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ABSTRACT
This paper is a personal and purposefully idiosyncratic survey of
issues, some technical and some philosophical, that arise in de-
veloping algorithms for the detection of anomalies and anomalous
changes in hyperspectral imagery.

The technical emphasis in anomaly detection is on modeling
background clutter. For hyperspectral imagery this is a challenge
because there are so many channels (the hyperspectral part) and be-
cause there is so much spatial structure (the imagery part). A wide
range of models has been proposed for characterizing hyperspectral
clutter: global and local models, Gaussian and non-Gaussian mod-
els, full-rank and subspace models, parametric and nonparametric
models. And hybrid combinations, thereof. In discussing how these
models relate to each other, an important theme will be characteriz-
ing the quality of a model in the absence of ground truth.

The anomaly itself of more of a philosophical creature. It is a
deviation from what is typical or expected. In general, the detection
of anomalies is complicated by the fact that anomalies are rare and
that anomalies tend to defy any kind of precise specification. One
might even say of anomalies that they are, by definition, undefined.

Index Terms— Detection, Target, Anomaly, Background, Hy-
perspectral, Imagery

1. INTRODUCTION

The detection of anomalies is rarely a goal in its own right. In many
operational scenarios, the anomaly is something that is passed along
for human inspection, or for further processing. It is, as Fig. 1 illus-
trates, a cueing process, and it has two purposes: the first, and ar-
guably most important, is to reduce the quantity of incoming data to
a level that can be handled by the more expensive downstream analy-
sis; the second is to pass along the potentially interesting items. The
distinction between “interesting” and “potentially interesting” (like
the distinction between “dead” and “mostly dead” [1]) can be very
important, but if the anomaly detector has succeeded at its first goal
(of reducing data quantity), then the downstream analysis can make
this judgment. This judgment can be very complicated and domain-
specific, but what makes anomaly detection useful as a concept is
that the anomaly detection module has more generic goals.

Broadly speaking, anomalies are rare and unusual. One way (but
not the only way) to make this notion more formal is to invoke the
mathematics of probability distributions. Write x ∈ Rd to indicate a
data sample (often a single pixel in a hyperspectral image), and p(x)
to indicate the probability density associated with that sample.

We can take the view that anomaly detection is a binary classi-
fication problem, with the two classes being anomalous and back-
ground. If pa(x) is the probability density for anomalous items, and
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pb(x) is the density for the non-anomalous background class, then
the likelihood ratio provides the optimal detector of anomalousness:

A(x) =
pa(x)

pb(x)
. (1)

One then compares to a threshold (A(x) ≷ η) to decide whether a
given pixel is anomalous or not.

Although (1) is unambiguously optimal, one can fairly object
that neither pa(x) nor pb(x) are really known. And in fact, both are
problematic, though in different ways.

1.1. pa(x) is not really known – a philosophical problem

If individual anomalies resist definition, how can we expect to write
down a probability distribution for all anomalies? There are two
ways to address this objection:

One way to respond is by acknowledging (or at least feigning)
ignorance of individual anomalies, and expressing that ignorance by
saying that pa(x) should be a broad flat distribution that treats all
possible anomalies equally. (This is akin to the Bayesian notion of an
“uninformative prior.”) For instance, if we say that pa(x) is uniform
over some range that is much larger than the support of pb(x), then

A(x) =
constant
pb(x)

, (2)

so A(x) ≷ η is equivalent to saying pb(x) ≶ η′ with the threshold
η′ = constant/η. This shows how anomaly detection is equivalent
to “density level detection” [2].

A second way to respond is by invoking the generalized likeli-
hood ratio (GLR). The GLR is widely used, and has proven useful
over a broad range of disciplines, particularly including remote sens-
ing data analysis. Unlike the simple likelihood ratio, however, claims
of optimality no longer apply. For the anomaly detection problem,
one can set up a hypothesis testing scenario

Ho : x = z (3)
H1 : x = z + w (4)
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Fig. 1. Anomaly detection as a cueing process. The difference be-
tween anomalous (or “potentially interesting”) data and truly inter-
esting data is a judgment that is made downstream of the anomaly
detector. But that judgment is feasible because it is only performed
on a small subset of the original data.



where Ho is the null hypothesis of no anomaly, and H1 is the alter-
native hypothesis that an anomalous quantity (w) has been added to
a non-anomalous value z. Here, z is the non-anomalous pixel value
whose probability density function is given by pb(z), and w is the
unknown anomaly. The GLR takes the form

A(x) =
maxw pb(x−w)

pb(x)
=

constant
pb(x)

(5)

which gives the same result as (2).
One interpretation of the GLR result is that it “avoids” making

any assumptions about pa(x). A second interpretation is that it “ef-
fectively” assumes that pa(x) is uniform, but because the assump-
tion is not explicit, the analyst does not recognize it, and therefore
cannot question it. Or alter it.

The GLR is itself problematic. As has been noted by several
authors [3, 4, 5], it is a non-unique and non-optimal solution to
the composite hypothesis testing problem. Also, in order to even
use the GLR for anomaly detection, one has to invoke an additive
model in (3), which is a fairly prescriptive view of what constitutes
an anomaly.

And it bears remarking that some kinds of anomaly detection
prefer choices of pa(x) that are not uniform. A detector of spectrally
sparse anomalies (arising, e.g., from gas-phase chemical plumes)
was developed in [6], put more weight on anomalies w whose spec-
trum was concentrated in a small number of channels. A restriction
to anomalous color used a different pa(x) in [7]. As we’ll see later in
Section 5, anomalous change detection can be derived in terms of yet
another pa(x) which depends on background distributions from the
individual images [8]. But even here, the choice of pa(x) is broad
and relatively flat, compared to the background distribution pb(x).

1.2. pb(x) is not really known – a technical problem

Regardless of whether a GLR is employed, or a pa(x) is posited,
or what choice is made for that pa(x), the key technical challenge
for good anomaly detection is the modeling of the background dis-
tribution pb(x) [9]. A natural candidate is the multivariate Gaussian,
which leads to a Mahalanobis distance: A(x) = (x−µ)TR−1(x−
µ) where µ and R are the mean and covariance of the Gaussian dis-
tribution. In practice, these quantities are estimated from the data:
µ̂ = (1/N)

∑N
i=1 xi, and R̂ = (1/N)

∑N
i=1(xi − µ̂)(xi − µ̂)T ,

and then
A(x) = (x− µ̂)T R̂−1(x− µ̂). (6)

The usual choice is R̂−1 = R̂−1, that is: estimate the inverse with
the inverse of the estimate. But regularized approximations are often
better [10, 11, 12].

Equation (6) is often accompanied by the name RX, although
the original RX detector [13, 14] referred specifically to the local
variant. As written, (6) corresponds to a global RX, in which a single
µ and a single R are computed for the whole image. In the local
variant, a separate µ is computed for every pixel in the image, based
on the mean of pixels in an annulus around that pixel. The covariance
R is again computed as an average of (x − µ̂)(x − µ̂)T , with the
average computed over the same annulus used to compute µ, or over
a larger annulus [15], or over the whole image (local mean, global
covariance). In [16], µ̂ is estimated not as a local mean of pixel
values in the annulus, but as a more general function of those pixel
values, where that function is learned from the rest of the image.

An interesting extension of (6) is to map x into a feature space
Φ(x) and compute Mahalanobis distance in that feature space;
this was originally suggested in [17], and applied to hyperspectral
anomaly detection in [18] (and corrected in [19]).

1.2.1. Generative and Discriminative models

“When solving a given problem,” Vapnik advises [20, p. 30], “try
to avoid solving a more general problem as an intermediate step.”
Methods that seek to estimate pb(x) as a first step, and then compare
pb(x) ≶ η as a second step are doing more work in that first step
than is actually necessary. One doesn’t need to know everything
about pb(x); one only needs the contour associated with pb(x) ≷ η
for some η.

The emphasis on estimating pb(x) with some p̂b(x) leads to
“generative” models. If you assume pb(x) is Gaussian, as in RX,
or that it is a finite mixture model of Gaussians, or if you use a ker-
nel density estimator, then you are building a generative model.

The emphasis on identifying the values of x that are on either
side of the p̂b(x) ≷ η boundary leads to “discriminative” models.
The support vector machine is a classic discriminative model [21],
but there are simpler examples. For instance, one might model the
data by a single ellipsoid that encloses most of the data. Such a
model is robust (indeed, oblivious) to variations in pb(x) that occur
in the “core” of the distribution, and instead models the distribution
on the “periphery” where the contour that discriminates background
from anomalous will be drawn. The MINVOL algorithm [22] pro-
vides one solution to this problem; a support vector machine with a
quadratic kernel also achieves this goal [23].

2. PERFORMANCE CRITERIA

Given that they elude definition, it’s no surprise that anomalies are
hard to measure. And anomaly detectors are hard to compare. The
literature on anomaly detection tends to lean on anecdotal demon-
strations (think: Forest Radiance). But because anomalies are rare,
it is difficult to find enough anecdotes to achieve any kind of statis-
tical precision. And it is even more difficult to have any confidence
that the known anomalies in a given dataset are at all representative
of the anomalies that you’d like your anomaly detector to find.

One very sensible approach is to implant targets into an im-
age [24, 25]. But an alternative (and essentially equivalent) approach
is to compute the volume inside an anomaly detection surface; this
is proportional to the number of implanted anomalous targets (as-
suming that the implanted targets are drawn from a uniform pa(x))
that are incorrectly identified as background. Thus, a good anomaly
detector will have a small volume. Since the anomaly detection sur-
face will be calibrated to a given false alarm rate, one can make a
coverage plot of log-volume versus log-false alarm rate [23, 26, 27].

This solution is not a panacea. It for instance doesn’t work for
subspace methods such as SSRX [28, 29], whose anomaly surface is
open and therefore has infinite volume. Yet SSRX is often observed
to be an operationally effective anomaly detector. A second potential
issue, described below in Section 6, is that coverage curves are not
strictly invariant to nonlinear coordinate changes.

3. IN-PLANE VS CROSS-PLANE ANOMALIES

When anomaly detection occurs in a high-dimensional space, as
it does with hyperspectral imagery, then a qualitative difference
emerges between the high-variance dimensions and the low-variance
dimensions. One difference that has been empirically observed is
that the high-variance dimensions tend to be less Gaussian than the
low-variance dimensions [30, 31, 32]. This difference has led to
anomaly detectors that treat those directions differently. For in-
stance, the SSRX (subspace RX) algorithm [28, 29] uses principal



components and projects out the largest variance directions, per-
forming RX detection on the remaining directions. In [26], the high-
variance directions are modeled by a simplex and the low-variance
directions by Gaussians. The Gaussian/Non-Gaussian (G/NG)
decomposition is also explored in [33], using a non-parametric
histogram-based model for the high-variance directions.

One can qualitatively characterize anomalies as being “in-plane”
(anomalous because they are far from the mean in the high-variance
directions) or “cross-plane” (far from the mean in the low-variance
directions). In-plane anomalies tend to be “qualitatively similar but
quantitatively different” from most of the data, whereas cross-plane
anomalies tend to be more qualitatively different. These are sub-
jective descriptions, but in-plane and cross-plane anomalies tend to
have subjectively different characters.

When SSRX projects out the large-variance directions before
performing traditional RX, it preferentially seeks the cross-plane
anomalies. By contrast, the kernel-RX detector described in [18, 19]
effectively projects out the directions (in the kernel-induced space)
that are not in the subspace spanned by the data samples used to train
the detector; thus, it seeks in-plane anomalies.

4. TRANSDUCTIVE MODELING

Traditional machine learning is careful to distinguish the labeled data
from which the model is trained from the unlabeled data to which the
model is applied. This makes operational sense: if the purpose of the
model is to supply labels, then there is no point in learning a model
to supply labels to data that is already labeled. One is often tempted
to evaluate the performance of a classifier on the same data from
which the classifier is trained, but this is properly regarded as a sin.

In the transductive variant of traditional machine learning [20,
p. 293], one is allowed to include the unlabeled data samples that the
model will be applied to as part of the model building process. The
reason this is not sinful is that those data samples do not have labels.

One interpretation of the anomaly detection problem is that there
are two classes (anomalous and background), and labeled training
data is available only for one class (background). Under this inter-
pretation, one trains an anomaly detector on the non-anomalous data,
and then applies it to wholly distinct set of data.

But what happens more commonly in practice is that one has a
given dataset and one presumes that the vast majority of samples in
that dataset are not anomalous. For training purposes, one treats all
of the data as if it were non-anomalous, learns a model, and then
applies this model back to the very same data that was used to train
it. The samples that are identified as most anomalous are the candi-
dates for anomalies. Again, because the data were not labeled, sin is
avoided, grace is attained, and with any luck, some interesting (or at
least potentially interesting) data samples are identified.

5. ANOMALOUS CHANGE DETECTION

For the change detection problem, one has two images that are co-
registered to each other, and the anomalousness at a pixel depends
on the values, call them x and y, of the corresponding pixels in
the two images. Perhaps even more so than for anomaly detection,
anomalous change detection is an excellent way to reduce data and
cue analysts [34]. Although a (surprisingly large) number of change
detection algorithms begin with the simple subtraction x− y, these
algorithms tend to be overly-sensitive to pervasive differences (e.g.,
in lighting or calibration) between the two images. In [35], the
“chronochrome” was introduced; this also involves subtracting the

two images, but only after doing a least-squares fit of one to the
other; the anomalousness of change is measured using an RX detec-
tor on the difference image.

Distribution-based (instead of subtraction-based) anomalous
change detection was introduced in [8]. Here, one employs a like-
lihood ratio like the one in (1), but in terms of the pixels in both of
the images (x,y):

A(x,y) =
pa(x,y)

pb(x,y)
. (7)

This still leaves open the question of what to use for pa(x,y). A uni-
form distribution is one option, but this says more about whether the
pair (x,y) is anomalous than whether the change x↔y is unusual. If
we focus on one-directional change x→y, and consider only anoma-
lousness in y, then we can write pa(x,y) = pb(x)pa(y) and if we
let pa(y) be uniform, then

A(x,y) =
pb(x)

pb(x,y)
. (8)

If we fit Gaussian models to pb(x) and pb(x,y), then it can be
shown [36] that the chronochrome detector emerges. Note that there
is a fundamental asymmetry in (8); using pb(y) instead of pb(x) for
the numerator in (8) produces a different anomalous change detector,
one that is optimized for y→x changes. If we care about both x→y
and y→x, we can write

A(x,y) =
pb(x)pb(y)

pb(x,y)
. (9)

When pb(x,y) is Gaussian, this leads to the hyperbolic anomalous
change detector (HACD) [36]. But more generally, (9) allows both
generative modeling with elliptically-contoured distributions [37]
and discriminative modeling with support vector machines [38].

Note, by the way, that (9), unlike (8), does not suffer from the
ambiguity of coordinate choice described below in Section 6.

6. CHANGE OF COORDINATES: A CAUTIONARY TALE

One should choose pa(x) to be generally broad and flat. The uni-
form distribution is a choice that is intuitive, natural, and convenient.
But one should not assume that it is somehow “optimal.” To see this,
consider expressing x in some different coordinates; for instance
x̃ = logx. A distribution that is uniform in x̃ will be equivalent
to a non-uniform distribution in x. In general, if x̃ = f(x), then

pa(x̃) =

∣∣∣∣∂f∂x
∣∣∣∣−1

pa(x). (10)

If f(x) is a linear function, then the coefficient is a constant, and the
distribution will be uniform in x and in x̃, but if f(x) is nonlinear,
then pa(x) and pa(x̃) cannot both be uniform.

For hyperspectral imagery, two popular choices for expressing x
are radiance and reflectance. For linear transformations between the
two, there is no effect. But one cannot expect precise equivalence if
there are nonlinearities in the conversion.

All of this suggests that one should not put too much sweat into
the question of exactly what pa(x) should be. The philosophy tells
us that it should be broad and flat, but not what its exact functional
form should be. Instead, we should concentrate our technical efforts
on getting a good model for pb(x). As is often the case in life, the
technical trumps the philosophical.

And vice versa.
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