
Online Feature Selection for Pixel Classification

Karen Glocer kag@cs.ucsc.edu

Department of Computer Science, University of California Santa Cruz

Damian Eads eads@lanl.gov
James Theiler jt@lanl.gov

Los Alamos National Laboratory, Los Alamos, NM 87544 USA

Abstract

Online feature selection (OFS) provides an
efficient way to sort through a large space of
features, particularly in a scenario where the
feature space is large and features take a sig-
nificant amount of memory to store. Image
processing operators, and especially combi-
nations of image processing operators, pro-
vide a rich space of potential features for
use in machine learning for image process-
ing tasks but they are expensive to generate
and store. In this paper we apply OFS to
the problem of edge detection in grayscale
imagery. We use a standard data set and
compare our results to those obtained with
traditional edge detectors, as well as with re-
sults obtained more recently using “statisti-
cal edge detection.” We compare several dif-
ferent OFS approaches, including hill climb-
ing, best first search, and grafting.

1. Introduction

Traditional learning systems assume that all features
are readily available from the beginning, but there are
scenarios where not all features are present initially
and must be integrated as they become available. The
online feature selection (OFS) problem is formulated
with a training set consisting of n pairs (x, y) of in-
stances and labels. Typically, x ∈ Rd and, for binary
classification, y ∈ {−1, 1}. No new instances are added
so n remains constant, but d is not. Given a way to
integrate the new features as they arrive, the compu-
tation can begin with a small set of features and more
features can be added as they become available.

Appearing in Proceedings of the 22nd International Confer-
ence on Machine Learning, Bonn, Germany, 2005. Copy-
right 2005 by the author(s)/owner(s).

The primary contribution of this paper is the applica-
tion of OFS algorithms to a real-world problem in a
domain where features truly are generated online. In
this domain, where the potential feature space is enor-
mous but for which only a few features can be held in
memory at any given time, OFS is a necessity rather
than a luxury. While the feature selection literature is
ample, the OFS literature is rather sparse and mostly
involves example problems where all of the features
are actually available beforehand (Perkins & Theiler,
2003). In this paper we demonstrate the power of OFS
in the image processing domain by applying it to the
problem of edge detection. We think this is a natural
fit for OFS and show that it provides an approach that
can outperform existing algorithms for edge detection.

An edge may be described informally as the boundary
between adjacent parts of an image, but a formal def-
inition is elusive. Different applications have different
requirements, and these requirements are often infor-
mal as well. For example, both image segmentation
and vectorization use edge detection as an interme-
diate step, but the edges that are optimized for one
purpose may not be as useful for other purposes. This
is a compelling argument for using learning techniques
to design edge detectors. Machine learning algorithms
do not require a formal definition of edges; instead
they take examples as input – marked up images that
identify where the edges are – and from those, produce
an algorithm that finds edges in new images.

In the image processing domain, each pixel in an im-
age is an instance and for the edge detection problem,
each label is either on-edge or off-edge. We remark
that pixels are spatially related to their neighbors and
therefore are not iid. This not necessarily a drawback
because it is this spatial relationship between pixels
that we exploit to identify edges.

In this work we deal with two component problems:
feature extraction and feature selection. We begin

Online Feature Selection for Pixel Classification

with training images and a corresponding ground truth
that marks each pixel in the training image as either
on-edge or off-edge. Our feature extractor, described
in Section 2, generates combinations of image process-
ing operators and applies them to the training images
to produce features. A classifier is then produced from
a linear combination of these features. The online fea-
ture selection algorithm, discussed in Section 3, selects
a subset of those features and integrates them into the
model as they arrive. The subset of features that was
selected is stored and d more features are generated
and added to the set. Then the online feature selec-
tion algorithm selects another subset. The last two
steps are repeated until a stopping condition is met.

2. Feature Extraction

Feature extraction is the problem of finding alternate
representations of the underlying data. In image pro-
cessing, a feature can be generated as the output of
one of a series of operators applied to an image. The
scalar value of a pixel in the output image is the value
of the feature for that instance. Feature extraction
encompasses not only the question of which operators
are used but also the complexity with which they are
combined. We study the effects of feature complexity
by comparing simple features that consist of a single
operator to features whose structure is a tree of oper-
ators.

2.1. Simple Features

A “simple” feature is generated by running a single
image processing operator on a raw input image. The
operators used in this work are listed in Table 1. Most
of these operators are neighborhood operators, where
each output pixel is computed from a set of neighbor-
ing input pixels.

For example, each pixel in the output of the Gaussian
smoothing operator is a weighted average of the pixels
in its neighborhood in the input image. The weights
are given by a Gaussian centered at that pixel. The
gradient operators produce output that is based on the
differences between pixels and its neighbors. The sta-
tistical operators perform various computations (e.g.,
minimum, maximum, or standard deviation) on the
pixel values in a neighborhood of a given pixel and the
result of those computations provide the pixel values
for the ouput image.

Non-maximal suppression and hysteresis thresholding
are specialized operators that were added because they
are particularly valueable in edge detection.

Gabor filters are commonly used for texture recogni-

Table 1. These are the operators used to produce simple
features. In addition, they are the building blocks for all
tree-structured features. All of these features are grouped
into categories so that when we discuss more complex fea-
tures, the representation can be more compact.

Feature Category

Gaussian Smoothing Smooth
2-D Gradient Grad
Sobel Gradient Grad
Min, Max, Peak Stat
Standard deviation Stat
Non-maximal suppression Stat
Hysteresis thresholding Stat
Morphological open, close Morph
TopHat Morph
Gabor filter Gabor
Rotation Invariant Gabor Gabor

tion and other low level image processing tasks. They
possess good localization properties in both the spatial
and frequency domains. Gabor functions are complex
exponentials modulated by a Gaussian envelope. The
implementation we used was a multi-resolution pyra-
midal filter bank for matlab designed by Nestares
et al. (1998). To achieve rotational invariance, we
interpolate the oriented components for each scale of
the pyramid of filters using the Discrete Fourier Trans-
form (Greenspan et al., 1994).

2.2. Tree-Structured Features

Simple features used with a linear classifier restrict the
hypothesis class to linear combinations of single oper-
ators. Unfortunately, this class is not rich enough to
learn hypotheses that require combinations of opera-
tors. For instance, the well-known Canny (1986) edge
detector runs the following operations sequentially:
Gaussian smoothing, 2-D gradient, non-maximal sup-
pression, and hysteresis thresholding. If we restrict
ourselves to simple features, we would be trying to
learn Canny by taking the linear combination of a
smoothed image, a gradient image, a non-maximally
suppressed image, and a thresholded image. To make
matters worse, those last two operators make very lit-
tle sense unless they are run in concert with other op-
erators.

Allowing features to have a more complex structure
produces a richer hypothesis class. We used tree struc-
tures because they have been demonstrated to work
well in other situations (Koza, 1992). Given a rich set
of operators, these trees can represent a large variety
of functions of the original input data. The operators

Online Feature Selection for Pixel Classification

Table 2. This is the grammar used to generate features.
In addition to this root production, a feature can also be
generated by adding, subtracting, multiplying, or dividing
any two features generated from these rules.

RootProduction ::=

Morph (Stat (Grad (Gabor (Smooth (x))))) |
Morph (Stat (Grad (Smooth (x)))) |
Morph (Stat (Gabor (Smooth (x)))) |
Morph (Stat (Smooth (x))) |
Morph (Grad (Gabor (Smooth (x)))) |
Morph (Grad (Smooth (x))) |
Morph (Gabor (Smooth (x))) |
Morph (Smooth (x)) |
Morph (Gabor (x)) |
Morph (Morph (x)) |
Morph (Stat (x)) |
Morph (Grad (x)) |
Morph (x) |
Stat (Grad (Gabor (Smooth (x)))) |
Stat (Gabor (Smooth (x))) |
Stat (Grad (Smooth (x))) |
Stat (Smooth (x)) |
Stat (Gabor (x)) |
Stat (Grad (x)) |
Stat (Stat (x)) |
Stat (x) |
Grad (Gabor (Smooth (x))) |
Grad (Gabor (x)) |
Grad (Smooth (x)) |
Grad (x)

for these trees are the same as those used to generate
simple features, but are combined only in ways that
make sense given the nature of the operators. This
constraint is provided by a context-sensitive grammar.
The advantages of grammars are threefold. First, only
sensible features are generated. Second, by restricting
the way in which features can be combined, grammars
greatly reduce the size of the search space. Third, they
are a provide an effective way to incorporate domain
knowledge. The root production of the grammar is
described in Table 2.

3. Online Feature Selection

The online feature selection problem assumes that fea-
tures arrive in stages but that no new instances are
added to the problem. At stage t, a new set ft of
features arrives. The set of all features at stage t is
denoted by Ft. Thus Ft = {ft ∪ Fs,t−1}, the union of
features that have just arrived with the set of features
that was selected at time t − 1. At time t , after the
arrival of ft, a feature selection algorithm selects the
subset Fs,t ⊆ Ft based on some as yet unspecified crite-
rion. In this way online feature selection can be viewed

as adding a wrapper around a feature selection algo-
rithm that is parameterized by the number of features
added per stage, dt = |ft|, and by the feature selection
algorithm it uses. Feature selection algorithms gener-
ally fall into three main categories: filters, wrappers
and embedded methods (Guyon & Elisseeff, 2003). In
this paper we use two wrappers and one embedded
method: hill climbing, best first search, and grafting.

3.1. Hill Climbing

The hill climbing algorithm initializes a cache with d
features. The initial fitness of the algorithm is the fit-
ness of the initial cache. The cache is then mutated in
one of three ways, each of which are equally probable:
a randomly selected feature is removed from the cache,
a randomly generated feature is added to the cache,
or a randomly selected feature in the cache is replaced
with a randomly generated feature. If this mutation
improves the fitness, the mutation is kept. Forrest and
Mitchell (1993) refer to this as random mutation hill
climbing, or RMHC. The criterion we used to evaluate
the fitness of the cache is the “empirical Bayes risk,”
RBayes, which can be computed from the ROC curve
by finding the point on the curve where the slope is 45
degrees (Green & Swets, 1966).

3.2. Best First Search

Best first search, according to Kohavi and John (1997),
is more robust than hill climbing. It is, in any case, a
more systematic approach to feature subset selection.
The two most common variants of best first search
are sequential forward selection and sequential back-
ward elimination. Although it can be slower, we use
backward elimination because it is not sensitive to the
feature that is chosen first. The number of features
per stage of the online feature selection algorithm is
small enough that the computation time for either al-
gorithm is much less than the time it takes to extract
new features.

Sequential backward elimination is initialized with a
full set of features F0. The algorithm first removes
each feature fi ∈ F0 from F0 and trains an induction
algorithm with the feature set F0 − {fi}. The feature
fmax whose removal minimizes the error in the result-
ing classifier is removed, and F1 = F0−{fmax}. In the
next round, for each of the remaining features fi ∈ F1,
the algorithm tests the feature subset F1−{fi} and re-
moves the feature fmax that minimizes the error of the
resulting classifier to produce F2 = F1 − {fmax}. This
process repeats until a local minimum of classifier er-
ror has been reached or some other stopping condition
is met.

Online Feature Selection for Pixel Classification

In practice, removing a feature may have only a very
small negative impact on performance, so backward
elimination becomes a trade-off between marginally
lower performance and a smaller set of features. This
implies a need for some sort of regularization. Fol-
lowing Kohavi and John (1997), we added a penalty
c = 0.001 per feature – or equivalently, the zero-norm
of the weight vector (Weston et al., 2003) – to force
the algorithm to favor smaller subsets. Thus our best
first search algorithm minimizes the loss function

L = RBayes + c|w|0.

where RBayes is the empirical Bayes risk, described ear-
lier.

3.3. Grafting

Grafting (Perkins et al., 2003) recasts feature subset
selection as the minimization of a regularized risk cri-
terion of the form:

C = L(f(x)) + λ
d∑

j=1

|wj |.

The second term, the regularizer, is the `1 norm of the
weight vector. The free parameter, λ, characterizes
the trade-off between accuracy and complexity. The
first term of the criterion function is the loss function,
which in our implementation is the binomial negative
log likelihood (BNLL) loss described in Hastie et al.
(2001):

L(f(x)) =
1

n

n∑

i=1

ln(1 + e−yif(xi)).

The grafting algorithm is based on the observation
that the addition of feature i incurs a penalty of
λ|wi|. Thus adding the feature is only worthwhile if
the reduction of the mean loss is greater than the in-
crease in the penalty, and that this will only happen if
|∂L/∂wj | > λ. This gradient test is performed for each
feature as it arrives, and it is faster than re-optimizing
the classifier with respect to the new feature. If no
weights pass the test, the feature is discarded. If at
least one weight passes, then the weight that maxi-
mizes the magnitude of the gradient is added and the
model is optimized with respect to all of its param-
eters. Grafting differs from the other algorithms be-
cause it considers not only whether to add a new fea-
ture but also whether to drop currently selected fea-
tures and even whether to add discarded features.

4. Experimental Methodology

4.1. Data and Markup

We use the data set originally developed by Bowyer
et al. (2001) in their extensive evaluation of various
edge detectors and also used by Konishi et al. (2003)
in their statistical edge detection work. The data
set consists of 50 images and 50 hand-marked ground
truths. To investigate the flexibility of our algorithm,
we generated a second ground truth by running the
Canny edge detector on the original data. The pa-
rameters of the Canny ground truth were the matlab
defaults. Canny provides a consistent, deterministic
ground truth, in contrast to the South Florida ground
truth which is marked up by hand. All experiments
were performed with both the original South Florida
and the Canny ground truth.

4.2. Methodology

Every experiment used a training set of four images
selected at random and a validation set consisting of
the remaining 46 images in the South Florida data set.
There are a great deal more off-edge pixels than on-
edge pixels, so to balance the training set we subsam-
pled the four training images. The subsampled train-
ing set consists of all edge pixels and an equal number
of randomly selected off-edge pixels. The training set
contained approximately 200,000 pixels and the vali-
dation set contained approximately 14,000,000 pixels.
To ensure that no feature dominates because of its ini-
tial scale, each feature was normalized to have a mean
of zero and a standard deviation of one.

Simple features consist of a single operator applied to
the input data. There are 14 operators, shown in Ta-
ble 1. Even with a range of different parameter values,
the total number of simple features was only 80. With
such a small number of features, random mutation hill
climbing was not used.

The space of tree-structured features is much larger
than the space of simple features; not every possible
feature will be searched. A fair evaluation of these
algorithms requires that each algorithm be given the
same resources. Because generating the features is the
time-limiting step, we allowed each algorithm to ex-
plore a total of 2000 features.

The hill climber was initialized to one feature. At each
iteration, a feature was either added to the cache, re-
moved from the cache, or replaced with another fea-
ture. The mutation was kept if it improved fitness.
Although the mutation of the feature cache was se-
lected randomly, we kept track of how many times a
feature was added or replaced to ensure that the hill

Online Feature Selection for Pixel Classification

climber was able to explore 2000 features.

With best first search, we initialized the feature cache
to ten features. We then ran backward elimination
with a complexity penalty of c = 0.001 per feature.
The remaining subset of features was evaluated with
Fisher’s linear discriminant. In the next stage, ten
new features would be added to the previous set and
backward elimination would again be applied. In this
way 2000 features are explored in 100 iterations.

Grafting differs from the other algorithms in that
whenever it adds a new feature, it can check discarded
features and potentially reincorporate them into the
model. The best result would probably come from
keeping all 2000 features in memory, but this is not
feasible. Instead, we do 40 iterations that explore 50
features at a time.

4.3. Performance Metrics

For edge detection, most evaluation is based on agree-
ment with manually determined ground truth, and
this agreement is usually measured in terms of ROC
curves (Zhu, 1996; Shin et al., 1999; Forbes & Draper,
2000; Konishi et al., 2003). When the output of an
edge detector is compared to a ground truth value, a
count of edge detections and false alarms can be ob-
tained. Comparing two edge detectors knowing only
these quantities can be ambiguous. It is hard to say
whether it is better have a high detection rate or a low
false alarm rate. By adaptively exploring the param-
eter space of an algorithm and plotting the resulting
detection and false alarm rates against each other, a
ROC curve can be used to describe the performance of
an edge detector more completely. For the ROC curves
reported here, we sweep over the value of the threshold
and compute a detection rate and false alarm rate for
each value.

4.3.1. Pixel-to-pixel metric

For each image in our data set, there is a corresponding
ground truth image with each pixel is divided into two
classes: on-edge and off-edge. Konishi et al. (2003)
compare every pixel from the output of their edge de-
tector to the corresponding pixel in the ground truth.
An error occurs when the output pixel does not match
the ground truth pixel. The detection rate (DR) and
false alarm rate (FA) are then given by

DR =
N(on-edge | on-edge)

Non-edge

FA =
N(on-edge | off-edge)

Noff-edge
.

4.3.2. Bowyer metric

We also used a second metric so we could compare our
results to those of Bowyer et al. (2001). The original
ground truth for the South Florida data set was actu-
ally three-valued. Pixels are either on-edge, off-edge,
or “neutral”. The neutral pixels, which are usually
near the true on-edge pixels, are those for which mis-
classification is not penalized. Since this is an area
where mistakes are easy for a classifier to make, de-
weighting these points generally leads to higher perfor-
mance scores regardless of whether the performance it-
self is actually improved. The neutral category reduces
the false alarm rate and leaves the detection rate un-
changed, shifting the ROC curve to the left. But this
is also the region where mistakes are less problematic,
so this metric might more accurately reflect what a
practical edge detector is trying to do.

The Bowyer metric works like this: if a pixel is classi-
fied as an edge pixel but it falls in a background region,
it is counted as a false positive; if it falls on an edge
pixel or within a radius Tmatch of an edge, it is counted
as a true positive. To ensure that no ground truth pixel
is counted twice, if a pixel falls within Tmatch of the
ground truth pixel, the ground truth pixel is marked
so that it cannot be counted again. Tmatch is an ad-
justable tolerance parameter. Note that this metric is
applied to the ground truth data with neutral pixels,
and that these neutral pixels provide a buffer of size
at least Tmatch between the on-edge and off-edge pix-
els in the ground truth images. Bowyer uses a value of
Tmatch = 3 and for consistency, we use the same value.

5. Results

In this section, we analyze the performance of different
feature selection algorithms and compare them to the
previous work of Bowyer et al. (2001), who did an
extensive comparison of classical edge detectors, and
to Konishi et al. (2003), who used an adaptive grid
to model the statistical distribution of on-edge versus
off-edge pixels and applied maximum likelihood to this
estimate of the distribution.

To illustrate the nature of these experiments, Figure 1
shows the South Florida ground truth and the Canny
ground truth for an image in the South Florida data
set. The South Florida ground truth is actually three-
valued but by considering the neutral regions to be
off-edge, we have condensed it down two classes: the
white pixels are on-edge and the black pixels are off-
edge. Below each ground truth is the grayscale result
of our algorithm trained on that ground truth using
tree-structured features and grafting. The grayscale

Online Feature Selection for Pixel Classification

(a) South Florida Ground Truth (b) Canny Ground Truth

(c) Result for South Florida Ground Truth (d) Result for Canny Ground Truth

Figure 1. South Florida and Canny ground truths and their respective results.

value of a pixel is its decision value before threshold-
ing. The results are visibly different from each other
but similar in appearance to their respective ground
truths.

Qualitative visual comparisons are no substitute for
quantitative comparisons, so we scored each result im-
age in Figure 1 against both ground truths. To get
a single numerical value for a score, we constructed
ROC curves for the comparison between each result
and ground truth, found empirical Bayes risk, and
turned it into score S = 1

2 (DR+(1−FA)). When eval-
uated on this South Florida ground truth image, the
algorithm trained on the South Florida ground truth
(which not include this image) scored a 0.8 while the
algorithm trained on the Canny ground truth scored a
0.78. Similarly, when evaluated on the Canny ground
truth image in Figure 1(b), the algorithm that was

trained on the Canny ground truth scored a 0.88 while
the algorithm that was trained on the South Florida
ground truth only scored a 0.83. This demonstrates
the flexibility of the machine learning approach.

There is a definite advantage to increasing the com-
plexity of the feature structure. When tree-structured
features were compared to simple features, the tree-
structured features invariably outperformed the simple
features for the same algorithm. Figure 2 shows results
for simple features for grafting and best first search.
For comparison, results for tree-structured grafting are
included as well. The difference is dramatic. Also in-
cluded are results for statistical edge detection. Note
that even simple features produce results that are com-
parable to statistical edge detection.

A more quantitative evaluation of tree-structured fea-
tures on the pixel-to-pixel metric is shown in Figure 3.

Online Feature Selection for Pixel Classification

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.2 0.4 0.6 0.8 1

D
et

ec
tio

n
R

at
e

False Alarm Rate

Tree-Structured Grafting
Simple Grafting

Statistical Edge Detection
Simple Best First Search

Figure 2. Simple features for grafting and best first search
scored with the pixel-to-pixel metric and compared with
statistical edge detection.

It shows ROC curves for grafting, best first search,
and hill climbing. It also includes results for statis-
tical edge detection (Konishi et al., 2003) because it
was evaluated on the same ground truth and the same
metric. Grafting outperforms best first search, which
outperforms hill climbing. Hill climbing, in turn, was
slightly better than statistical edge detection.

In principle, our approach should be able to find a
feature that is a serial application of four operators
(Gaussian smoothing, 2-D gradient, non-maximal sup-
pression, and hysteresis thresholding) to give an exact
match to the Canny ground truth, but the probabil-
ity of generating the exact feature is minuscule. In-
stead, the algorithm found a set of 17 features whose
linear combination approximates Canny. This result
is significant because it demonstrates that even if the
ideal feature is never found (supposing it exists in the
first place), similar but imperfect features can be com-
bined to yield a good classification. Figure 4 shows
ROC curves for grafting, best first search, and the hill
climber all trained on the Canny ground truth. Graft-
ing is marginally better than best first search and sig-
nificantly better than hill climbing. There is no direct
comparison to statistical edge detection because of the
difference in ground truth.

Finally, scoring our results with the Bowyer metric al-
lows us to compare these results directly with those of
Bowyer. Figure 5 compares grafting results with the
Canny edge detector in Bowyer et al. (2001). The
change in metric causes the score of the results to im-
prove tremendously even if the classifier itself changes
very little when trained on this metric.

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
et

ec
tio

n
R

at
e

False Alarm Rate

Grafting
Best First Search

Hill Climbing
Statistical Edge Detection

Figure 3. The performance of tree-structured features eval-
uated using South Florida ground truth scored with the
pixel-to-pixel metric.

6. Conclusion and future work

We have demonstrated the utility of online feature se-
lection for one of the most useful and ubiquitous tasks
in image processing: edge detection. Image processing
is a domain where the computational bottleneck is the
feature generator, not the classifier. Adding complex-
ity to the structure of the features makes the feature
space too large to search exhaustively but it increases
the flexibility of the hypothesis class and can improve
the performance of the resulting classifier. Online fea-
ture selection provides a systematic way to search this
larger feature space, and we show that tree-structured
features and online feature selection techniques out-
perform previous work by a significant margin. Graft-
ing in particular is found to be a fast, efficient way
to incorporate features in an online fashion. Further-
more, the online feature selection approach is flexi-
ble enough to perform well on different markups and
across performance metrics.

In the future we would like to expand the online feature
selection approach to image segmentation, of which
edge detection is a component problem. Martin et al.
(2004) argue convincingly that a good approach to
boundary detection is to combine both edge and tex-
ture cues and they present an extensive benchmark. In
contrast to Martin’s approach, which focuses on the
design of specific features, we consider the machine
learning aspect of the problem and we argue that a
broad, systematic search of less carefully tuned fea-
tures has much to offer.

Online Feature Selection for Pixel Classification

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0.9

 1

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

D
et

ec
tio

n
R

at
e

False Alarm Rate

Grafting
Best First Search

Hill Climbing

Figure 4. The performance of tree-structured features us-
ing Canny ground truth scored with the pixel-to-pixel met-
ric.

Acknowledgments

We are grateful to Simon Perkins for many useful dis-
cussions, and for introducing us to online feature se-
lection and to grafting.

References

Bowyer, K., Kranenburg, C., & Dougherty, S. (2001). Edge
detector evaluation using empirical roc curves. Com-
puter Vision and Image Understanding, 84, 77–103.

Forbes, L. A., & Draper, B. A. (2000). Inconsistencies in
edge detector evaluation. Computer Vision and Pattern
Recognition (pp. 398–404). Hilton Head, SC.

Forrest, S., & Mitchell, M. (1993). Relative building-block
fitness and the building-block hypothesis. In L. D. Whit-
ley (Ed.), Foundations of Genetic Algorithms 2, 109–
126. San Mateo, CA: Morgan Kaufmann.

Green, D., & Swets, J. (1966). Signal Detection Theory
and Psychophysics. New York: Wiley.

Greenspan, H., Belongie, S., Perona, P., Goodman, R.,
Rakshit, S., & Anderson, C. (1994). Overcomplete steer-
able pyramid filters and rotation invariance. CVPR94
(pp. 222–228).

Guyon, I., & Elisseeff, A. (2003). An introduction to vari-
able and feature selection. Journal of Machine Learning
Research, 3, 1157–1182.

Hastie, T., Tibshirani, R., & Friedman, J. (2001). The
Elements of Statistical Learning. New York: Springer.

Kohavi, R., & John, G. H. (1997). Wrappers for feature
subset selection. Artificial Intelligence, 97, 273–324.

Konishi, S., Yuille, A., & Coughlan, J. (2003). Statisti-
cal edge detection: Learning and evaluating edge cues.

 0.86

 0.88

 0.9

 0.92

 0.94

 0.96

 0.98

 1

 0 0.05 0.1 0.15 0.2

D
et

ec
tio

n
R

at
e

False Alarm Rate

Bowyer Canny
Grafting

Figure 5. Grafting and Bowyer’s implementation of Canny
with tree-structured features on the South Florida ground
truth scored with the Bowyer metric. For comparison, we
also show the results of Canny from Bowyer et al. (2001).

IEEE Transactions on Pattern Analysis and Machine
Intelligence, 25.

Koza, J. (1992). On the Programming of Computers by
Means of Natural Selection. Cambridge: MIT Press.

Martin, D. R., Fowlkes, C. C., & Malik, J. (2004). Learning
to detect natural image boundaries using local bright-
ness, color, and texture cues. IEEE Transactions on
Pattern Analysis and Machine Intelligence, 26, 530–549.

Nestares, O., Navarro, R., Portilla, J., & Tabernero, A.
(1998). Efficient spatial-domain implementation of a
multiscale image representation based on Gabor func-
tions. Journal of Electronic Imaging, 7, 166–173.

Perkins, S., Lacker, K., & Theiler, J. (2003). Grafting:
Fast, incremental feature selection by gradient descent in
function space. Journal of Machine Learning Research,
3, 1333–1356.

Perkins, S., & Theiler, J. (2003). Online feature selection
using grafting. ICML (pp. 592–599).

Shin, M. C., Goldgof, D. B., & Bowyer, K. W. (1999).
Comparison of edge detectors using an object recogni-
tion task. Computer Vision and Pattern Recognition
(pp. 360–365).

Weston, J., Elisseeff, A., Schlkopf, B., & Tipping, M.
(2003). Use of the zero-norm with linear models and
kernel methods. Journal of Machine Learning Research,
3, 1439–1461.

Zhu (1996). Efficient evaluations of edge connectivity and
width uniformity. Image and Vision Computing, 14, 21–
34.

