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Abstract—This paper introduces a measure of regression
fidelity that is directly linked to target detection performance
in multispectral and hyperspectral imagery. The measure –
called generic target response – maintains this link to target
detection without specifying a particular target signature. It is
compared to two other measures, one based on variance and one
based on volume, in a regression framework that estimates local
background from an annular neighborhood. The three generic
measures are applied to two hyperspectral images, and are used
to compare the performance of three different estimators (local
mean, local median, and local linear fit), using two different
rotations of the hyperspectral bands.

Index Terms—multispectral imagery, hyperspectral imagery,
signal processing, anomaly detection, target detection

I. INTRODUCTION

To detect targets or anomalies in a cluttered scene, one must
observe pixels that stand out from the clutter in a statistically
significant way, and this requires a quantitative characteriza-
tion of that background [1]. One way to express the detection
problem in imagery is in terms of a hypothesis test at each
pixel. The null hypothesis is that the pixel is consistent with a
given model of the background; the alternative is that there is a
target or anomaly at that pixel. A measure of model quality is
the extent to which it enables us to detect targets and anomalies
that may be in the scene (without, of course, raising more than
a specified number of false alarms).

Usually, when we speak a target, we have in mind a
specific target signature t that corresponds, for instance, to
the reflectance spectrum of the material of interest. When we
speak of anomalies, we do not have a particular signature in
mind, and in general feign ignorance of any properties that an
anomaly might possess (except that it is in some unspecified
way unlike the pixels that make up the background clutter) [2]–
[4]. But there is a middle ground, where we do have a target in
mind, but its signature t is variable, perhaps due to variability
in the environmental or of its morphological properties (e.g.,
powder particle size [5]).

Our particular interest here is point targets; strictly speak-
ing, these are targets that are smaller than a pixel, but the
formalism can be extended to small targets that are a few pixels
in spatial extent. For this problem, we can ask – on a pixel-
by-pixel basis – what is the expected background distribution.

Some standard detectors (e.g., adaptive matched filter [6]–
[9], adaptive coherence estimator [10], finite target matched
filter [11], [12]) assume the background is a multivariate

Gaussian with a single mean and a single covariance that are
both estimated as global properties of the full dataset.

One can often improve this estimate by estimating the mean
(and, in some cases, the covariance matrix) locally – e.g., from
a segmentation of the image [13], or from a moving window
centered on the pixel of interest. The classic RX detector [2]
uses an annulus around each pixel to estimate local mean and
local covariance, and based on these estimates, computes a
Mahalanobis distance as a measure of anomalousness for each
pixel. The utility of local estimation for target detection has
also been demonstrated [14]–[17].

II. REGRESSION FRAMEWORK

The problem we consider is the estimation of a vector-
valued (i.e., multispectral or hyperspectral) pixel based on
the local context of pixels in an annulus around that pixel of
interest. What we are estimating here is the target-free value of
that pixel; comparison of this target-free value with the actual
measured value provides us with a way to assess the competing
hypotheses of target-absent versus target-present for that pixel.

For instance, if ŷ is the estimated (target-absent) value of
the pixel, and y is the measured value, then we can check for
an additive target t with the formula tTR−1(y − ŷ), or for
anomalies with (y− ŷ)TR−1(y− ŷ). Here, R is a covariance
matrix which may be estimated locally or globally:

R = 〈 (y − ŷ)(y − ŷ)T 〉 , (1)

where 〈 · 〉 indicates an average over pixels, in either the local
region of interest or over the whole image. Particularly for
local covariance estimation, a regularized estimator [16], [18]–
[21] may be preferred over the sample covariance in Eq. (1).

Given an annulus of K pixel values [x1, . . . ,xK ], the aim,
as illustrated in Fig. 1, is to find a function of those pixel
values that estimates the center pixel: that is,

ŷ = f(x1, . . . ,xK). (2)

A natural choice for this function is simply the average:

f(x1, . . . ,xK) = (x1 + . . .+ xK)/K. (3)

This is the basis for many point-target and anomaly detectors.
Since ŷ is the distribution mean of the Gaussian distribution
that corresponds to the target-free pixel estimate, then it makes
sense to use the sample mean in Eq. (3) to estimate it. This
would be the right choice (indeed, the optimal choice) if



x 1 2K

y

......
x x

Fig. 1. The central pixel of interest (in blue) has value y. An annulus (in
pink) surrounding this pixel has values for K distinct pixels: x1,x2, . . . ,xK .
The regression framework seeks a function that estimates the central pixels
for most pixels in the image: y ≈ f(x1, . . . ,xK). Those pixels for which
the approximation is poor are candidates for locations of targets or anomalies.

there were no local spatial structure; i.e., if x1, . . . ,xK were
independent and identically distributed. But the sample mean
is not the only choice, and following earlier work with nested
annuli [22], a regression framework has been suggested [23]
in which the function f is learned from the data.

III. GENERIC MEASURES OF QUALITY

A. Variance and SNR

A simple way to evaluate how well ŷ approximates y is with
the mean square difference: 〈 (y − ŷ)T(y − ŷ) 〉. This variance
is just the trace of the covariance matrix in Eq. (1); that is:

Variance = 〈 (y − ŷ)T(y − ŷ) 〉 = Trace(R). (4)

One way to compute this quantity in a non-dimensional
way is to normalize it by the overall variance of the data:
〈 (y − µ)T(y − µ) 〉 = Trace(R̃), where µ is the global mean
of y, and R̃ is the covariance of y−µ. If we take a negative
logarithm of this ratio, we obtain a quality index that is larger
for higher quality (i.e., lower variance) estimates:

log Variance = logTrace(R̃)− logTrace(R). (5)

An equivalent expression can be obtained in terms of the
eigenvalues (λ1, . . . , λd) of the d × d covariance matrix R,
and the eigenvalues (λ̃1, . . . , λ̃d) of the overall covariance R̃:

log Variance = log
∑
i

λ̃i − log
∑
i

λi (6)

This is related to a signal-to-noise ratio (SNR) and can be
expressed in units of decibels:

SNR =
10

log 10
[log Variance] . (7)

B. Log Volume Ratio (LVR)

It was shown in [24] that just because this variance measure
is smaller doesn’t mean that the target detection performance
will be superior, that there are times “when closer isn’t better.”
In [25], this point was acknowledged, and direct measures
of performance based on target implantation [26]–[28] were
employed to assess the quality of the estimator ŷ. Explicitly
implanting targets into an image has the advantage of direct-
ness and of unambiguously measuring what we care about –

i.e., target detection. But implanting targets is expensive, and
often requires making ad hoc choices. Another measure of
performance was also employed, based on the volume of the
ellipsoid associated with the covariance matrix of the vectors
y − ŷ, defined in Eq. (1). The use of volume as a proxy for
anomaly detection performance was introduced in [29], and
employed for a non-ellipsoidal anomaly detector in [30].

Since volume of the ellipsoid is proportional to |R|, the
determinant of the covariance matrix, which in turn is given
by the product of the eigenvalues of R, we can express a log-
volume ratio (LVR) measure of estimator quality with

LVR = log |R̃|/|R| =
∑
i

log λ̃i −
∑
i

log λi. (8)

C. Generic target response (GTR)

This discussion introduces a third measure of fitness quality
that is directly related to how well a matched filter would
perform in detecting an additive target t. This target response
measure will then be extended to a generic target response
measure that is not tied to a specific target signature.

For an additive target on a Gaussian background, the adap-
tive matched filter is the optimal detector [6]–[8]. The detector
for target t, given local estimate ŷ and covariance R, is:

D(y) = tTR−1(y − ŷ). (9)

We expect D(y) to be large if the pixel measurement y
includes the target t, and to be small if there is no target. Over
non-target (background) pixels, D(y) has mean µn = 0 and
variance σ2

n = tTR−1t; for an average pixel with additive tar-
get t, the expected response D(y) is µt = tTR−1t. Informally,
this is (µt − µn)/σn =

√
tTR−1t “sigmas” of significance.

The better ŷ approximates y, the “smaller” R will be, and
the larger R−1 and therefore tTR−1t will be; thus a better
estimator for ŷ corresponds to a more significant detection, on
average, of a target t. And the appropriate measure of quality
for the fit of ŷ to y is thus given by

tTR−1t = Trace
(
tTR−1t

)
= Trace

(
R−1ttT

)
=
∑
i

λ−1i uT

i(tt
T)ui =

∑
i

λ−1i v2i , (10)

where ui is the ith eigenvector of R, associated with the
eigenvalue λi, and v2i is the variance in the direction ui

associated with the target matrix ttT. In particular, vi = uT
it.

While Eq. (10) provides a measure appropriate to a specific
target, we can produce a generic target response by averaging
this response over a distribution of targets. In particular, if p(t)
is a probability density function for an ensemble of potential
targets, then the expected value of the target response is given
by ∫

Trace
(
R−1ttT

)
p(t)dt = Trace

(
R−1

∫
ttTp(t)dt

)
= Trace

(
R−1 〈 ttT 〉

)
.

(11)
Arguably the “most” generic target is one whose direction

is isotropic; that is 〈 ttT 〉 = I . This leads to an alternative to



TABLE I
GENERIC MEASURES OF REGRESSION QUALITY (LARGER VALUES ARE
HIGHER QUALITY). HERE R IS THE COVARIANCE MATRIX DEFINED IN

EQ. (1), AND λi IS THE iTH EIGENVALUE OF R. GTR CORRESPONDS TO
GENERIC TARGET RESPONSE.

Measure Matrix formulation Eigenvalue formulation

log Variance − log Trace(R) − log
∑
i

λi

log Volume − log |R| −
∑
i

log λi

log Volume log |R−1|
∑
i

log λ−1
i

Isotropic GTR log Trace(R−1) log
∑
i

λ−1
i

Generalized GTR′ log Trace(R−1
〈
ttT
〉
) log

∑
i

λ−1
i v2i

Eq. (7) and Eq. (8), one that is similarly generic, but that is
particularly associated with target detection. Our generic target
response criterion is:

GTR = logTrace(R−1)− logTrace(R̃−1) (12)

= log
∑
i

λ−1i − log
∑
i

λ̃−1i . (13)

We can generalize this expression to non-isotropic, but still
fairly generic distributions on t, characterized by the target
matrix 〈 ttT 〉. If v2i = uT

i 〈 ttT 〉ui is the variance of the target
matrix in the direction of the ith eigenvector ui of R, then

GTR′ = log
∑
i

λ−1i v2i − log
∑
i

λ̃−1i v2i . (14)

Table I shows how the formulas for the three generic
measures (in un-normalized form) are related to each other.

IV. APPLICATION TO MULTI-BAND IMAGERY

In applying Eq. (2) to imagery with d spectral bands, the
problem that is illustrated in Fig. 2, we have several options.
The most general treats each xk as the vector of radiances or
reflectances associated with each band of pixel k. There are
effectively Kd scalar arguments for the function f in this case.
Since the output of f is vector-valued with d components, a
linear function f would have Kd2 coefficients.

A subset of these options considers band-by-band modeling.
Here, a separate function f is computed for each band,
based on surrounding pixels that are in the same band. Each
function f has only K scalar arguments, and produces a single
scalar output. If these are all linear models, then there are a
total of Kd distinct coefficients, since there are d separate
functions that are fit to the data.

Two kinds of band-by-band modeling will be considered.
Direct band-by-band modeling is straightforward, it simply
treats each band separately; but this direct approach fails
to take account of the correlations between bands. Principal
components analysis (PCA) band-by-band modeling attempts
to (at least partially) account for these correlations without
introducing cross-band coefficients by performing PCA on
the image, and then treating each principal component band
separately.

)= f (

Fig. 2. The aim of local background modeling is to estimate a multi-band
pixel value (illustrated in blue) as a function of the multi-band pixels in the
annulus (illustrated in pink) that surround the pixel of interest.

Table II(a) lists the generic measures of background estima-
tion quality (SNR, LVR, and GTR) for the 128-band HyMap
Cooke City dataset [31]. Here the annulus is a 5×5 patch with
the center pixel missing (thus K = 24 pixels in the annulus)
and it is applied both in the direct band-by-band mode and
with PCA band-by-band. Three estimators are employed: the
mean is given by Eq. (3), the median takes the median of the
24 pixel values, and a linear model

f(x1, . . . , xK) = a1x1 + . . .+ akxK (15)

is fit to each band.
The same experiment is applied to a different data set, the

200-band AVIRIS Indian Pines dataset [32], and the results
are shown in Table II(b).

V. CONCLUSIONS

One of the key conclusions, in terms of background model-
ing, is that linear regression substantially outperforms mean
and median. This shows that local spatial structure, which
mean and median ignore, can be usefully exploited by the
background model. This is evident in all three measures of
estimation accuracy (the regression model is closer and better),
and for both PCA and direct band-by-band modeling.

We also observe that the LVR and GTR scores are generally
higher for PCA than direct band-by-band modeling. This tells
us that the PCA modeling is more effective, which can be
interpreted in terms of spectral correlations being usefully
exploited. However, this improvement is not evident from the
SNR measure, which confirms the inadequacy of SNR that
was pointed out in [24]. (This distinction is also not evident
with the mean estimator in Eq. (3), since the mean estimate
is the same for direct and PCA.) A third observation is that
mean generally outperforms median, though the difference is
more striking in the direct band-by-band case.

Although SNR is an intuitively plausible choice for measur-
ing the accuracy of regression models, we see that it lacks the
sensitivity to compare competing approaches for background
estimation. The LVR was motivated by anomaly detection
problems [29], [30], [33], but the GTR introduced here is
specifically designed to measure target detection performance,



Fig. 3. Bands 3, 5, and 15 of the 128-band hyperspectral image of Cooke
City, Montana, are combined into blue, green, and red channels, respectively,
of this color image.

TABLE II
MEASURES OF QUALITY FOR THREE REGRESSION FUNCTIONS f , APPLIED

TO TWO HYPERSPECTRAL IMAGES.

(a) 128-band Cooke City hyperspectral image [31]
PCA band-by-band direct band-by-band

f(x1, . . . ,xK) SNR LVR GTR SNR LVR GTR
Median 12.5 98.1 0.49 12.5 3.1 -0.23

Mean 12.1 99.8 0.50 12.1 99.8 0.50
Linear 25.5 300.7 1.70 25.5 287.0 1.56

(b) 200-band Indian Pines hyperspectral image [32]
PCA band-by-band direct band-by-band

f(x1, . . . ,xK) SNR LVR GTR SNR LVR GTR
Median 9.2 17.4 0.01 9.2 -21.0 -0.14

Mean 8.6 20.9 0.03 8.6 20.9 0.03
Linear 17.1 101.0 0.54 16.6 56.7 0.37

but for non-specific targets. A potential advantage of GTR
is that its generalization, shown in Eq. (14), enables a more
flexible and quantitative way to address target variability.
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