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ABSTRACT
We investigate three algorithms that use the sparse matrix
transform (SMT) to produce variance-maximizing linear pro-
jections to a lower-dimensional space. The SMT expresses
the projection as a sequence of Givens rotations and this en-
ables computationally efficient implementation of the projec-
tion operator. The baseline algorithm uses the SMT to di-
rectly approximate the optimal solution that is given by prin-
cipal components analysis (PCA). A variant of the baseline
begins with a standard SMT solution, but prunes the sequence
of Givens rotations to only include those that contribute to the
variance maximization. Finally, a simpler and faster third al-
gorithm is introduced; this also estimates the projection oper-
ator with a sequence of Givens rotations, but in this case, the
rotations are chosen to optimize a criterion that more directly
expresses the dimension reduction criterion.

1. INTRODUCTION

For a variety of remote sensing detection problems, the co-
variance matrix is a key statistical quantity for characterizing
the variability of the data. Particularly for high-dimensional
data (e.g., hyperspectral imagery), it provides a concise char-
acterization of the data distribution that includes all pairwise
correlations between the spectral bands. For this reason, it re-
mains a cornerstone in the statistical analysis of remote sens-
ing data.

Often this statistical analysis benefits from a projection of
the high-dimensional data to a lower-dimensional subspace.
Principal components analysis provides the classical solution
to this problem; it is an optimal solution, but it requires an
accurate estimate of the covariance matrix and it provides a
dense projection operator.

Particularly when there are limitations on the number of
samples available for estimating the covariance matrix, the
sample covariance can over-fit the actual covariance, and lead
to reduced performance for detection and regression algo-
rithms that employ the covariance matrix. For this reason,
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various kinds of regularization have been introduced [1, 2,
3, 4, 5], including, very recently, regularization based on the
sparse matrix transform (SMT) [6, 7, 8]. What is “sparse”
about the SMT is the number of operations required to ex-
press the eigenvector matrix of the covariance matrix. Thus,
in addition to its value as a regularizer, the SMT also provides
a computationally efficient implementation of signal process-
ing operations that involve the covariance matrix. Among
these is the problem of variance-maximizing dimension re-
duction.

Although the SMT was initially developed as a regular-
ized covariance estimate, we will neglect the regularization
aspects of the SMT for this paper, and instead will concen-
trate on the implementation efficiency of three different SMT-
based approximations to the covariance matrix for the pur-
pose of fast projection to reduced dimension.

In Section 2, we describe the dimension reduction prob-
lem, and in Subsections 2.1, 2.2, and 2.3, we describe three
SMT-based approaches to solving this problem. In Section 3,
we illustrate these concepts with numerical results applied to
hyperspectral imagery, and finally in Section 4, we conclude.

2. DIMENSION REDUCTION

A linear projection Eq ∈ Rp×q maps data from x ∈ Rp to
y = ET

q x ∈ Rq with q < p. The projector does not in-
troduce any expansion or contraction, and is constrained to
satisfy ET

q Eq = I .
We can write the variance of the projected signal as〈

yT y
〉
, where the angle brackets indicate an average over

samples (in the case of hyperspectral imagery, the samples
are pixels). In particular, we can express this variance as〈

yT y
〉

= trace
(〈

yyT
〉)

= trace
(
ET

q

〈
xxT

〉
Eq

)
= trace

(
ET

q REq

)
(1)

where R =
〈
xxT

〉
is the covariance matrix associated with

the data x. (We have assumed that mean values have been
subtracted from the data, so that 〈x 〉 = 0.)

If we want a variance-maximizing projection, then we can
express this as a direct optimization problem:

Eq = argmaxEq∈Ωq
trace

(
ET

q REq

)
, (2)



1. Input covariance matrix R, number of rotations K

2. Let S = R

3. For k = 1 . . .K,

a. Find pair i, j to maximize s2
ij/(siisjj)

b. Compute angle θ = 1
2atan (−2sij , sii − sjj)

c. Let Gk = I + Θ(i, j, θ)

d. Apply the Givens rotation: S ← GT
k SGk

4. Let E = G1G2 · · ·GK

5. Let Λ = diag(S)

Fig. 1. Pseudocode for standard SMT

1. Input R, K, and q

2. Use standard SMT to obtain Λ and E

3. Let I = {i1, . . . , iq} index the q largest values of Λ

4. Let Eq be the q columns of E represented by I

Fig. 2. Standard SMT for dimension reduction

where Ωq is the set of suborthogonal matrices Eq ∈ Rp×q

satisfying ET
q Eq = I .

An optimal solution (but not a unique optimal solution) to
the dimension reduction problem is given by principal com-
ponents analysis (PCA). Write the covariance matrix R =
EΛET , where ET E = I and Λ is a diagonal matrix with
non-negative entries. Write Eq = EHq, where Hq ∈ Rp×q

is a matrix of ones and zeros that extracts the q columns of E
that are associated with the largest values in Λ. Then, this Eq

solves the optimization in Eq. (2).
We can cast PCA as an optimization problem. If R =

EΛET , then Λ = ET RE is a diagonal matrix. We can use
the fact (e.g., see Eq. 58 of Ref. [8]) that |diag(S)| ≥ |S| to
write ∣∣∣diag

(
ÊT RÊ

)∣∣∣ ≥ ∣∣∣ÊT RÊ
∣∣∣ = |R| = |Λ| (3)

with equality holding only when Ê is an eigenvector matrix
for R. Thus, the eigenvector matrix is the solution to the op-
timization problem

E = argminE∈Ω

∣∣diag
(
ET RE

)∣∣ (4)

where Ω is the set of orthogonal matrices E ∈ Rp×p satisfy-
ing ET E = I .

Note that this result can also be derived in terms of a max-
imum likelihood estimate for a Gaussian distribution [6], but
here we want to emphasize that we are maximizing variance
without making any assumptions about underlying distribu-
tion.

1. Input G1, G2, . . . , GK ; {i1, . . . , iq}; and x ∈ Rp.

2. For k = 1 . . .K,

a. Want to compute x← GT
k x = [I + Θ(i, j, θ)]T x

(Only the i and j components of x will be altered.)

b. Let
[

xi

xj

]
=

[
cos θ − sin θ
sin θ cos θ

] [
xi

xj

]
3. Set yk = xik

for k = 1 . . . q.

4. Return y ∈ Rq

Fig. 3. Application of Givens rotations to reduce dimension;
shown here is the straightforward implementation that uses
four multiplications per rotation. A streamlined variant of
this algorithm [8, Appendix B] provides updates with only
two multiplications per rotation, followed a final step with q
multiplications. Thus, only 2K + q (instead of 4K) multipli-
cations are needed. Recognizing that we don’t always need
both xi and xj , it is possible that the number of multiplica-
tions may be reduced even further.

But the PCA solution is not the only optimal solution.
Any q vectors that span the same space as the q columns of
Eq = EHq will be an optimal solution. Thus, while min-
imizing

∣∣diag
(
ET RE

)∣∣ does provide an optimal solution to
the dimension reduction problem, it is an overly restrictive
condition. Put another way, PCA solves a more general prob-
lem than is actually needed.

2.1. Sparse Matrix Transform (SMT)

The most sparse nontrivial orthogonal transform is the Givens
rotation, which corresponds to a rotation by an angle θ in the
plane of the i and j axes; specifically, it is given by G =
I + Θ(i, j, θ) where

Θ(i, j, θ)rs =


cos(θ)− 1 if r = s = i or r = s = j
sin(θ) if r = i and s = j
− sin(θ) if r = j and s = i
0 otherwise.

(5)
The Sparse Matrix Transform (SMT) expresses the eigen-

vector matrix E as a product of Givens rotations; restricting
the number of these rotations provides an approximation that
achieves two purposes. One is a regularization to resist over-
fitting; two is a reduction in the computation needed to do
signal processing with the covariance matrix.

Let Gk denote a Givens rotation, and note that a product
of orthogonal rotations G1G2 · · ·GK is still orthogonal. Let
ΩK be the set of orthogonal matrices that can be expressed
as a product of K Givens rotations. The SMT covariance
estimate is then given by R̂ = ÊΛ̂ÊT where E is given by
Eq. (4) with Ω = ΩK and Λ̂ = diag

(
ÊT RÊ

)
.



1. Input R, K, and q

2. Use standard SMT to obtain Λ and G1, . . . , GK

3. Let I = Io = {i1, . . . , iq} index the q largest values of Λ

4. Let J = {iq+1, . . . , ip} be the remaining p− q indices.

5. For k = K, . . . , 1,

a. Let i, j be the axes associated with Gk

b. If (i ∈ I and j ∈ J ) or (i ∈ J and j ∈ I), then

– Keep Gk

– Add I ← I ∪ {i, j}
– Add J ← J ∪ {i, j}

Else discard Gk

6. Using only the Gk that were not discarded, recompute
E = G1G2 . . . GK′ where K ′ ≤ K.

7. Let Eq be the q columns of E indexed by the initial Io

Fig. 4. Standard SMT for dimension reduction, with pruning

Fig. 1 illustrates the steps needed to generate the standard
SMT estimate of a covariance matrix. And Fig. 2 shows how
to use E and Λ to achieve dimension reduction. But when E
is expressed as a product of Givens rotations, then the com-
putation for applying the dimension reduction operator can
be substantially decreased. To compute y = Eqx for general
Eq requires O(pq) multiplications and additions. But when
Eq = G1G2 · · ·GKHq, then each Givens rotation requires
only O(1) multiplications and additions; so that O(K) oper-
ations are required. Typically, K = O(p) (e.g., see [9]), so if
q � 1, this can be a significant gain. Fig. 3 shows how the
application is done.

In the situation where p is so large that an actual p × p
covariance matrix is never explicitly computed, but instead is
characterized in terms of an SMT representation [9], then the
algorithm in Fig. 3 can still be used.

2.2. Pruning

Having collected the Givens rotation matrices, one can recog-
nize that not all of them contribute to the ultimate dimension
reduction criterion. For instance if the last rotation GK ro-
tates channels i and j, and both i and j are among the top q
channels, then it is simply “moving variance around” within
those top channels, and not adding to the total variance in the
top q channels. Similarly, if neither i nor j is among the top q,
then the rotation will not affect trace

(
ET

q REq

)
. This argu-

ment only applies to the last rotation, however. The effect of
earlier rotations depends on later rotations, so one must work
backwards to determine the influence of each Givens rotation.
This process is illustrated in Fig. 4.

1. Input: R, K, and q

2. Let I = {i1, . . . , iq} index the q largest values of diag(R)

3. Let S = R.

4. For k = 1 . . .K,

a. Considering only i ∈ I and j 6∈ I, find the pair i, j
for which [(sii − sjj)2 + 4s2

ij ]
1/2 − [sii − sjj ] is

maximum.

b. Compute angle θ = 1
2atan (−2sij , sii − sjj)

c. Set Gk = I + Θ(i, j, θ)

d. Apply the Givens rotation: S ← GT
k SGk

5. Let E = G1G2 . . . GK

6. Let Eq be the q columns of E represented by I

Fig. 5. Pseudocode for SMT-DR

2.3. Direct dimension reduction (SMT-DR)

The use of standard SMT, with or without pruning, requires
the optimization of Eq. (4) which is both more complicated
and more restrictive than the trace criterion in Eq. (2) that
directly describes what it is we want to optimize. With this in
mind, we developed a third approach to dimension reduction
by effectively replacing Eq. (4) with Eq. (2) in the core of the
SMT algorithm. This amounts to choosing axis pairs i, j for
which rotation maximally increases Eq. (2); that is,

[(sii − sjj)2 + 4s2
ij ]

1/2 − [sii − sjj ] (6)

instead of s2
ij/(siisjj). The details are shown in Fig. 5.

One practical advantage of this approach is that the high-
variance coordinates {i1, . . . , iq} remain the same throughout
the computation. By contrast, they are identified after the fact
when the standard SMT algorithm is employed (see Fig. 2).

3. NUMERICAL ILLUSTRATION

Because this approach is designed for the large p regime, we
will consider a hyperspectral image with extended dimension-
ality induced by spatial operators. Consider the AVIRIS [10]
image f960323t01p02 r04 sc01 of the Florida coast-
line. This is a 224-channel image, but we will augment that
by smoothing the image with kernels of radius one and two;
this leads to a p = 672 channel image. Fig. 6 shows the pro-
jection of this data to a q = 5 dimension space. If V is the
variance exhibited by the projected data, and if Vo is the vari-
ance exhibited by all p channels, then Vo − V is the missing
variance, and (Vo − V )/Vo is the relative missing variance.
If Vq is the variance exhibited by the q top principal com-
ponents, then (Vo − Vq)/Vo is a lower bound on the relative
missing variance that can be exhibited by a dimension reduc-
tion scheme.



What we see in Fig. 6 is that for small K, SMT-DR gets
more variance (lower missing variance) with fewer rotations
than standard SMT, though that advantage is matched by
SMT with pruning. For larger K (in this case, the turnaround
point is near K = 600), SMT overtakes SMT-DR. In this
regime, SMT with pruning gets the best performance.

4. DISCUSSION

Certainly trace
(
ET

q REq

)
is an appropriate criterion, in the

sense that if it is optimized, the dimension reduction prob-
lem is solved. But minimizing

∣∣diag
(
ET RE

)∣∣ and taking
Eq as the q columns of E associated with the largest val-
ues of diag

(
ET RE

)
, also produces an optimum. The trace

condition is less stringent (maximizing trace in Eq. (2) does
not minimize determinant, but minimizing the determinant in
Eq. (4) will maximize the trace). Because the trace condition
is less stringent, one can imagine that it is somehow easier
(specifically, that it can be done with fewer Givens rotations).
To some extent, this is reflected in the numerical experiment,
which sees SMT-DR achieving better performance than stan-
dard SMT for small K. But this advantage is lost for larger
K, and in any case, it is retrieved when standard SMT is fol-
lowed by pruning.

The main advantage of standard SMT is flexibility. One
need not choose q beforehand, and one can always prune the
result to get a smaller K afterwards.

SMT-DR has some advantages. It is simple to implement
and cheap to train. It provides good performance at small K,
and the set of top indices I does not change throughout the
computation.

But SMT followed by pruning is a strong competitor. It
takes a little longer than SMT-DR to train, though this is only
in the small K case, when training is cheap anyway. It gives
performance that is as good as or equal to both SMT-DR and
standard SMT, over a wide range of K values.

We remark that the alternative SMT implementation in
Ref [9] which can be applied for extremely large p, permits
both SMT-DR and SMT with pruning.
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