
Algorithmic Transformations in the Implementation of
K-means Clustering on Reconfigurable Hardware

Mike Estlick, Miriam Leeser
Department of Electrical and Computer

Engineering
Northeastern University, Boston, MA

fmestlick, melg@ece.neu.edu

James Theiler, John J. Szymanski
Space and Remote Sensing Sciences Group

Los Alamos National Lab,
Los Alamos, NM

fjt, szymanskig@lanl.gov

ABSTRACT
In mapping the k-means algorithm to FPGA hardware, we
examined algorithm level transforms that dramatically in-
creased the achievable parallelism. We apply the k-means al-
gorithm to multi-spectral and hyper-spectral images, which
have tens to hundreds of channels per pixel of data. K-
means is an iterative algorithm that assigns assigns to each
pixel a label indicating which of K clusters the pixel belongs
to.
K-means is a common solution to the segmentation of

multi-dimensional data. The standard software implementa-
tion of k-means uses oating-point arithmetic and Euclidean
distances. Floating point arithmetic and the multiplication-
heavy Euclidean distance calculation are �ne on a general
purpose processor, but they have large area and speed penal-
ties when implemented on an FPGA. In order to get the best
performance of k-means on an FPGA, the algorithm needs to
be transformed to eliminate these operations. We examined
the e�ects of using two other distance measures, Manhattan
and Max, that do not require multipliers. We also examined
the e�ects of using �xed precision and truncated bit widths
in the algorithm.
It is important to explore algorithmic level transforms

and tradeo�s when mapping an algorithm to recon�gurable
hardware. A direct translation of the standard software im-
plementation of k-means would result in a very ine�cient
use of FPGA hardware resources. Analysis of the algorithm
and data is necessary for a more e�cient implementation.
Our resulting implementation exhibits approximately a 200
times speed up over a software implementation.

1. INTRODUCTION
Multispectral and hyperspectral image data are increas-

ingly available from a variety of sources, including com-
mercial and government satellites, as well as airborne and
ground-based sensors. This is accompanied by an increase
in spatial resolution as well as an increase in the number

Copyright 2001 Association for Computing Machinery. ACM acknowl-
edges that this contribution was authored or co-authored by a contractor or
affiliate of the U.S. Government. As such, the Government retains a nonex-
clusive, royalty-free right to publish or reproduce this article, or to allow
others to do so, for Government purposes only.
FPGA 2001, February 11-13, 2001, Monterey, CA, USA.
Copyright 2001 ACM 1-58113-341-3/01/0002 ...$5.00.

of spectral channels. Multispectral images can have from
a few to a few tens of channels per pixel, while hyperspec-
tral data contains hundreds of spectral channels per pixel.
In this paper we apply the k-means unsupervised cluster-
ing algorithm to AVIRIS data sets [8] and simulated MTI
(Multispectral Thermal Imager) data sets. A single AVIRIS
image contains 614�512 pixels with 224 16-bit channels, or
approximately 140 MB of data. The MTI data sets are also
614 � 512 pixels, but have 10 channels of 16 bit data.
The image analyst's challenge is to identify the important

and useful features in the image without being overwhelmed
by the sheer volume of the data. One response to this chal-
lenge is provided by algorithms which segment the image by
clustering pixels into classes based on the spectral similarity
of each pixel to other members of the class. As well as pro-
viding the analyst with a picture summarizing the spatial
organization of the di�erent spectral types, these cluster-
ing algorithms also provide a very real compression of data.
Each pixel in the image is represented by a pointer to the
spectral class associated with that pixel. For 8 classes, 3
bits speci�es the classi�cation of each pixel, and since each
class is identi�ed with a cluster center which approximates
the pixel's spectrum, this serves as an approximation to the
whole image. This approximate image can be represented
by 75K bytes { a compression factor of over three orders of
magnitude for an AVIRIS data set.
As well as reducing the data for quicklook views, cluster-

ing also provides an organization of the data that can be use-
ful for further downstream processing [7]. Several authors
have shown that clustering the data beforehand increases the
performance of algorithms which attempt to \learn" features
from a small number of examples [2, 6]. Schowengerdt [9]
suggests the use of image segmentation for change detec-
tion: a change in the segmentation is more likely to indicate
an actual change on the ground, since the segmentation is
relatively robust to changes in sensor performance and at-
mospheric conditions. It has also been demonstrated that
the matched-�lter detection of weak spectral signatures in
cluttered backgrounds can be enhanced by �rst clustering
the background and then employing a separate matched �l-
ter for each spectral class [4]; since the within-class variance
is generally much smaller than the variance over the whole
image, the within-class signal-to-clutter ratios can be im-
proved by treating individual clusters separately.
Although there are clear advantages to clustering high-

dimensional data sets, workstation implementations of clus-
tering algorithms are notoriously slow. Most algorithms,

103

such as k-means, are iterative and require many passes
through the data before convergence is achieved. Each it-
eration requires a computation of distance from every data
point to every cluster center, and each distance requires a
calculation involving every spectral channel. This type of
computation lends itself to implementation in recon�gurable
hardware, where the inherent parallelism of the algorithm
can easily be exploited. An FPGA implementation also al-
lows us the exibility to consider variants of the algorithm
as well as of its implementation. FPGAs are particularly
well suited to this application because the amount of par-
allelism and processing element bitwidths can adapt to the
task, allowing the designer to take maximum advantage of
the hardware at hand.
In general, implementing an algorithm in hardware in-

volves a di�erent set of design tradeo�s than implementing
the same algorithm in software. For example, a software im-
plementation may attempt to employ intelligent branching
and extrapolations to avoid some computations or to reduce
the number of iterations. But in hardware, it is often more
productive to simplify the underlying operations as much as
possible both to speed up the calculations and to be able to
provide more parallelism. A simpler operation translates to
a smaller area datapath which means that more versions of
the datapath can be replicated on the chip. Ideally, a good
design will employ both kinds of optimizations with only the
necessary computations performed, and those performed in
a massively parallel circuit.
In this paper we discuss algorithm level transforms that

enable k-means to be implemented in hardware. These in-
clude alternative distance metrics and truncation. We argue
that these types of transforms are necessary for making the
best use of FPGA hardware. We also present a detailed look
at our hardware implementation with timing results.
In the next section we present the k-means algorithm.

Next we present a discussion of algorithmic transforms. In
Section 4 we present our current implementation of the k-
means algorithm on the Annapolis Wildstar board.

2. K-MEANS CLUSTERING
Given a set of N pixels, each composed of D spectral

channels, and represented as a point in D-dimensional Eu-
clidean space (that is, xn 2 RD, with n = 1; : : : ; N); we
partition the pixels into K clusters with the property that
pixels in the same cluster are spectrally similar. Each clus-
ter is associated with a \prototype" or \center" value which
is representative of (and close to) the pixels in that class.
One measure of the quality of a partition is the within-class
variance; this is the sum of squared (Euclidean) distances
from each pixel to that pixel's cluster center.
For a �xed partition, the optimal (in the sense of minimum

within-class variance) location for each center is the mean
of all pixels in each class. For a �xed choice of centers, the
optimal partition assigns points to the cluster whose centers
are closest. The k-means clustering algorithms (there are
several variants) provide an iterative scheme that operates
over a �xed number (K) of clusters, while attempting to
simultaneously optimize center locations and pixels assign-
ments.
From an initial sampling, the algorithm loops over all the

data points, and reassigns each to the cluster whose center
it is closest to. After the pass through the data, the cluster
centers are recomputed. Note that other variants of k-means

update the cluster centers each time a point is reassigned to
a new cluster. This leads to faster convergence, but is more
di�cult to implement in hardware. Each iteration reduces
the total within-class variance for the clustering, so it is
guaranteed that after enough iterations, the algorithm will
converge, and further passes will not reassign points. It
bears remarking that this is only a local minimum. There
may be an assignment of pixels to classes which produces
a smaller within-class variance, but to search all possible
assignments (there are of order KN=K! of them) would be
an impossibly large task for all but the smallest values of N .

3. ALGORITHMIC TRANSFORMS
We investigated two major algorithmic transforms in our

FPGA implementation of k-means. The �rst was the use of
alternative distance measures and the second was the trun-
cation of the input data and cluster centers.

3.1 Alternate Distance Measures
Points are assigned to the cluster centers to which they

are closest; for the minimum-variance criterion, \closest"
is de�ned in terms of the Euclidean distance. Consider a
point x and cluster center c where i indexes the spectral
components of each. The Euclidean distance is de�ned:

kx� ck2 =
X

i

jxi � cij2 (1)

Other distance measures can also be used; for instance,
the general family of p-metrics (for which the Euclidean dis-
tance is the special case p = 2) is given by:

kx� ckp =
X

i

jxi � cijp (2)

To perform a k-means iteration, one must compute the
distance from every point to every center. If there are N
points, K centers, and D spectral channels, then there will
be O(NKD) operations. For the Euclidean distance, each
operation requires computing the square of a number.
The Euclidean distance has several advantages. For one,

the distance is rotationally invariant. Furthermore, min-
imizing the Euclidean distance minimizes the within-class
variance. On the other hand, the Euclidean distance is
more expensive than the alternatives that we are consid-
ering. The Manhattan distance, corresponding to p = 1,
is the sum of absolute values of the coordinate di�erences;
the Max distance, corresponding to p = 1 is the maxi-
mum of the absolute values of the coordinate di�erences. In
hardware, calculating the Euclidean distance would be sig-
ni�cantly slower than calculating the Manhattan distance.
This is due to the fact that a multiplication is required for
every channel and every cluster per pixel, so the amount of
parallelism that can be exploited in the hardware implemen-
tation would decrease drastically. The Manhattan distance
is approximately twice as fast in software than Euclidean,
but signi�cantly faster in hardware.
Neither of the alternative distances requires any multipli-

cation, and the Max distance has the slight advantage that
the number of bits required to express the total distance does
not increase with the dimension D. For the Manhattan dis-
tance, we require log

2
D extra bits for the total distance over

and above the bits required for the coordinate di�erences.

104

Manhattan

Manhattan

Euclidean

Max

Max

Figure 1: Decision boundaries using di�erent dis-
tance metrics.

We examine e�ects of truncation on intermediate values as
well as on input data in the next section.
We performed data independent and data dependent ex-

periments to determine if the Manhattan or Max distance
measures were acceptable for k-means clustering [10].
The data independent experiments estimate how often

points would be mis-assigned because a cheaper distance
metric was used. A correct assignment is de�ned to be that
chosen by the Euclidean metric. The e�ect of metric choice
on the quality of a clustering depends on many factors: the
number of clusters, the dimension of the space, and the na-
ture of the data in that space. To eliminate as many of these
factors as possible, we considered an idealized situation in
which three points are placed at random on the surface of
a D-dimensional sphere. Two of the points are taken to
be cluster centers, and the third is a data point. We com-
pute the Euclidean distances from the data point to the two
centers in order to determine which is truly closer. Then
we compute the distances from the data point to the two
centers using an alternative metric (Manhattan, Max, or
linear combination thereof), and note whether this second
pair of distances correctly identi�ed the closest center. From
a set of 105 such trials, we compute two statistics: relative
variance and misclassi�cation rate. The relative variance is
the ratio of within-class variance for the cluster assignments
provided by the alternative metric, divided by the within-
class variance that would have been obtained if Euclidean
distances had been used to assign points to centers. That
the value is always larger than one reects the fact that
the Euclidean distance is the optimal choice for minimizing
within-class variance. We estimated the misclassi�cation
rate by counting the fraction of trials for which the cheaper
metric assigned the point incorrectly.
In addition to Manhattan and Max distances, we also con-

sidered a linear combination of the two. Consider Figure 1.
The decision boundaries for Euclidean, Max and Manhattan
are shown, where the points marked by + signs are cluster
centers. A linear combination of Max and Manhattan met-
rics should more closely approximate the Euclidean metric
than either taken alone. This linear combination is de�ned:

kx� ck = �max jxi � cij+ (1� �)
X

i

jxi � cij (3)

Here � ranges from 0 to 1. If � is chosen to be a negative
power of 2, this linear combination can be implemented with
little hardware overhead.
In Fig. 2, we plot the relative variance and misclassi�ca-

tion rate as a function of the number D of spectral channels.
A misclassi�cation occurs when the center that is closest ac-

♦ ♦ ♦
♦
♦
♦
♦
♦ ♦ ♦ ♦ ♦ ♦ ♦

d

d

d
d d

d
d
d

d
d
d
d
d
d

○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○1 10 100 1000
1

1.02

1.04

1.06 (a)

Dimension, D

R
el

at
iv

e
va

ria
nc

e

♦

♦
♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦ ♦

d

d

d
d
d
d d d d d d d d d

○

○

○
○ ○ ○ ○ ○ ○ ○ ○ ○ ○ ○

1 10 100 1000
0.02

0.05

0.1

0.2

0.5 (b)

Dimension, D
M

is
cl

as
si

fic
at

io
n

R
at

e
Figure 2: (a) Relative variance for K = 2 classes,
plotted against the dimension D of the sphere onto
which a triplet of points have been randomly placed.
Diamonds represent the Manhattan metric, squares
represent the Max metric, and circles correspond
to the linear combination with � = 0:25. The dotted
line corresponds to the relative variance achieved by
random classi�cation of the data. (b) Probability of
misclassi�cation for the same parameters as in (a).
Random classi�cation would produce a misclassi�-
cation rate of 0.5.

cording to the Euclidean metric is not closest according to
one of the other metrics. Note that although the relative
variance is decreasing for large values of D, the rate of mis-
classi�cation is monotonically increasing. For the Manhat-
tan metric (and for the � = 0:25 linear-combination metric),
the misclassi�cation rate saturates at about �fteen percent,
but for the Max metric, the error rate begins to approach
�fty percent. That is, for very large dimension D, the Max
metric is not much better than just assigning points to clus-
ters at random.
As expected, the linear combination performs better than

the Manhattan distance. The improvement is substantial
for smaller dimensions (D < 10), but the di�erence becomes
small for large dimensions. Due to the extra cost that would
be incurred in order to implement the linear combination,
this alternative was not investigated further.
The data dependent experiment was performed on AVIRIS

data sets. Each AVIRIS image was classi�ed with each of
the distance measures, so there were twenty trials (5 images
� 4 distance measures). Each trial used K = 16 clusters
and stopped after convergence or �fty iterations. Results
are shown in Table 1.

105

Image Within-class Variance Relative increase
Euclidean Manhattan Max Manhattan Max

f960323t01p02 r04 sc01.c.img 3.7533e+06 5.1121e+06* 3.9328e+06 0.3620 0.0478
f970410t01p02 r02 sc02.c.img 3.7806e+06 4.1296e+06 4.3915e+06 0.0923 0.1616
f970620t01p02 r03 sc02.c.img 1.0339e+07 1.1329e+07* 1.1089e+07 0.0958 0.0725
f970701t01p02 r07 sc01.c.img 9.4839e+06 9.9656e+06* 1.0726e+07* 0.0508 0.1309
f970801t01p02 r01 sc01.c.img 3.5210e+06 3.5597e+06 3.5828e+06* 0.0110 0.0175

Table 1: Comparisons of within-class variance for clusterings of AVIRIS data using di�erent variants of k-
means. K = 16 clusters were used, and the algorithm was run for 50 iterations. An asterisk indicates that
convergence was achieved before 50 iterations.

0 4 6 8
0

2

4

6

8
x 10

12 f970801

truncated bits

va
ria

nc
e

0 4 6 8
0

2

4

6

8

10
x 10

12 f970701

truncated bits

va
ria

nc
e

0 4 6 8
0

2

4

6

8

10
x 10

12 f960323

truncated bits

va
ria

nc
e

0 4 6 8
0

2

4

6

8

10
x 10

12 f970620

truncated bits

va
ria

nc
e

0 fractional bits #1
2 fractional bits #1
0 fractional bits #2
2 fractional bits #2

Figure 3: Total within-class variance for AVIRIS data cubes. Four di�erent AVIRIS images were used. Each
graph shows the total variances for one image. 16 clusterings were run on each image and total variance
was recorded for each. There were two sets of experiments per image, each corresponding to a di�erent
initialization. For each initialization, 8 clusterings were run. Four di�erent bitwidths of the input data were
used, with 0, 4, 6 and 8 bits truncated, respectively. For each truncation, two cluster center sizes were used;
one with the center the same bitwidth as the truncated pixel, the second with the center containing two bits
more than the truncated pixel.

106

0 4 6 8
0

20

40

60

80
f970801

truncated bits

pe
rc

en
t d

iff
er

en
t

0 fractional bits #1
2 fractional bits #1
0 fractional bits #2
2 fractional bits #2

0 4 6 8
0

20

40

60

80

100
f970701

truncated bits

pe
rc

en
t d

iff
er

en
t

0 4 6 8
0

20

40

60

80

100
f960323

truncated bits

pe
rc

en
t d

iff
er

en
t

0 4 6 8
0

20

40

60

80

100
f970620

truncated bits

pe
rc

en
t d

iff
er

en
t

Figure 4: Di�erent classi�cation rates for AVIRIS data cubes. These show results for the same four images
and the same 16 experiments per image as the variances. A pixel is classi�ed as di�erent if it ends up in a
di�erent class than the case of 0 bits truncated, 2 extra bits used for centers.

Both experiments showed that the Manhattan metric is
better than the Max metric for k-means. In the data depen-
dent experiment with AVIRIS data, we found that clusters
produced using the Manhattan distance metric were slightly
less compact than the clusters produced by the Euclidean
metric. The total within-class variance, for the AVIRIS data
cubes we measured, increased from 2% to slightly over 30%
for Manhattan vs. Euclidean distance, with most of the
images exhibiting less than a 6% increase.

3.2 Input Data Truncation
Implementing the Manhattan distance results in signif-

icant savings in datapath area, and thus allows for more
parallelism in a recon�gurable implementation. However,
given the size of the dataset being investigated, more dras-
tic measures were considered to further reduce the size of
the calculation of each pixel.
Recall that an AVIRIS data cube contains pixels with 224

channels, 16 bits per channel. Data cubes in this format
are obtained from JPL [8]. The actual data, however, is in
the range of 12 bits per channel. Since there are so many
bits per pixel (12� 224 when considering the true dynamic
range), the hardware saved by reducing the number of bits

used per channel, even by a small amount, is potentially
dramatic.
As with the distance metric experiments, we performed

both data independent and data dependent experiments to
determine the e�ects of truncating the image data and the
cluster centers [10].
A data independent Monte-Carlo trial is de�ned as fol-

lows. First, K + 1 points are placed at random on the sur-
face of a D dimensional sphere with unit radius. One of
the points is treated as the data point that is being classi-
�ed, and the other K points are treated as cluster centers.
The center to which the data point is closest is identi�ed as
the \true classi�cation" for that data point. The data and
centers are then truncated to a precision p, and again the
(truncated) center which is closest to the (truncated) data
point is identi�ed. If the closest center found with the data
truncated di�ers from the \true" center, then a misclassi-
�cation is recorded. The \excess in-class variance" is also
computed { this is the di�erence of two squared distances:
the distance between the data point and the misidenti�ed
center, and the distance between the data point and the cor-
rectly identi�ed center, with both distances computed using
the full precision (non-truncated) data. The excess variance

107

is normalized by dividing by the average (over many trials)
of the squared distance of a point to its nearest center.
For these data independent experiments, all data values

range from zero to one due to the fact that all points are
placed on a D dimensional sphere with unit radius. The
precision p is therefore less than one for these experiments
(p = 1 would correspond to no information at all in the
data; while p = 0:25 for instance would correspond to data
truncated to two bits of precision after the decimal point).
The experiment was repeated for di�erent values of D, K

and p. Results show that misclassi�cation rate scales lin-
early with p, and excess variance scales like p2. Both mea-
sures also increase with larger dimension D, with a scaling
that appears to grow as

p
D; this factor can be explained

by the fact that the data is normalized to a unit sphere:
hx2i i = 1=D since x21 + : : :+ x2D = 1. Further numerical re-
sults (not shown) suggest that these error measures increase

roughly with
p
K.

On the whole, these results suggest that we can get good
quality classi�cation with fairly severe truncation of the in-
put data.
Since we are interested in applying bit truncation to hy-

perspectral image sets, we also did experiments with AVIRIS
data cubes and measured the e�ect. Here a reference clas-
si�cation was obtained by using full precision data, and our
experiments examined the e�ect of truncating bits by com-
paring to that reference classi�cation. We looked at within-
class variance { which was measured using the full precision
data, even though the clustering was done with the trun-
cated data. Within-class variance is what k-means seeks to
minimize, and it is our bottom-line measure of cluster qual-
ity. We also counted the number of pixels which were clas-
si�ed di�erently in the full-precision and the low-precision
clusterings. A large di�erence means that the analyst will
be presented with a picture that looks qualitatively di�er-
ent, but it doesn't necessarily mean that the clustering is of
lower quality.
The experiment was run on four di�erent AVIRIS cubes.

The total within-class variances are shown in Figure 3. For
each data cube we varied precision of the data and precisions
of the centers. We ran all experiments with two di�erent
initializations, since results are sensitive to the the initial-
izations. The same initialization is used for all combination
of truncation exercises. Manhattan distance was used as the
metric for choosing cluster centers. For these experiments,
the di�erence in pixel classi�cation was also recorded, as
shown in Figure 4. In this case, a pixel is recorded as dif-
ferent if the class it is assigned to di�ers from the the class
it would have been assigned to using the full bitwidth of
data, full bitwidth of cluster centers, and Manhattan dis-
tance. This di�erence provides a measure of the qualitative
di�erences seen in the results of classi�cation of the images
with di�erent amounts of truncation.
Our �rst observation is that cluster quality is maintained

even with considerable truncation. Little variation in total
within-class variance is observed, even when only half the
input bits (B = 6) are used. Another empirical observation
is that it makes sense to truncate the data more aggressively
than the centers. For instance, it is better to truncate the
data to 6 bits but keep the centers at 8 bits than to truncate
both to 6 bits. This is good both for reducing memory
requirements and processing bandwidth. Using 6 bits per
channel reduces the size of the data cube by 50%.

Read pixel and
subtract cluster center

Absolute value

Compare tree 3

Compare tree 2

Add tree 2

Add tree 4

Add tree 3

Compare tree 1

Add tree 1

Write cluster number
and accumulate

Figure 5: Stages of pixel processing pipeline

4. HARDWARE IMPLEMENTATION OF K-
MEANS

We implemented the k-means algorithm on the Annapolis
Microsystems Wildstar PCI board with three Xilinx Virtex
1000 FPGAs and 40MB of ZBT SRAM. The Wildstar is in a
500MHz Pentium III workstation. The implementation was
written in VHDL and synthesized with Synplicity's Synplify
and Xilinx Alliance tools.
The design classi�es 614� 512 pixel images with 10 chan-

nels of 12 bit data per pixel into 8 clusters. (Note that these
are simulated MTI data sets.) The design returns the clus-
ter number for each pixel, as well as the accumulated values
for each channel of each cluster and the number of pixels in
each cluster. The Manhattan distance measure is used to
compare pixels to cluster centers. There is no truncation of
bits in this implementation.
The FPGAs on the Wildstar are called Processing Ele-

ments 0, 1, and 2 (PE0, PE1, PE2). Only PE1 is currently
used by the design. PE1 has an interface to the host PCI
bus, two 32 bit memory interfaces, and two 64 bit memory
interfaces. Registers mapped onto the host PCI bus hold
the control signals, cluster centers, and cluster accumula-
tors. The two 64 bit memory ports hold the pixel data, so
that 128 bits of the image can be accessed each clock cy-
cle. Each pixel is 120 bits (10 channels by 12 bits), and the
image is mapped into the memories so that one whole pixel
is accessed each clock cycle with 8 unused bits. One of the
32 bit memory ports is used to hold the cluster number for
each pixel, and the other 32 bit memory port is not used.
One pixel is classi�ed every clock cycle. The design uses a
10 stage pipeline as shown in Figure 5.
The �rst stage takes the pixel data and for each chan-

nel subtracts from it each cluster center. The second stage
takes the absolute value of all the di�erences from the �rst
stage. The third through sixth stages comprise an adder tree
for each cluster. After the sixth stage is done, the distance
calculation from the pixel to each of the eight clusters is �n-
ished. The seventh through ninth stage comprise a compare
tree that select the cluster with the smallest distance to the
pixel. The tenth stage writes the cluster number to

108

Pi,0
Cj,0

dist
+

+

+

+

+

8x

Cluster
Distance
Measure

min

min

Cluster
Number

Pi,1
Cj,1

dist

Pi,2
Cj,2

dist

Pi,3
Cj,3

dist

10 input
channels

.

.

.

.

.

+

.

.

.

.

.

.

min

min

min

min

min

Figure 6: Implementation of a pixel comparison.

memory and accumulates the pixel value into the cluster
accumulators.
The k-means algorithm is sensitive to initialization. We

use a hierarchical initialization scheme. The host software
loads the complete image into the memories of the Wildstar.
The k-means algorithm is run in software on a randomly cho-
sen subset of 256 pixels, and the �nal cluster centers from
the subset are used to initialize the cluster centers on the
Wildstar. For each iteration, the software writes the cluster
centers to the Wildstar, waits for the Wildstar to �nish as-
signing each pixel to a cluster, reads back the accumulated
values, and divides the accumulated values for each cluster
by the number of pixels in that cluster to create the new
cluster centers. One iteration through an image involves a
distance computation between 314,368 pixels and 8 clusters
each of which have 10 dimensions. Calculations on a single
pixel are illustrated in 6. After a complete iteration, 80 di-
vision operations are required to compute the new cluster
centers. The algorithm converges when the cluster centers
are identical for two iterations in a row, signifying that no
pixels have changed clusters. After the algorithm converges,
the software reads back the cluster number for each pixel and
writes an image �le with each cluster a di�erent color.
The design was synthesized with a target frequency of 50

MHz. It was successfully mapped at 50 MHz into 75% of a
Xilinx Virtex1000. The design was tested with �ve di�erent
614x512 pixel images. The hardware implementation was
approximately 200x faster than the software implementa-
tion. One of the images took 65 iterations to complete; the
FPGA �nished in 0.42 seconds and the software �nished in
76.2 seconds. Based on the 50MHz clock frequency and the
image size, the time spent by the FPGA processing 65 it-
erations is 0.41 seconds. The total measured time was 0.42
seconds, including the divisions on the host processor. In
other words, the divisions require .01 seconds, or slightly
more than 2% of the total processing time.

We plan to incorporate bit truncation into our implemen-
tation. Truncation will allow us process more channels of an
AVIRIS image. The next goal is to be able to process the
full 224 channels of an AVIRIS image by reading in pixels
over multiple clock cycles. With simple changes to the host
software, we could use two PE's in parallel to process an im-
age. Each PE would classify half of the pixels, and the host
would combine the results. The two PE's would be twice as
fast as one. With more extensive changes, the third PE on
the Wildstar could be used to do the divisions that are done
on the host now. With this design, the host can run other
tasks while the clustering of images is running.

5. DISCUSSION
Figure 7 shows the results of clustering a multispectral

image on the Wildstar board. We have shown that con-
siderable speed up in k-means clustering can be obtained
by implementing the clustering on recon�gurable hardware.
This speed up is obtained partly by applying transforma-
tions that speci�cally accelerate a hardware implementation
of k-means. These transformations result not from peep-
hole optimizations, such as implementing a multiplier with
shifts and adds, but rather from global optimizations that
involve changes to the algorithm being implemented. The
criteria for these optimizations is that they do not unduly
compromise the quality of the results.
In the future, as FPGA capacities become larger and expe-

rienced hardware designers rarer, the implementation of al-
gorithms in recon�gurable hardware will become more auto-
mated. Several researchers are investigating compilers that
target recon�gurable computing and start from program-
ming languages similar to C [3, 5] or from Matlab descrip-
tions [1]. The success of such approaches will enable e�cient
designs to more rapidly be implemented on recon�gurable
hardware. They will make our approach both easier to ap-
ply and more important. If one were to take a k-means

109

Figure 7: Clustered output of image
f970620t01p02 r03 sc02.c.img

algorithm written in C for implementation on a RISC pro-
cessor and translate it directly to hardware, the resulting
design would contain many multiplication operations and
either would not �t on the available hardware or would be
slow due to the serialization of operations required to share
the hardware that can �t. Only by optimizing the algo-
rithm is an e�cient implementation realizable. Compilers
that generate e�cient hardware free the designer of recon-
�gurable systems to focus on the best algorithm or variant
to implement. It is at this level that a designer's attention
will have the greatest impact on the implementation.

6. CONCLUSIONS
We have presented the implementation of k-means cluster-

ing on an Annapolis Wildstar board that exhibited a speed
up of two orders of magnitude over a software implemen-
tation. This implementation was only possible as a result
of careful analysis of the algorithm and the input data. No
special, manual design ow was followed. By considering
tradeo�s at the algorithmic level, it is possible to achieve
e�ciencies in recon�gurable hardware implementations not
otherwise possible.

Acknowledgments
We would like to thank Annapolis Microsystems for their
support, and Synplicity and Xilinx Corporations for their
donations to the Rapid Prototyping Laboratory at North-
eastern University. We would like to thank researchers at
Los Alamos and at Northeastern University who contributed
to this project. This research was funded by a US govern-
ment agency.

7. REFERENCES
[1] P. Banerjee et al. A MATLAB compiler for

distributed, heterogeneous, recon�gurable computing
systems. In IEEE Symposium on FPGAs for Custom
Computing Machines, 2000.

[2] V. Castelli and T. M. Cover. On the exponential value
of labeled samples. Pattern Recognition Lett.,
16:105{111, 1995.

[3] B. Draper et al. Compiling and optimizing image
processing algorithms for FPGAs. In Workshop on
Computer Architecture for Machine Performance,
2000.

[4] C. Funk, J. Theiler, D. A. Roberts, and C. C. Borel.
Clustering to improve matched-�lter detection of weak
gas plumes in hyperspectral imagery. Technical Report
LA-UR 00-3673, Los Alamos National Laboratory,
2000.

[5] M. B. Gokhale, J. M. Stone, J. Arnold, and
M. Kalinowski. Streams-oriented FPGA computing in
the Streams-C high level language. In IEEE
Symposium on FPGAs for Custom Computing

Machines, 2000.

[6] P.-F. Hsieh and D. Landgrebe. Statistics enhancement
in hyperspectral data analysis using spectral-spatial
labeling, the EM algorithm, and the leave-one-out
covariance estimator. Proc. SPIE, 3438:183{190, 1999.

[7] P. M. Kelly and J. M. White. Preprocessing
remotely-sensed data for e�cient analysis and
classi�cation. In U. M. Fayyad and R. Uthurusamy,
editors, Arti�cial Intelligence 1993: Knowledge-Based
Systems in Aerospace and Industry, volume 1963,
pages 24{30, 1993.

[8] NASA, 1999.
http://makalu.jpl.nasa.gov/avaris.html.

[9] R. A. Schowengerdt. Techniques for Image Processing
and Classi�cation in Remote Sensing. Academic
Press, Orlando, 1983.

[10] J. Theiler, M. Leeser, M. Estlick, and J. J. Szymanski.
Design issues for hardware implementation of an
algorithm for segmenting hyperspectral imagery. In
M. R. Descour and S. S. Shen, editors, Imaging
Spectrometry VI, volume 4132, 2000.

110

