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ABSTRACT
We use singular vectors of the whitened cross-covariance ma-
trix of two hyper-spectral images and the Golub-Kahan per-
mutations in order to obtain equivalent tridiagonal represen-
tations of the coefficient matrices for a family of covariance-
based quadratic Anomalous Change Detection (ACD) algo-
rithms. Due to the nature of the problem these tridiagonal
matrices have block-diagonal structure, which we exploit
to derive analytical expressions for the eigenvalues of the
coefficient matrices in terms of the singular values of the
whitened cross-covariance matrix. The block-diagonal struc-
ture of the matrices of the RX, Chronochrome, symmetrized
Chronochrome, Whitened Total Least Squares, Hyperbolic
and Subpixel Hyperbolic Anomalous change detectors are re-
vealed by the white singular value decomposition and Golub-
Kahan transformations. Similarities and differences in the
properties of these change detectors are illuminated by their
eigenvalue spectra.

Index Terms— change detection, anomalous change
detection, hyper-spectral, eigenvalues, tridiagonal matrix,
block-diagonal matrix

1. INTRODUCTION

Anomalous Change Detection (ACD) methods aim to identify
rare, unusual or anomalous changes [1] and are of crucial im-
portance in many remote sensing applications, such as moni-
toring and surveillance. A number of ACD algorithms can be
expressed as quadratic functions of the data, where the coef-
ficients are based on the covariances and cross-covariances of
two images [2] being compared. Among these methods are
the RX [3], Chronochrome [4], Whitened Total Least Squares
(WTLSQ) [5], Covariance Equalization [6], Multivariate Al-
teration Detection [7], Hyperbolic [8] and Subpixel Hyper-
bolic [9] methods. The eigenvalue spectrum of coefficient
matrices can provide valuable insights into the algebraic and
numerical properties of the covariance-based quadratic ACD
methods.
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2. ANOMALOUS CHANGE DETECTORS

Consider two hyper-spectral images Dx = (x1,x2, . . . ,xN )
and Dy = (y1,y2, . . . ,yN ) where xi ∈ Rdx and yi ∈ Rdy

are corresponding pixels in the same scene. We assume, with-
out loss of generality, that the pixels in the images Dx and Dy

have zero mean. The scalar measure of anomalousness, when
comparing pixels xi and yi, is, for a large class of ACD algo-
rithms, given by [2]

A(xi,yi) = (xT
i yT

i ) Q

(
xi

yi

)
, (1)

where the specific form of the quadratic coefficient matrix
Q ∈ R(dx+dy)×(dx+dy) depends on which ACD method is
used. The change between the pixels xi and yi is considered
anomalous if A(xi,yi) exceeds a given threshold. Here, Q is
a dense symmetric matrix that is a function of the covariance
and cross-covariance matrices of the two images Dx and Dy:

X =
1
N

DxDT
x , Y =

1
N

DyDT
y , C =

1
N

DyDT
x . (2)

Covariance matrices X and Y are symmetric matrices of size
dx × dx and dy × dy respectively, and the cross-covariance
matrix C is a rectangular dy × dx matrix.

2.1. Whitened and white SVD coordinates

In the whitened coordinates D̄x = X−1/2 Dx, D̄y =
Y −1/2 Dy, that are used to “normalize” the images with
respect to illumination, environmental and other ubiquitous
changes [1], the covariance and the cross covariance matri-
ces take the following form X̄ = D̄x D̄T

x /N = I, Ȳ =
D̄y D̄T

y /N = I, C̄ = D̄y D̄T
x /N = Y −1/2 C X−1/2. Con-

sider the singular value decomposition (SVD) of the whitened
cross-covariance matrix C̄ = U Σ̄ V T , where U and V are
orthogonal matrices of size dy × dy and dx × dx respectively
and Σ̄ is a rectangular dy × dx matrix

Σ̄ =


(

Σ
0m×n

)
for dx < dy

(
0n×m Σ

)
for dy < dx

(3)



with n = min {dy, dx}, m = |dx − dy|, and the diagonal
block Σ = diag(σ1, σ2, . . . , σn) comprised of singular values
1 ≥ σ1 ≥ σ2 ≥ · · · ≥ σn ≥ 0. To see that the singular
values of C̄ are less than one, we use the consistency property
of the spectral matrix norm [10]:

‖C̄‖2 = ‖(Dy DT
y )−1/2 (Dy DT

x ) (Dx DT
x )−1/2‖2

≤ ‖(Dy DT
y )−1/2 Dy‖2 ‖DT

x (Dx DT
x )−1/2‖2

(4)

and singular value decomposition to express Dy = Uy Σy V T
y

with orthogonal matrices Uy ∈ Rdy×dy and Vy ∈ RN×N ,
and rectangular matrix Σy ∈ Rdy×N consisting of a diagonal
block of singular values and a zero block. Then

(Dy DT
y )−1/2 Dy = Uy (Σy ΣT

y )−1/2 Σy V T
y (5)

and (Σy ΣT
y )−1/2 Σy is a rectangular matrix with a diagonal

block of ones and a zero block. Thus, ‖(Dy DT
y )−1/2 Dy‖2 =

1, and similarly for x, and the inequality in (4) becomes
‖C̄‖2 ≤ 1. It follows immediately that σ1 = ‖C̄‖2 ≤ 1.

Similar to the approach used in the Optimal Covariance
Equalization [6] and the Diagonalized Covariance Equaliza-
tion methods [2] we can introduce white SVD transformation

D̃x = V T D̄x = V T X−1/2 Dx,

D̃y = UT D̄y = UT Y −1/2 Dy.
(6)

It is easy to see that X̃ = D̃xD̃T
x /N = I , Ỹ = I , and

C̃ = (UT Y −1/2 Dy Dx
T X−1/2 V )/N = Σ̄. (7)

We can now define an auxiliary transformation matrix

W =
(

X1/2 V 0
0 Y 1/2 U

)
, (8)

that we will call white SVD transformation matrix.

2.2. Tridiagonal and block diagonal structure

Consider the coefficient matrix for the RX method [3, 2]

QRX =
(

X CT

C Y

)−1

. (9)

Applying transformation W to QRX we obtain white SVD-
transformed version of the RX matrix:

Q̃RX ≡ WT QRX W =
(

Idx Σ̄T

Σ̄ Idy

)−1

. (10)

Notice that

Q̃RX =



 In Σ 0
Σ In 0
0 0 Im

−1

for dx < dy

 Im 0 0
0 In Σ
0 Σ In

−1

for dy < dx

(11)

where In is an identity matrix of size n.
There always exists an orthogonal permutation Π such

that

T = Π
(

I Σ
Σ I

)
ΠT =

G︷ ︸︸ ︷
Π

(
0 Σ
Σ 0

)
︸ ︷︷ ︸

J

ΠT + I (12)

where J is the Jordan-Wielandt matrix [11] and

G =



0 σ1

σ1 0 0
0 0 σ2

σ2 0 0

0 0
. . .

. . . . . . 0
0 0 σn

σn 0


(13)

is its permuted tridiagonal form also known as the Golub-
Kahan form [11, 12]. This means that T = G + I is a sym-
metric tridiagonal matrix with ones on the main diagonal and
σi values interlaced with zeros on the first upper and lower
diagonals; that is, matrix T is block-diagonal with each block
i = 1, 2, . . . , n of the form

Ti =
(

1 σi

σi 1

)
. (14)

Notice that if the matrix Wπ = WT Π is non-singular,
transformation Wπ QWT

π of a self-adjoint matrix Q, such
as the symmetric matrix of an ACD method (1), is congru-
ent. According to the Sylvester’s inertia theorem [13] this
transformation preserves inertia of the matrix Q, which is the
number of its positive, zero-valued and negative eigenvalues.

We can now define the permuted RX matrix

Q̂RX = Π Q̃RX ΠT =
(

T 0
0 I

)−1

=
(

T−1 0
0 I

)
,

(15)
where Π is the Golub-Kahan permutation (12). Q̂RX is block-
diagonal with its first n blocks of the form

T−1
i =

1
1− σ2

i

(
1 −σi

−σi 1

)
(16)

followed by an identity block. The two eigenvalues of T−1
i in

(16) can be solved for directly; they are 1/(1−σi) and 1/(1+
σi). Since Q̂RX is a block-diagonal matrix, its eigenvalue
spectrum {λ(RX)

1 , . . . , λ
(RX)
dx+dy

} is the union of the eigenvalue
spectra of its blocks.

The Golub-Kahan permutation Π enables the white SVD-
transformed inverse coefficient matrix Q̃−1

RX to be expressed in



Table 1. White SVD coefficient matrices: block structure and eigenvalues

Matrix Block Structure Eigenvalues

Q̂RX
1

1− σ2
i

(
1 −σi

−σi 1

)
{1/(1− σi)︸ ︷︷ ︸

n

, 1, . . . , 1︸ ︷︷ ︸
m

, 1/(1 + σi)︸ ︷︷ ︸
n

}

Q̂HACD
σi

1− σ2
i

(
σi −1
−1 σi

)
{σi/(1− σi)︸ ︷︷ ︸

n

, 0, . . . , 0︸ ︷︷ ︸
m

, −σi/(1 + σi)︸ ︷︷ ︸
n

}

Q̂Subpix
σi

(1− σ2
i )2

(
−2σi 1 + σ2

i

1 + σ2
i −2σi

)
{σi/(1− σi)2︸ ︷︷ ︸

n

, 0, . . . , 0︸ ︷︷ ︸
m

, −σi/(1 + σi)2︸ ︷︷ ︸
n

}

Q̂CC
1

1− σ2
i

(
σ2

i −σi

−σi 1

)
{(1 + σ2

i )/(1− σ2
i )︸ ︷︷ ︸

n

,
0, . . . , 0

or
1, . . . , 1︸ ︷︷ ︸

m

, 0, . . . , 0︸ ︷︷ ︸
n

}

Q̂CCsym
1

2(1− σ2
i )

(
1 + σ2

i −σi

−σi 1 + σ2
i

)
{1
2
(1 + σi)/(1− σi)︸ ︷︷ ︸

n

,
1
2
, . . . ,

1
2︸ ︷︷ ︸

m

,
1
2
(1− σi)/(1 + σi)︸ ︷︷ ︸

n

}

Q̂WTLSQ {λ(RX)
1 , . . . , λ

(RX)
k︸ ︷︷ ︸

k

, 0, . . . , 0︸ ︷︷ ︸
dx+dy−k

}

block diagonal form, thereby enabling the direct computation
of its eigenvalues. Table 1 shows that this approach can be
applied to a variety of ACD algorithms.

For the HACD algorithm, we have [8]

QHACD = QRX −
(

X 0
0 Y

)−1

(17)

and the white SVD transformation (6) produces Q̃HACD =
Q̃RX − I . Applying the Golub-Kahan permutations Π, we
get Q̂HACD = Q̂RX − I . Thus, the eigenvectors of Q̂RX and
Q̂HACD are identical, and the eigenvalues differ by 1.

Similarly, the coefficient matrix of the Subpixel Hyper-
bolic method [9]

QSubpix = −QRX

(
0 CT

C 0

)
QRX (18)

keeps its form unchanged under both white SVD and the
Golub-Kahan transformations, Q̂Subpix = −Q̂RX J Q̂RX,
and in these new coordinates can be viewed as the RX-
transformed Jordan-Wielandt matrix J .

The Chronochrome [4] has two formulations, obtained re-
spectively from least squares regression of Dx on Dy and Dy

on Dx. These lead to [2]:

Q̃CC =


Q̃RX −

(
Idx 0
0 0

)
or

Q̃RX −
(

0 0
0 Idy

) . (19)

In case when dx = dy , both forms of Q̂CC have permutation-
ally equivalent block structure and identical eigenvalues, as
m = 0. For the case dx 6= dy matrix Q̂CC is guaranteed to
have n blocks of the form shown in Table 1, and additionally,
depending on the formulation of the Chronochrome problem,
an m×m block that is either Im or 0m, that correspond to m
zero rows (columns) of the matrix Σ̄ (3).

The symmetric Chronochrome is obtained by averaging
the two Chronochrome matrices shown in (19). Note that this
is also equivalent to QCCsym = (1/2)(QRX + QHACD).

Motivated by the ordinary least squares interpretation
of the Chronochrome, we recently derived an anomalous
change detector using Total Least Squares [5]. We showed
that Whitened Total Least Squares (WTLSQ) is equivalent
to Optimized Covariance Equalization [6], as well as to the
Canonical Correlation Analysis-based Multivariate Alteration
Detection [7]. The whitened coefficient matrix Q̃WTLSQ can
be expressed

Q̃WTLSQ ≡ B̃k(B̃T
k Q̃−1

RX B̃k)−1 B̃T
k , (20)

where Bk has the effect of retaining the k largest eigenvalues
of Q̃RX and setting the remainder of the eigenvalues to zero.
Although it is possible to apply a Golub-Kahan permutation
to Q̃WTLSQ, that is not necessary since we already have the
eigenvalue spectrum from QRX.

In Table 1 we present the block structure and the analyt-
ical expressions of the eigenvalues of the discussed matrices
as the functions of the singular values σi, i = 1, 2, . . . , n
of the whitened covariance matrix. Since 0 ≤ σi ≤ 1, it



is clear that the eigenvalues for RX, WTLSQ, and all of the
Chronochrome detectors are non-negative; whereas the eigen-
values for HACD and Subpixel HACD take both positive and
negative values.

3. CONCLUSIONS

We presented a methodology that provides the eigenvalue
spectrum for a wide range of quadratic anomalous change
detectors. Table 1 summarizes these results, and Fig. 1 illus-
trates them. Although their eigenvalues differ, we find that
RX, HACD, Subpixel HACD, symmetrized Chronochrome,
and WTLSQ share the same eigenvectors. The eigenvectors
for the two variants of Chronochrome defined in (19) are
different, and are different from each other, even though
they share many (but not all, unless dx = dy) eigenvalues.
We demonstrated that it is sufficient to compute SVD of the
whitened cross covariance matrix of the data in order to al-
most immediately obtain highly structured sparse matrices
(and their eigenvalue spectra) of the coefficient matrices of
these ACD algorithms in the white SVD-transformed coordi-
nates. Converting to the original non-white coordinates, these
eigenvalues will be modified in magnitude but not in sign.
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