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INTRODUCTION

Remote sensing allows for the analysis and understanding
of a scene through the use of data collected from satellite or
airborne platforms. Hyperspectral imagery (HSI), in particu-
lar, is a sensor modality that provides the spectral information
necessary to remotely discriminate between materials in the
imaged area (e.g., vegetation, soil, buildings, and pavement).
Unlike traditional photographic imagery, which is collected
at red, green, and blue wavelengths, HSI is collected at hun-
dreds of narrow, contiguous wavelengths. These wavelengths
can range from the visible into the near infrared, shortwave
infrared, and often midwave and longwave (thermal) infrared,
capturing information beyond what the human eye can see.
Because different materials have different spectral signatures,
analysts can exploit these spectral properties to remotely char-
acterize the material content of a scene in exquisite detail. HSI
data supports a variety of materially-focused analyses includ-
ing classification, change detection, anomaly detection, target
detection, and broad area search, with applications ranging
from monitoring urban development to detecting camouflaged
vehicles. The focus here is target detection, which specifically
refers to the algorithms that detect the spectral signatures of
targeted materials; within the application space of nuclear
security, the ability to remotely detect specific “materials of
interest” (MOIs) is of great importance to nonproliferation.

HYPERSPECTRAL TARGET DETECTION

For a hyperspectral image collected over d spectral bands,
the pixels can be represented as vectors in Rd. In this spectral
space representation – which is the predominant data space
for hyperspectral image analysis – spatial information is not
inherently incorporated. Each vector corresponds to the sensor-
reaching radiance spectrum or ground-estimated reflectance
spectrum at a particular location on the ground, and that in turn
depends on the physical materials at that location. A perennial
challenge in hyperspectral analysis is that the spatial extent of a
pixel does not necessarily contain a single material; if the pixel
corresponds to a region containing multiple materials, then the
sensor integrates the radiometric responses of those materials
into one spectrum for that pixel. Hyperspectral images may
contain “pure” pixels (covering a single material) or “mixed”
pixels (with multiple materials in the same pixel location).
Even for pure pixels, material discrimination is complicated
by uncertainties in illumination, atmospheric distortion, sensor
noise, and material composition. The complications are further
compounded by spectral variability of the solid materials due
to variations in morphology such as grain size, packing density,
etc., as demonstrated, for instance, by Myers et al. [1].

Target detection algorithms leverage the pixel-level mate-
rial information in HSI in an attempt to identify all instances

of a particular material within the scene. The input signal is a
spectrum corresponding to the target material, and that spec-
trum can be lab-measured, field-measured, or image-derived.
The detector then uses a statistical, geometrical, or graph-
based measure to assign a target-likelihood score to each pixel
in the image, indicating how likely each pixel is to contain the
target material in either full or sub-pixel abundances. The most
commonly used detectors – which include the Spectral Angle
Mapper (SAM) [2], the Adaptive Matched Filter (AMF) [3, 4]
and the Adaptive Cosine/Coherence Estimator (ACE) [5, 6] –
employ only the spectral information in the image.

As noted in the previous section, there are additional chal-
lenges when any of the relevant materials exist in particulate
form: traditional detection approaches assume that the target
material in the scene “looks like” the input target spectrum, but
morphological variations within a single material can lead to
highly variable spectra. This is in contrast to gas-phase chemi-
cal plumes, for example, which tend to have more consistent
spectral features. MOI detection in support of nuclear non-
proliferation explicitly refers to materials that are particulates,
and the detection of those MOIs can be used to characterize
suspected facilities; an illustration of this, along with sample
variable spectra, is shown in Fig. 1. This challenge of variable
targets has led to the need for algorithms that are more robust
to such variability, especially in cluttered backgrounds.

We present two new approaches – a local regression ap-
proach and a spectral unmixing approach – that incorporate
spatial information in different ways, and compare them to
commonly used detection algorithms. Spatial information
is not widely used in hyperspectral target detection, and re-
sults here will suggest that techniques based on local spatial
information can be more robust to target variability. While
the motivation here is target detection of MOIs in support of
nuclear nonproliferation, we will present an illustrative ex-
ample using surrogate benign materials. The SHARE 2012
dataset [7] was expressly designed for testing remote sensing
analysis schemes, and provides a good example of spectrally-
variable targets in cluttered backgrounds.

Regression

To distinguish target signatures in cluttered backgrounds,
a key step is the characterization of that background [8]. One
very simple background model is the multivariate Gaussian,
and it is the basis for classic target detection algorithms such
as AMF [3, 4] and ACE [5, 6]. A simple generalization is
an elliptically-contoured distribution – like a Gaussian, but
with fatter tails – and this has been used with some success in
hyperspectral image analysis [9, 10]. These models are highly
restrictive, however, and amount to estimating the background
at a given pixel by the global mean of all the pixels in the entire
image. The use of local estimation for mean and covariance



Fig. 1: Illustration of the detection of a material of interest (MOI) deposit for characterizing a facility. The spectra are highly variable, and
depend nonlinearly on the morphological properties (particle size, packing density, optical thickness, etc.) of the MOI.

was initially suggested by Reed and Yu [11] in the context of
anomaly detection [12, 13], but later work considered various
schemes for local estimation in target detection [14, 15].

All these local schemes estimate the target-free value of
a pixel with the average of pixel values in a spatial annulus
surrounding the pixel of interest. Recently, we have been
investigating an approach whereby the target-free value of
that center pixel is estimated with a general function of those
background pixels [16–19]. This corresponds, roughly, to
the “filtering” concept advocated by Milanfar [20]. While
it is possible to derive this function based on an underlying
model (e.g., polynomial) of the background variation [21],
or an underlying kernel (e.g., Gaussian) of weights [22], the
regression framework is based on the idea of “learning” this
function from the image itself.

Unmixing

The second detection approach presented here is CITRUS:
Cueing Image Target Regions by Unmixing Spectra [23]. In-
stead of assigning a target-likelihood score to each pixel, as
traditional detection algorithms do, CITRUS assigns a score to
each local region, corresponding to the likelihood that the tar-
get material is in that region. CITRUS uses a metric based on
the endmembers within each tile, which are the “corners” of
the simplex enclosing the data in spectral space; endmember
identification is a part of the process known as spectral unmix-
ing. The metric is equal to the Euclidean distance from the
locally-mixed input target spectrum to the subspace defined by
the endmembers in a tile. If the distance is small, then there
is a higher target-likelihood, and if the distance is large, then
there is a lower target-likelihood.

Algorithm CITRUS

1: Read in image, target spectrum (t)
2: Segment image into 10 × 10 pixel spatial tiles
3: Select α
4: for each tile do
5: Estimate # of endmembers m using Gram matrix [24]
6: Identify m endmembers using MaxD [25, 26]
7: Calculate t̂ = αt + (1 − α)µtile

8: Compute distance δ from t̂ to the endmember subspace
9: δ = detection score for tile

10: end for

RESULTS AND ANALYSIS

The two approaches described here were applied to the
SHARE 2012 dataset created by Rochester Institute of Tech-
nology’s Digital Imaging and Remote Sensing (DIRS) Lab-
oratory in September 2012 [7]. As part of this multimodal
experimental campaign, the DIRS lab deployed several red
and blue cotton felt panels in both 2m× 2m and 3m× 3m sizes
under various states of illumination and occlusion. These were
imaged from an aerial platform, resulting in a ground-truthed

Fig. 2: RGB of SHARE 2012 HSI with known target locations.
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Fig. 3: Plots demonstrating target variability by comparing the
field-measured input spectrum (black) with the spectra of the target-
containing pixels in the image for the (a) red and (b) blue felt.



dataset with variable target spectra in both full and subpixel
abundances. This imagery has 229 bands (out of 360, after
removing atmospherically dominated or low signal to noise
bands), over a spectral range of 0.4 − 2.45µm, with a ground
sample distance of ∼ 1m. Fig. 2 shows the SHARE 2012
image with known target locations identified, and Fig. 3 shows
the variability of the targets in this dataset. The black lines cor-
respond to the hand-held spectrometer measurement of each
material taken at the time of the collect, which are the “input
signals” used for the detections in this analysis.

Fig. 4: RGB representation of the residual image.
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Fig. 5: The left panels (a,c,e) are for the red targets and the right
panels (b,d,f) are for the blue targets. The top two panels (a,b)
are detection maps against the original spectral imagery, while the
middle two (c,d) show detections against the residual image shown in
Figure 4. The bottom two panels (e,f) compare ROC curves showing
detection performance. The results are not unambiguous, but in
the operationally-relevant low false alarm rate regime, the residuals
provide a slight advantage.

An RGB representation of the (229-band) residual image
is given in Fig. 4, which visually illustrates how the residual
image suppresses the background and emphasizes the targets.
Fig. 5 shows the results of detection using the Spectral Angle
Mapper (SAM) [2] to find targets in both the original scene and
in the residual scene built from a local regression estimator.

Fig. 6 shows the results of the ACE detector applied in
the spectral space and then compared to CITRUS. To fairly
compare the two, we implemented a tiled version of ACE,
where the tile score was equal to max(ACE scores in tile).
The ROC curves were computed using the tiled version of
the truth mask. For the red felt targets, CITRUS shows a
moderate improvement over ACE at low false alarm rates, and
a significant improvement over ACE for the blue felt targets.
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Fig. 6: The left panels (a,c,e,g) are for the red targets and the right
panels (b,d,f,h) are for the blue targets. The top two panels (a,b) are
per-pixel ACE detection maps against the original spectral imagery,
while the second row (c,d) show the tiled version of the ACE detection
maps. The third pair of panels (e,f) show the CITRUS detection maps
for the red and blue targets, respectively. The bottom two panels (g,h)
compare ROC curves showing detection performance. At low false
alarm rates, CITRUS performs moderately better than ACE for the
red targets, and considerably better than ACE for the blue targets.



CONCLUSIONS

We described two spatio-spectral approaches for improv-
ing target detection in hyperspectral imagery, and employed
them on an image dataset in which the target signatures varied
considerably. The results are preliminary, but may ultimately
prove useful against the dangerous proliferation of red and
blue felt panels, as well as other spectrally-variable materials
of more direct interest to the nonproliferation mission.
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