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Abstract—We derive a class of of algorithms for detecting
anomalous changes in hyperspectral image pairs by modeling
the data with elliptically-contoured (EC) distributions. These
algorithms are generalizations of well-known detectors that are
obtained when the EC function is Gaussian. The performance of
these EC-based anomalous change detectors is assessed on real
data using both real and simulated changes. In these experiments,
the EC-based detectors substantially outperform their Gaussian
counterparts.

Index Terms—Adaptive signal detection, Algorithms, Covari-
ance matrices, Data models Ellipsoids, Gaussian distributions,
Image analysis, Remote sensing, Pattern recognition

I. INTRODUCTION

G IVEN two images of the same scene, taken at different
times and under different conditions, the aim of anoma-

lous change detection (ACD) is to find interesting changes that
occurred in the scene. The emphasis on anomalous change
recognizes that pervasive differences between the two images,
i.e., those differences that occur throughout the scene, are
typically either uninteresting, or else are large enough that the
analyst can readily find them without the aid of the change
detection algorithm. (Delineating pervasive differences, e.g.,
to outline the extent of flooding [1], or to characterize the
range of forest fire damage, is still an interesting and important
remote sensing problem, but it is different from the anomalous
change detection problem.) These pervasive differences may
be due to alterations in calibration, illumination, look angle,
and even the choice of remote sensing platform. They can also
be due to misregistration ([2], [3]) of the images, or to diurnal
and seasonal variations [4] in the scene.

ACD algorithms attempt to make the distinction between
incidental differences and anomalous changes by assuming
that most of the differences that are observed in the image are
incidental; that is, that the incidental differences are pervasive.
From the image data, one can learn the patterns of these
pervasive differences, and then the changes which do not fit
the patterns are identified as anomalous.

An example of an effective ACD algorithm is the
“chronochrome,” so called because it identifies changes in
color (‘chromo’) with time (‘chrono’) [5]. For this algorithm,
the “pattern” is a least-squares linear fit between the two
images, and large residuals from that fit identify the anomalous
changes. For hyperspectral imagery, there is a lot of color
information; the linear fit has a large number of parame-
ters, and is quite flexible at fitting pervasive differences. An
extension of this idea to nonlinear fits was developed by
Clifton [6], who used a neural net to do the fit. Further

variations include covariance equalization [7], which is based
on a whitening/dewhitening principle [8], and multivariate
alteration detection [9], which is based on canonical com-
ponents analysis [10]. The notion of distinguishing pervasive
differences from anomalous changes led to a more formal
machine learning framework [11]. Although the framework
considers arbitrary distributions, a new detector with a hy-
perbolic boundary is obtained when the data distribution is
assumed to be Gaussian. Indeed, this Gaussian assumption,
sometimes explicit and sometimes implicit, is common for
many of these algorithms, and they all belong to a family
of quadratic covariance-based ACD algorithms [12].

While the effectiveness of algorithms based on the Gaus-
sian assumption has been well demonstrated, it is widely
appreciated that data collected in the field is often far from
Gaussian. The class of elliptically-contoured (EC) distributions
provides a generalization of the Gaussian that has found
utility both for radar signals [13] and, more recently, for
hyperspectral imagery [14], [15], [16]. Like the Gaussian,
which is a special case, these distributions characterize all the
pairwise correlations between bands of a hyperspectral image
with a covariance matrix, but unlike the Gaussian, they do
not necessarily exhibit the rapidly decaying exp(−r2) tail.
The freedom to model fatter tails is particularly useful for
detections of anomalies and anomalous changes, because it is
on the tail of these distributions that the distinctions between
regular and anomalous data are made.

II. DEVELOPMENT

In this section, we will derive anomalous change detectors
for arbitrary data distributions. We will show that when these
distributions are Gaussian, the detectors take on simple and in
some cases well-known forms. Then we will derive the detec-
tors obtained when the distribution is elliptically contoured.

A. Arbitrary distributions

We start with a pair of co-registered images which we will
call the x-image and the y-image. Let x ∈ Rdx be the spectrum
of a pixel in the x-image, and y ∈ Rdy the spectrum of
the corresponding pixel in the y-image. If we treat x and y
as random variables, then we can write P (x,y) as a joint
probability distribution over x and y, and remark that P (x,y)
models what we mean by regular or pervasive differences. This
leads to a natural way of identifying “irregular” differences
(or anomalous changes): these are the pixels (x,y) for which
P (x,y) is smallest.
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TABLE I
A FAMILY OF ACD ALGORITHMS PARAMETRIZED WITH βx AND βy .

Likelihood Ratio ACD algorithm βx βy

P (x,y)/U(x,y) RX 0 0
P (x,y)/[P (x)U(y)] Chronochrome (y|x) 0 1
P (x,y)/[U(x)P (y)] Chronochrome (x|y) 1 0
P (x,y)/[P (x)P (y)] Hyperbolic ACD 1 1

Following Refs. [17], [18], [19], we remark that anomaly
detection can be recast as binary classification, where the
second class corresponds to a uniform measure U , and the
resulting likelihood ratio P (x,y)/U(x,y) is equivalent to the
density P (x,y).

For change detection, the notion of conditional anomalous-
ness is useful. Instead of the joint distribution P (x,y), use
the conditional distribution P (y|x) = P (x,y)/P (x). When
the pixel y has an unusual value given the value of x, then
the conditional distribution will be small. For the multivariate
Gaussian case, it can be shown [20] that this formalism
leads to the chronochrome detector [5]. Note that there is
an asymmetry in this formalism; the conditional distribution
P (x|y) = P (x,y)/P (y) leads to a different detector.

A machine learning framework for anomalous change, pro-
posed in Ref. [11], leads to the symmetric likelihood ratio

P (x,y)
P (x)P (y)

. (1)

When P (x,y) is Gaussian, this ratio produces the Hyperbolic
Anomalous Change Detector (HACD), so named for the
hyperbolic boundary separating regular from anomalous.

These change detection algorithms have different origins,
but Table I illustrates the close ties between them. The negative
logarithm of the likelihood ratio is large when the likelihood
ratio is small, and provides an anomalousness measure

A(x,y) = − logP (x,y) + βx logP (x) + βy logP (y) (2)

parametrized by βx and βy . Which detector is better depends
not on the distribution P (x,y), but on the kind of anomalies
that are sought. Our aim here is not to choose among them,
but to consider all of these algorithms, and to investigate how
the choice of model for P (x,y), specifically the choice of EC
distribution instead of Gaussian, affects their performance.

In what follows, it is convenient to introduce

z =
[

x
y

]
∈ Rd, (3)

with d = dx + dy , as the pixel in the “stacked” image.

B. Gaussian distributions

It is natural, and often very useful, to model P (x,y) as
a multivariate Gaussian. We will assume without loss of
generality that the mean of this distribution is the origin, so
that 〈x 〉 = 0 and 〈y 〉 = 0. Then, we can write the covariance
matrix in terms of the stacked pixel z defined in Eq. (3).

Z =
〈
zzT

〉
=
[
X CT

C Y

]
(4)

where X =
〈
xxT

〉
, Y =

〈
yyT

〉
, and C =

〈
yxT

〉
. The

Gaussian model for the distribution of z is given by

P (z) = (2π)−d/2|Z|−1/2 exp
[
−1

2
zTZ−1z

]
. (5)

For Gaussian distributions, small density corresponds to
large Mahalanobis distance from the mean, so we can write
A(z) = zTZ−1z as a measure of anomalousness. This expres-
sion1 is often referred to as the RX anomaly detector [21].

In the Gaussian case, we can write all of the detectors in
Table I with the expression A(z) = zTQz where the quadratic
coefficient matrix is given by

Q =
[
X CT

C Y

]−1

−βx
[
X−1 0

0 0

]
−βy

[
0 0
0 Y −1

]
. (6)

Again, the different detectors are given by different choices
of βx and βy . These are not the only quadratic ACD al-
gorithms that have been proposed [12], but they correspond
to a selection that can be derived as Gaussian special cases
of detectors that are defined for general distributions. This
makes it straightforward to generalize them to non-Gaussian
EC distributions.

As a convenience, define the following three scalars for the
pixel (x,y):

ξx = xTX−1x

ξy = yTY −1y (7)
ξz = zTZ−1z.

Then the anomalousness of change at the pixel (x,y) can be
expressed as

A(x,y) = ξz − βxξx − βyξy. (8)

where, again, the choice of β parameters specifies the algo-
rithm (as shown in Table I).

C. Elliptically-contoured (EC) distributions

For elliptically-contoured distributions [22], P (z) depends
on the covariance matrix Z and can be written

P (z) = |Z|−1/2H(d, ξz) (9)

where |Z| is the determinant of Z, d is the dimension of
z, ξz = zTZ−1z is a scalar that corresponds to the squared
Mahalanobis distance of z to the origin, and H is a positive
scalar function. For example, H(d, ξ) = (2π)−d/2 exp(−ξ/2)
corresponds to the Gaussian distribution.

If we model our data with an EC distribution, then the
anomalousness at pixel (x,y) will depend on x and y only
through the scalar values of ξx, ξy , and ξz defined in Eq. (7).
In particular, we can write

A(x,y) = h(d, ξz)− βxh(dx, ξx)− βyh(dy, ξy) (10)

where h(d, ξ) = − logH(d, ξ).

1RX is sometimes used to refer to an anomaly detection scheme in which
the covariance Z is estimated locally rather than over the full image. This
can be a useful extension, but for the purposes of the present exposition, we
will consider statistics estimated from the entire image.
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Following Kano [23], we define a consistent family of EC
distributions as a set of functions H(d, ξ), defined for all
positive integers d, with the following property: if P (z) =
|Z|−1/2H(d, ξz), where z ∈ Rd is the stacked vector in
Eq. (3), and ξz is the scalar defined in Eq. (7); then P (x) =
|X|−1/2H(dx, ξx) is the marginal distribution associated with
the projection of z onto the dx < d dimensional subspace
corresponding to x.

In general, if the distribution of z is EC, then the marginal
distributions of x and y will also be EC [22], and one can
write an explicit expression for these lower dimensional EC
functions. Specifically, given H(d, ξ) for a given d, and d′ < d,
one can write [24]

H(d′, ξ) = c(d′, d)
∫ ∞

0

w(d−d′)/2−1H(d,w + ξ) dw, (11)

where c(d′, d) is a normalization constant. However, there
is no guarantee that this integral will lead to a closed-form
solution. Further, an arbitrary EC distribution is not necessarily
expressible as the projection from a higher-dimensional EC
distribution.

The Gaussian is an example of a consistent family, and as
already seen in Eq. (8), leads to a simple anomalous change
detector.

Not all families are consistent. For instance, a popular
choice of EC distribution is given by the generalized Gaussian:

H(d, α, γ, ξ) = c(d, α, γ) exp(−γξα) (12)

with c(d, α, γ) the normalization constant. Here α = 1
produces the Gaussian distribution, and α < 1 is a fatter tailed
distribution. However the projection of a generalized Gaussian
to lower dimension does not produce a generalized Gaussian
– that is, it does not satisfy the condition in Eq. (11), and it
is not a consistent family [23].

Another generalization of the Gaussian which is a consistent
family is the multivariate-t distribution [14], [23], [24]:

H(d, ν, ξ) =
Γ
(
d+ν

2

)
Γ
(
ν
2

)
πd/2(ν − 2)d/2

(
1 +

ξ

ν − 2

)−(d+ν)/2

.

(13)
This is a fatter tailed distribution than the Gaussian, and it
gets fatter as ν gets smaller. In fact, as ν → 2, the variance
diverges. The limit ν →∞ recovers the Gaussian distribution.
Not only is Eq. (13) consistent, it is also convenient. It
provides a simple closed form expression for all positive
integers d. By substituting the above multivariate-t form
into Eq. (10), and dropping unimportant additive constants,
we obtain an expression for anomalousness of change that
constitutes the main result in this paper.

A(x,y) = (dx + dy + ν) log
(

1 +
ξz

ν − 2

)
−βx(dx + ν) log

(
1 +

ξx
ν − 2

)
−βy(dy + ν) log

(
1 +

ξy
ν − 2

)
. (14)

Note that as ν →∞ (and in particular for ν � dx + dy), and
dividing out an irrelevant factor of ν, this expression reduces
to the Gaussian limit in Eq. (8).

Fig. 1. Broadband image of the 224-channel hyperspectral AVIRIS data used
in these experiments. The image is 150×500 pixels, and was obtained from
flight f960323t01p02_r04_sc01 over the Florida coast.

III. NUMERICAL EXPERIMENTS

A. Simulated pervasive differences and anomalous changes

For our first experiment to compare these EC-based algo-
rithms and their Gaussian-based counterparts, we employed
the data and simulation framework used in Ref. [12]. The
data set (see Fig. 1) is a 224-channel image of the Florida
coast, taken with the AVIRIS sensor [25]. A pervasive change
is applied to all the pixels in the image to produce a second
image, and principal components analysis is used to reduce the
images to d = 10 bands each. (We also considered canonical
correlation analysis for dimension reduction, and obtained
similar results.) Then, single-pixel anomalous changes are
produced by scrambling the pixels in one of the images; this
produces anomalous change pixels (x,y) whose components
(x and y) are not individually anomalous [12]. We modify
this scheme slightly by randomly partitioning the pixels into
training and testing sets, with an equal number of pixels in
each set. The training set is used to estimate the covariance
matrix Z and the EC parameter ν (see the Appendix for
details), and the testing set uses these values to evaluate
performance of the algorithm.

Fig. 2(a) plots the resulting ROC curves on semi-logarithmic
axes to emphasize the low false alarm rate regime; we remark
that for any kind of anomaly or anomalous change detec-
tion, the low false alarm rate is usually the regime of most
operational interest. Fig. 2(a) confirms previously reported
observations [12] that among the Gaussian algorithms, Hyper-
bolic Anomalous Change Detection (HACD) outperforms the
Chronochrome (CC) which outperforms the straight anomaly
detection approach (RX). But our main experimental result
is that the EC variants of these algorithms outperform their
Gaussian counterparts.

B. Real pervasive differences, simulated anomalous changes

In an experiment that ran over many months, Eismann et
al. [4] made a series of co-registered hyperspectral images of
the same scene (see Fig. 3). In addition to a grassy field with
trees in the background, some panels were also present in the
scene. These panels exhibited spectra unlike what was in the
rest of the scene and might be considered anomalous, but be-
cause they are in both images, they are not anomalous changes.
A pair of images from this experiment, shown in Fig. 3(a,b),
provides an example with real pervasive differences due to
seasonal changes from August to October. Following Refs. [2],
[4], the data were reduced to d = 10 bands by taking principal
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Fig. 2. ROC curves compare the performance of Gaussian-based algorithms (Hyperbolic ACD, Chronochrome (both variants), and RX) with the modification
of these algorithms for elliptically contoured distributions. Note that EC-based RX is equivalent to standard RX. For each detector, ten ROC curves are plotted
corresponding to different partitions of training and testing data. For the two chronochrome algorithms, (y|x) and (x|y), we plot five ROC curves each, and
we see in the CC and EC-CC plots that the ten curves break into two groups, corresponding to the two variants of the chronochrome. (a) Simulated pervasive
differences correspond to a smoothed misregistration by one pixel of the AVIRIS data in Fig. 1; simulated anomalous changes are obtained by scrambling the
pixels. (b) Real pervasive differences are obtained from separate images taken two months apart, and shown in Fig. 3(a,b); anomalous changes are simulated.
(c) Real pervasive differences and real anomalous changes are from images shown in Fig. 3(a,c).

(a) (b)

(c) (d)

Fig. 3. Image of hyperspectral data described in Refs. [2], [4]. (a) Image
taken August 25, 2005. (b) Image taken October 14, 2005. (c) Image taken
October 14, 2005; after placing two dark tarps on the grass. (d) Inset from
panel (c), showing one of the stationary panels and one of the emplaced tarps.

components from the data shown in Fig. 3(a). We used the
simulation framework to introduce anomalous changes and
computed ROC curves, as seen in Fig. 2(b). The results agree
with those seen in the full simulation in Section III-A: HACD
beat CC beat RX, but more to the point, EC-HACD beat
HACD and EC-CC beat CC.

C. Real pervasive differences, real anomalous changes

The advantage of the simulation framework is that it pro-
duces enough anomalous changes to permit good statisti-
cal comparisons. The disadvantage is that those anomalous
changes are simulated. Fig. 3(a,c) shows two images, taken
two months apart, but with anomalous changes (two folded
tarps) introduced into the second image. Although results

with real anomalies (shown in Fig. 2(c)) are necessarily
anecdotal, they roughly confirm what was observed for the
simulated anomalies: again, in the low false alarm rate regime,
the EC-based change detectors outperformed their Gaussian
counterparts.

IV. CONCLUSION

Because anomalies are rare, it is the tail of the distribution
that matters most in modeling data for anomaly and anomalous
change detection. While EC distributions share many of the
useful properties of Gaussian distributions (specifically, that
they are characterized primarily by a covariance matrix), they
can have fatter tails than Gaussian distributions, and this
accords more with what is observed in hyperspectral imagery.
Substantially better anomalous change detection performance
was obtained by replacing the Gaussian distribution with the
multivariate-t distribution.
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APPENDIX

In addition to estimating the covariances X , Y , and C,
use of the change detection formula in Eq. (14) requires an
estimate of ν as well. Marden and Manolakis [26] considered
various goodness-of-fit statistics applied to a histogram of
Mahalanobis distances, such as shown in Fig. 4(a,b), and de-
scribed a sophisticated (and expensive) approach that involved
fitting a mixture of concentric EC distributions to the data. We
have found that a precise estimate is not necessary, as seen in
Fig. 4(c), and that a quick estimate is readily obtained by
taking a simple ratio of moments of the distribution. In prin-
ciple, x or y might exhibit different values of ν; our practical
compromise was to take moments of the distribution of the
stacked variable z. Let r = ξ

1/2
z = |Z−1/2z| =

(
zTZ−1z

)1/2
be the scalar magnitude of the whitened pixel value. Define

κm =
〈
rm+2

〉
/ 〈 rm 〉 (15)

and note that
ν = 2 +

mκm
κm − (d+m)

(16)

is the value of ν that is consistent with this κm.
As a practical matter, we use m = 1 as this is the least

sensitive to outliers. (Also, the moment
〈
rm+2

〉
is bounded

only for ν > m+ 2.) For Gaussian distributions, κm = d+m
and the denominator vanishes. In our implementation, if we
observe κm ≤ d+m, then we use the Gaussian anomalousness
in Eq. (8) instead of Eq. (14). For the experiments described
here, however, that condition was never observed.


