MODEL

The assessment of a feature selection algorithm can very much depend on the problem to which it is being
applied. Although there is no shortage of test problems, from the UCI database11 to specific feature selection
challenges,12 each problem has its own unique aspects. In addition to issues of how many features there are,
how redundant they tend to be, and how many of them are relevant, there are further issues – such as the noise
level in the data, or how nonlinear (and on the nature of that nonlinearity) the relationship is between the x’s
and y’s – to further confound the comparisons that are being made.

What is proposed here is a model for creating artificial data sets to order – with adjustable “amounts” of
relevance and redundancy in their features. In particular, we will have two parameters, α and β, that characterize
how correlated (i.e., redundant) features are with each other and how important (i.e., relevant) features are to
the quantity they are being used to predict.

This flexibility will enable us to investigate different aspects of the feature selection problem, but we also
want to keep things simple and avoid confounding effects. For this reason, we make our model linear, and we
take our features to have unit variance, to be normally distributed, and to be linearly correlated.

In particular, let the M components of a vector x be drawn from a multivariate normal distribution with
covariance matrix R. That is: x1, . . . , xM are Gaussian, with 〈xjxk 〉 = Rjk. The matrix R will encode how
redundant the features are, and in particular we will let R be Toeplitz, with Rjk = α|j−k| for 0 ≤ α < 1.
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As α → 0, the features become uncorrelated, and as α → 1, they become nearly identical. Although there
are nominally M features, the number of “effectively independent” features is O(M log(1/α)). For instance, if
α = 0.99, then log(1/α) ≈ 0.01, and a typical feature will be strongly correlated with ∼100 other features. So if
M = 1000, say, then M log(1/α) ≈ 10 suggests that there are (informally speaking) about ten distinct features,
and the rest are correlated with them. But while those other features are correlated with these ten, they are not
identical to them, so the eleventh feature will still be useful. In fact, as we will see, the fiftieth feature will still
be useful, though there are diminishing returns after those first ten.

The model itself is linear and deterministic†, so the y associated with a given x is defined by a vector of
coefficients a = [a1, . . . , aM ]:

y = aTx = a1x1 + · · ·+ aMxM (10)

To make some features more relevant than others, we make their coefficients larger. So in particular, we take
ak = zk×exp(−βk/M) with zk drawn from a unit-variance Gaussian. (Similar results are observed if zk is drawn
randomly from the interval [−1,+1], or from the set {−1,+1}.) Thus larger values of the feature index k tend
to have smaller magnitudes and the most relevant features will tend be those with low k values. As a technical
point, we go ahead and normalize the coefficients: ak ← ak/

√
aTRa so that on average y will have unit variance.

Informally, we can say that the effective number of relevant features is O(M/β), and (even more informally) that
the effective number of distinctly relevant features is O(M log(1/α)/β).

Having defined covariance matrix R and coefficient vector a, we can simulate as many (x, y) pairs as we
need. Each pair is generated from a random vector u, with each component independently generated from a
zero-mean unit-variance Gaussian; from this u, we then compute x = R1/2u and y = aTx. From a sufficiently
large training set, we apply our feature selection algorithms to identify a suitable subset of features, use machine
learning to estimate a model from these features (a linear model would be both simple and appropriate, but it
is not required) and then we draw some more samples to estimate the out-of-sample RMS error of the learned
model.

In the limit as the sample size becomes infinite, we can compute the root-mean square error for linear fits
analytically. Let c be the vector of coefficients that are obtained by whichever feature selection and linear
learning algorithms are employed. The RMS error is given by〈

(y − ŷ)2
〉

=
〈 (

aTx− cTx
)2 〉

=
〈 (

(a− c)Tx
)2 〉

= (a− c)T
〈
xxT

〉
(a− c) = (a− c)TR(a− c). (11)

The RMS error is minimized as c approaches a, but although all of the elements of a are nominally nonzero, the
feature-selected c will have only m nonzero elements.

From this, we can find, for a specified set of features, the optimal coefficients c in the N →∞ limit. Consider
the m ×M projection matrix P that maps the M -dimensional vector x of all candidate features onto the m-
dimensional vector of selected features. The (j, sj)’th element of P will be 1, for j = 1, . . . ,m, and all other
elements of P will be zero. Let b = Pc be the m-dimensional vector of nonzero values in c. Note that c = PTb
projects this m-dimensional vector back into the M -dimensional space of all features, but with only m of the
elements nonzero. We can extend Eq. (11) for RMS error to:〈

(y − ŷ)2
〉

=(a− c)TR(a− c)

=(a− PTb)TR(a− PTb) = aTRa− 2bTPRa + bTPRPTb (12)

To find the optimal coefficients, take the derivative with respect to b, and set to zero: 0 = −2PRa + 2PRPTb,
which leads to b = (PRPT)−1PRa, and since c = PTb, we have

c = PT(PRPT)−1PRa (13)

as the optimal coefficients, given a projection matrix P .

†In this formulation, Eq. (10) does not have a “noise” term. This framework would readily permit such a term, but it
is not clear that such a term is necessary. As long as we are in a regime with m < M , there will always be de-selected
features, and the effect of these features will be the same as having additive noise.
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Another advantage of this model is that it permits rapid calculation of mutual information. For two unit-
variance Gaussian variables with cross-correlation ρ, the mutual information is given by the simple formula:

I = −1

2
log(1− ρ2) (14)

If we again consider the N →∞ limit, we can determine what these correlation coefficients are for the pairwise
features; in particular,

ρ(xj , xk) =Rjk/
√
RjjRkk = Rjk (15)

ρ(xj , y) =(Ra)j/
√
Rjjvar(y) = (Ra)j (16)

where the simplified form of these equations arise from the specification that y and each of the x components
have unit variance. These formulas collectively permit us to work in the large N limit without ever actually
simulating (x, y) samples. An obvious advantage here is computational, but another advantage is that we can
investigate the behavior of algorithms in this asymptotic limit, and have one less confound (namely, finite N
effects) to worry about. Of course, finite N effects are often important, so we will want to investigate those
as well. But we can do this in a controlled way. For instance, we can use finite N to select features and fit
coefficients and then use the N →∞ limit in Eq. (11) to get a precise measure of out-of-sample performance.

As a side remark: in this limit of infinite sample size, the subset selection problem becomes “monotone
submodular” – for two subsets A and B, with A ⊂ B, the performance with A will be inferior to the performance
with B; put another way: more features are always better, as long as there are enough training samples to
properly take advantage of them.

4. RESULTS

4.1. Experiment

Choose a relatively small subset of m features from a large pool of M candidates (1 ≤ m � M). In general, if
m�M features support a good fit to the data, that implies that there must either be a lot of irrelevant features
or a lot of highly redundant features.

For the experiment in Fig. 2, datasets are generated with M = 1000 features and N = 100 data samples.
With so many more features than samples, the potential for overfitting is acute. Good feature selection counters
this problem (as does good regularization,13 but to keep the experiment simple, simple linear fitting without
regularization is performed), and for this experiment, the various mRMR-based feature selectors are compared.
We can see in Fig. 2 that performance generally improves as the number of features m is increased, but especially
for the more naive selectors, the performance turns around and gets worse as m is increased further.

The experiment in Fig. 3 follows the same format as for Fig. 2, except that the N →∞ limit is considered.
From a computational point of view, this is actually easier, because the appropriate quantities can be computed
analytically without actually generating any data. We also observe, in this case, that increasing m always
improves performance.

4.1.1. Wrapper

For the results in Fig. 2 and Fig. 3, the wrapper is stepwise forward selection. The first feature is the sin-
gle best predictor (which is the same for the mRMR selectors; s1 = argmaxs I(xs, y) = argmaxs ρ(xs, y) =
argmaxs (Ra)s), and subsequent features are added sequentially to minimize prediction error.

sk = argminjminf

〈
(y − f(xS∪j))

2
〉
. (17)

In the N →∞ limit, we can again compute things analytically, without having to explicitly draw samples. Given
an initial set of features S, we consider for each j 6∈ S the projection matrix P (j) based on the feature set S ∪ j.
We compute c(j) from Eq. (13) using this P (j), and then we compute RMS from Eq. (11) using this c(j). The
added feature j that produces the lowest RMS is the next feature that is selected.
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(c) α = 0.99, β = 10 (d) α = 0.9, β = 10

Figure 2. Performance of feature selection on simulated data with N = 100 samples and M = 1000 candidate features,
shown for increasing number of selected features m. Performance is measured in terms of the root mean square error (so
lower values are better) of the out-of-sample predictions, averaged over 100 trials. Vertical gray bars indicate standard
error (standard deviation divided by square root of number of trials). The various algorithms sequentially choose the
first fifty features according to their various criteria. In all of the above examples, the wrapper algorithm outperforms
the filter-based algorithms, but also provides a kind of lower bound on what kind of performance is possible. The MR
algorithm corresponds to a greedy “maximum relevance” filter that doesn’t consider redundancy at all; it just selects
features in order of relevance. (a,c) In the regime of high redundancy (α = 0.99), the modified mRMRx algorithm
performs better than the default mRMR. (b,d) In the regime of moderate redundancy (α = 0.9), the standard mRMR
outperforms the modified mRMRx. Larger values of β corresponded to diminished availability of features, and appears
to magnify the discrepancy between mRMR and mRMRx.
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(c) α = 0.99, β = 10 (d) α = 0.9, β = 10

Figure 3. Same as Fig. 2, but for the N → ∞ limit. Here, we see that performance is monotonic with number of features.
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5. CONCLUSIONS AND FUTURE WORK

The primary contribution of this work is a simple linear model that can provide a testbed for feature selection.
Features in this testbed can be adjusted for greater or less redundancy with each other, and greater or less
relevance to the quantity being predicted. The testbed can be used in a purely numerical manner, providing
multiple trials with training and testing datasets of specified size for use in evaluating the performance of machine
learning algorithms with different feature selection modules. Because the model is so simple, it can also be used
to investigate some properties (such as the N →∞ limit) analytically, without ever generating actual data.

This testbed was employed to address a very specific feature selection question, regarding different variants
of the popular minimum redundancy maximum relevance (mRMR) approach.

Redundancy matters. It was demonstrated that a feature selector based purely on maximum relevance (MR)
performed poorly, compared to selectors that also tried to minimize redundancy. In comparing two variants –
standard mRMR and modified mRMRx – it was found that mRMRx was better in situations where features
exhibited a high degree of redundancy, but that mRMR did better with moderately redundant features.

The experiments also confirmed a long-held view of filters vs wrappers, in that the wrapper-based feature
selector substantially outperformed all of the variants of the filter-based mRMR feature selectors.

For the work reported here, the generated data was used to investigate variants of the mRMR feature selection
approach. An obvious extension of this work would be to consider other variants of mRMR, such as

argmaxj 6∈S [I(xj , y)− λmeank∈SI(xj , xk)] (18)

which puts an adjustable weight λ on the redundancy penalty. There is an extensive literature on feature selection
algorithms. Many of these algorithms will be amenable to analysis of the kind performed here.

In this paper, we restricted ourselves to regression problems. Replacing real-valued y with a binary value
would enable the extension to classification problems. Thresholding at zero is the most natural choice, in this case,
but other threshold values could be used to create imbalanced training sets, which would be more appropriate
for analysis of feature selection in applications involving rare target detection. Using multiple coefficient vectors
a, multi-class training sets could be generated. Finally, replacing x with sign(x) would enable the investigation
of feature selection algorithms that employ binary features; the conditional mutual information maximization
(CMIM) algorithm of Fleuret14 is of particular interest: it is similar to mRMR, though it requires mutual
information of triplets of variables.

The current algorithm requires that a set of M candidate features be specified at the beginning. In the online
feature selection problem,15, 16 these features are not known a priori, but are made available in a sequential
fashion. For instance, a genetic algorithm might be employed to create image processing pipelines that generate
image planes from the raw imagery, with these image plane features then being fed into a back-end classifier17

or regressor.18 Due to memory constraints, only a bounded number of features can be kept at any given time,
so the online feature selection algorithm needs criteria for accepting new features and discarding old features so
as to continually improve classification performance. It will be of interest to modify the proposed synthetic data
generation scheme to enable online feature generation.

Feature selection is a pervasive issue for a wide variety of data analysis problems that arise in many fields of
science and engineering. A very practical application arises in spectral imaging, in which an effective subset of
the available spectral bands is sought. The band selection problem19, 20 arises in multispectral21, 22 and especially
in hyperspectral23–36 imagery; these data-driven approaches can be informed by physics-based band selection
criteria.37–39
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