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Abstract—Imagery collected from satellites and airborne plat-
forms provides an important tool for remotely analyzing the
content of a scene. In particular, the ability to remotely detect
a specific material within a scene is of critical importance in
nonproliferation and other applications. The sensor systems that
process hyperspectral images collect the high-dimensional spec-
tral information necessary to perform these detection analyses.
For a d−dimensional hyperspectral image, however, where d is
the number of spectral bands, it is common for the data to
inherently occupy an m−dimensional space with m � d. In
the remote sensing community, this has led to recent interest
in the use of manifold learning, which seeks to characterize the
embedded lower-dimensional, nonlinear manifold that the data
discretely approximate. The research presented here focuses on a
graph theory and manifold learning approach to target detection,
using an adaptive version of locally linear embedding that is
biased to separate target pixels from background pixels. This
approach incorporates multiple target signatures for a particular
material, accounting for the spectral variability that is often
present within a solid material of interest.

I. INTRODUCTION

Unlike traditional color digital images, which are collected
at three visible wavelengths (red, green, and blue), hyperspec-
tral imagery (HSI) is collected at hundreds of narrow, contigu-
ous spectral bands. These wavelengths range anywhere from
the visible into the near infrared (NIR), short-wave infrared
(SWIR), mid-wave infrared (MWIR), and long-wave infrared
(LWIR). The advantage of having additional spectral informa-
tion in HSI is that it allows for greater material separability;
materials that look visibly similar can appear very different
when examined spectrally. This ability to leverage material
separation and identification in remotely sensed hyperspectral
scenes is useful to both civilian and military applications, e.g.,
monitoring urban development, tracking crop growth, and the
nonproliferation mission. Broader categories of HSI analysis
that utilize this material information include change detection,
anomaly detection, target detection, classification, and large
area search. Here, we specifically focus on the target detection
problem, which – given a spectrum or spectra corresponding
to a material of interest – seeks to identify all occurrences
of that material in a remotely-sensed scene. Of course, target
detection has its own set of challenges, which will be detailed
in the next section.

This paper is organized in the following manner. In Sec-
tion II, we describe the target detection problem, and also
explain basic graph theory and manifold learning terminology.
Section III presents our graph-based methodology for target
detection with spectrally variable targets. Section IV shows the
data used in this analysis, and Section V presents the results of
the experiment. We conclude with a summary and discussion
of future work in Section VI.

II. BACKGROUND

A. Target Detection

One of the challenges in hyperspectral image analysis is
within-material variability; unlike gas-phase chemical plumes
[1], [2], solid materials cannot be defined be a single, unique,
and deterministic spectrum. In other words, there is no single
spectrum that describes all grass, and no single spectrum that
describes all quartz. This within-material spectral variability
is further compounded when the material of interest exists
in particle form, due to morphological variations such as
particle size and packing density [3], [4]. In target detection,
this describes the problem of solid target variability. Target
detection also faces the challenge of sub-pixel targets, i.e.,
when the target material only comprises a fraction of the
scene content for a given pixel [5]. When the extent of a
pixel corresponds to multiple materials, the sensor integrates
the radiometric response of those materials into a single
spectral response for that pixel, resulting in a mixed pixel.
Consequently, the target material often exists in the scene in
mixed pixels, or sub-pixel targets.

The traditional formulation of the target detection problem
uses a spectrum corresponding to a material of interest and,
given a hyperspectral image, the detector attempts to identify
all occurrences of that target within the scene. This can be
done through both statistical [6]–[8] and geometric means [9],
[10], and results in a grayscale detection map where each
pixel is assigned a detection score ∆(x). The mathematical
framework that is typically used to evaluate these detection
scores is hypothesis testing, where the spectra are viewed as
random vectors [5]. Given the spectrum of an observed pixel978-1-4673-9558-8/15/$31.00 ©2015 IEEE



x, there are two competing hypotheses:

H0 : target absent
H1 : target present.

If ∆(x) exceeds some threshold η, then the target present
hypothesis is taken to be true. This detection score is effec-
tively a measure of how “target-like” the pixel is, and can also
be viewed as a measure of confidence that the pixel actually
contains the target material. However, the “confidence” in
these detection scores faces an implicit challenge: as detailed
above, it can be difficult to describe a solid material class using
a single spectrum. This leads to another formulation of the
target detection problem in which multiple target spectra are
used. The updated formulation employs a composite hypothe-
sis test, so-named becaused the target present hypothesis has
multiple components. These multiple target spectra detection
approaches are primarily statistical [11]–[14].

It is well-documented that for these detectors, the statistical
approaches typically outperform the geometric approaches
[15]. However, in complex, materially-cluttered scenes, we
expect the structure of the image data to be both nonlinear and
non-gaussian [16]. The current models do not exploit the full
complexities of these structures, leading to an opportunity to
improve upon these models. This motivated the work presented
here, which attempts to approach the target detection prob-
lem using a completely different mathematical formulation.
Specifically, we use a graph-based model (as opposed to
the more traditional gaussian or linear mixture models), and
then implement a biased nonlinear dimensionality reduction
transformation in order to better separate the targets from
the background in their new, lower-dimensional space. This
is built on previous work, where we addressed the traditional
target detection problem using a single target spectrum [17],
[18]. Here, we expand on that approach in order to account
for solid target variability and multiple target spectra. An
overview of graph theory and manifold learning is given in the
following subsections, and the full methodology is presented
in Section III.

B. Nonlinear Dimensionality Reduction

When working with high-dimensional data, it is often
the case that the data can be accurately modeled in lower
dimensions. This is particularly true for hyperspectral data.
For a d−dimensional image (with d spectral bands), it is
typical for the data to inherently occupy an m−dimensional
space, with m � d. One way to address this is through
the use of dimensionality reduction, and these approaches
can be both linear and nonlinear. The most well-known lin-
ear approach is Principal Components Analysis (PCA) [19];
however, as described in the previous section, hyperspectral
data are often highly nonlinear in cluttered scenes. As such,
our focus here is on nonlinear dimensionality reduction. An-
other term for dimensionality reduction is manifold learning,
which assumes that the data discretely approximate a lower-
dimensional manifold (i.e., curve or surface) embedded in the
original higher-dimensional space containing the data [20].

Popular nonlinear manifold learning algorithms include Kernel
PCA [21], ISOMAP [22], Locally Linear Embedding (LLE)
[23], [24], and Laplacian Eigenmaps [25], which have been
applied to hyperspectral data for a variety of applications [26]–
[30]. While manifold learning algorithms do not all initially
require a graph-based model, the LLE algorithm - the manifold
learning approach used here - does use a graph model.

1) Graph Theory: A graph G = {V,E} is composed of two
finite sets: a vertex set V , an edge set E, and a third optional
set of weights ω [31]. In practical applications, the vertices
represent the objects, and the edges are the relationships
between those objects. A common example of a graph is
one in which the vertices are given by user profiles on a
social media platform, and the edges represent connections
or friendships between those profiles. For an unweighted
graph, the relationships are binary, and the edges all have
a numerical value of 1. For a weighted graph, ω assigns a
positive, numerical value to those edges, or relationships. In
the context of hyperspectral data, the spectral vectors (pixels)
in the image comprise the vertex set

V = {xi}Ni=1, (1)

where xi ∈ Rd for an image with N pixels and d spectral
bands. Although the vertex set in HSI applications is already
given, the edge set must still be created. In general appli-
cations, the edge set E is typically populated by applying a
k-nearest neighbor (kNN) model that creates an edge between
each vertex and its k closest neighboring vertices. A user-
selected distance metric is used to define “closeness” in this
context (e.g., euclidean distance, angular distance).

When two vertices are connected by an edge, they consti-
tute adjacent vertices. The adjacency structure of a graph is
represented by an adjacency matrix A, which can be defined
for both unweighted and weighted graphs. This is an N ×N
symmetric matrix whose rows and columns are indexed by the
N vertices in V , and the elements are [A]ij = [A]ji = ωij ,
where ωij is the weight of the symmetric edge between vertex
xi and vertex xj . If the two vertices are not connected by
an edge, then the corresponding element in A is assigned a
value of zero, [A]ij = 0. The graphs discussed in this paper
do not allow for repeated edges and self-loops, which means
that each element of the matrix A has only one value, and the
main diagonal entries of the matrix are 0. These basic graph
theory definitions play an important role in many manifold
learning techniques.

2) Locally Linear Embedding: A manifold may be either
linear or nonlinear, and is the higher dimensional analog of
2-D and 3-D curves and surfaces. When examined locally, a
manifold behaves like a Euclidean space and appears relatively
flat and featureless; globally, a manifold may have far more
intricate features. Manifold learning refers to the algorithms
that seek to recover these inherently lower-dimensional man-
ifolds that are embedded in the original higher-dimensional
space containing data.

The manifold learning algorithm that we utilize here is
Locally Linear Embedding (LLE), and was developed by



Fig. 1. Chart demonstrating the LLE algorithm for nonlinear manifold
learning [23].

Saul and Roweis [23], [24]. LLE has three main steps: (1)
nearest neighbor search, (2) constrained least-squares local
reconstruction, and (3) spectral embedding. These steps are
summarized below, and illustrated in Figure 1. Notationally,
X is the d × N array of input pixels as columns such that
#»

Xi = xi, and Y is the m×N array of output (dimensionality-
reduced) pixels as columns such that

#»

Yi = yi (where yi is
the lower-dimensional complement to xi). Additionally, W is
the N ×N matrix of weights associated with each optimized
local reconstruction as described in Step 2.

1. Nearest neighbor search. The traditional implementation
of LLE suggests a kNN approach for building the edge set
on the graph, although any initial graph structure may be
chosen by the user. In using a kNN graph, the only user-
defined free parameter is k, the number of neighbors in each
local neighborhood. The kNN approach works well when
the data are generally evenly distributed, but for data that
have varying neighborhood sizes, the global choice of k
can dramatically under-define some neighborhood sizes and
dramatically over-define other neighborhood sizes. Depending
on the application, the choice of initial graph structure should
be carefully considered by the user.

2. Constrained least-squares local reconstruction. After the
k respective neighbors of each pixel are identified, the next
step is to optimize the unmixing of each pixel with respect to
its local neighborhood. The linear reconstruction of each pixel
#»

Xi is given by

X̂i =

N∑
j=1

Wij
#»

Xj , (2)

where Wij is the contribution of the jth pixel to the recon-

struction of the ith pixel, and i 6= j. The scalar weights Wij

are constrained to satisfy
∑

j Wij = 1. If
#»

Xj does not belong
to the neighborhood of

#»

Xi, then the weighted contribution is
Wij = 0. Even though the summation is across all N pixels,
only the k neighborhood pixels have non-zero values for Wij ,
and thus only the k neighborhood pixels contribute to the
reconstruction. The optimal reconstruction weights in W are
computed by minimizing the cost function within each local
neighborhood:

E(W ) =

N∑
i=1

∣∣∣∣∣∣ #»

Xi −
N∑
j=1

Wij
#»

Xj

∣∣∣∣∣∣
2

. (3)

Equation 3 sums the squared distances between each original
pixel and their respective neighborhood-driven reconstructions.
The optimized matrix of weight values is denoted Ŵ , given
by the minimization of E(W ).

3. Spectral embedding. After Ŵ is computed in Step 2,
those weights are then fixed and used to globally optimize
the embedded coordinates

#»

Yi. The transformation in LLE
preserves local linearity (i.e., invariance to scale, translation,
and rotation), and so the reconstruction weights within each
neighborhood in the spectral space coordinates are preserved
within those same neighborhoods in the lower-dimensional
transformed coordinates. The cost function that optimizes the
global embedding Y given the fixed neighborhood weights Ŵ
is:

Φ(Y) =

N∑
i=1

∣∣∣∣∣∣ #»

Yi −
N∑
j=1

Ŵij
#»

Yj

∣∣∣∣∣∣
2

. (4)

Roweis and Saul (2000, 2003) show that the optimization of
Equation 4 can be computed by solving an N × N sparse
eigenvalue problem. Given the matrix M = (I−W )T(I−W ),
the bottom m + 1 non-zero eigenvectors are the ordered set
of m LLE-derived embedding coordinates (after the single
bottom eigenvector of all 1s, and corresponding eigenvalue
of 0, is discarded). These m embedding coordinates with
N elements each define the m × N matrix of embedding
coordinates Y.

III. METHODOLOGY

The target detection methodology presented here uses a
biased nonlinear dimensionality reduction transformation that
is designed to separate out the target material from the
background data in the image, after which a simple Spectral
Angle Mapper detector is applied in the lower-dimensional
space. Section II-B2 outlines the steps in the traditional imple-
mentation of LLE, where the first step involves building a kNN
graph. With hyperspectral data, kNN graphs do not capture the
variety of neighborhood sizes, presence of anomalous pixels,
etc. As such, it is not appropriate to apply to traditional LLE,
with a kNN graph, to a hyperspectral image. In order to
more appropriately apply LLE to hyperspectral data, we use
our previously developed Adaptive Nearest Neighbors (ANN)
graph-building technique [32]. ANN is a data-driven approach



to adaptively identifying a different neighborhood size for
each pixel based on an estimate of local density. Here, we
implement adaptive LLE, where the first step, nearest neighbor
search, uses an ANN graph to find a different k value for
each pixel. Then, the second and third steps of adaptive LLE
proceed in the same manner as traditional LLE.

If adaptive LLE is applied to a hyperspectral chip, as
shown in Figure 3(b), then there is material separation in the
dimensionality-reduced image. With target detection, however,
the goal is to separate out a specific material. To do that, we
have to add additional edges to our ANN graph in order to
bias our adaptive LLE transformation for target detection. This
is done by incorporating the multiple target spectra into our
ANN graph, and enforcing additional connectivity on all pixels
that are distance-1 or distance-2 (i.e., one or two edges) away
from the target cloud. These steps are illustrated in Figures 2(a)
& 2(b). In building the edge set in this way, we are exploiting
the properties of LLE that attempt to minimize local and
global reconstruction errors. By intentionally overconnecting
the target and its neighbors, we are forcing LLE to collapse
those pixels away from the background. Adaptive LLE, biased
for target detection of red felt material, is shown in Figure 3(c).
As shown, the pixels corresponding to the red felt become
more separated from the background pixels. It is in this lower-
dimensional space that target detection is performed.

(a)

(b)

Fig. 2. These two panels illustrate the graph construction used in this
methodology in order to bias the LLE transformation to better separate the
targets from the background. (a) Pixel labels in the illustration. (b) Steps for
building the edge set in the graph.

(a)

(b)

(c)

Fig. 3. (a) RGB showing the hyperspectral chip used in this example. This
is from RIT’s SHARE 2012 experimental campaign, and the specifications
for the image are given in Section IV. (b) Image bands when nonlinear
dimensionality reduction is performed on the chip using adaptive LLE. (c)
Image bands when adaptive LLE is biased for target detection of the red felt.



Due to computational limitations, this is implemented on
20×20 pixel tiles in the image. The steps in this methodology,
for each tile, are as follows:
Step 1: Inject target spectra into spectral space with tile data.
Step 2: Unit normalize the tile and targets (so that illumina-

tion does not factor into the adaptive nearest neighbors
graph).

Step 3: Build ANN graph on tile + targets, and fully connect
the target cloud, 1-neighbors, and 2-neighbors.

Step 4: Perform the second and third steps of adaptive LLE
to estimate the manifolds.

Step 5: Keep the first m dimensions from adaptive LLE,
where m is computed using the Gram Matrix dimen-
sionality estimation approach described in [33], [34].

Step 6: Using the transformed target spectra, perform a rank-
based SAM detector on the transformed tile pixels.

Step 7: Convert detection scores to Z-scores, so they can be
appropriately compared across the different tiles.

The tile-based approach lends itself well to target detection
in HSI because the ability to detect a target in one part of
the scene should be independent of the ability to detect it in
another part of the scene. For each tile, these steps result in a
single-band detection map; they are then stitched together to
result in an image-wide detection map.

IV. DATA

The data used here are from the Rochester Institute of
Technology’s SHARE 2012 experimental campaign, put on
by their Digital Imaging and Remote Sensing Laboratory in
September, 2012 [35]. The hyperspectral image was collected
by the SpecTIR VS sensor, which is a VNIR-SWIR sensor
with 360 spectral bands ranging from 0.4µm - 2.45µm. The
sensor had an approximate GSD (ground sample distance) of
1m, and after bad band removal, the image had 229 bands. The
170 × 280 pixel image is georectified as well as atmospheri-
cally compensated to approximate surface reflectance. As part
of this experimental campaign, several red and blue felt cotton
target panels (in 2m × 2m and 3m × 3m panel sizes) were
placed in various illumination and occlusion conditions. The
aerial image is shown in Figure 4(a), along with ground photos
of some of the target locations. Figure 4(b) shows the two sets
of spectra used in this analysis: 10 field-measured spectra for
the red felt, and 10 field-measured spectra for the blue felt.
These measurements were taken with an ASD spectrometer.

V. EXPERIMENT AND RESULTS

For this experiment, we implemented the methodology
outlined in Section III using the 10 red field-measured spectra
to detect the red felt targets in the image, and then using the
10 blue field-measured spectra to detect the blue felt targets
in the image. We compared our detection results to subspace
ACE (ssACE), which is widely recognized in the literature
for hyperspectral subspace target detection [15]. The results
are shown in Figures 5 & 6.

In these two figures, (a) shows the unthresholded detec-
tion map for LLE+SAM, (b) shows the detection map for

(a)

(b)

Fig. 4. (a) SHARE 2012 image with the red/blue felt target locations identified
by the red squares. (b) Multiple spectral measurements, taken in the field, and
corresponding to the red and blue felt materials.

LLE+SAM thresholded to the top 1% of scores, (c) shows
the unthresholded detection map for ssACE, (d) shows the
detection map for ssACE thresholded to the top 1% of scores,
and (e) shows the corresponding ROC curves. The boxes
in subfigures (b) and (d) show the locations of the targets
in the image, and the green boxes indicate target locations
that were accurately identified in the top 1% of scores. The
red boxes indicate missed target locations within the top 1%
of scores. Both approaches, for both target materials, show
missed detections within the top 1%, which highlights how
challenging some of these targets are (i.e., the ones that
are highly subpixel and in hard shadows). For both target
materials, the LLE manifold approach with multiple targets
outperforms ssACE when considering the ROC curves.



(a) (b)

(c) (d)

(e)

Fig. 5. Results for the red felt target spectra. (a) Adaptive LLE + SAM
detection map, unthresholded. (b) Adaptive LLE + SAM detection map,
displaying the top 1% of scores. The boxes show the locations of the targets;
green indicates a detection in the top 1%, and red indicates a missed detection
in the top 1%. (c) Subspace ACE detection map, unthresholded. (d) Subspace
ACE detection map, displaying the top 1% of scores. (e) ROC curves for the
two detection maps, plotted an a log scale to emphasize low false alarm rates.

(a) (b)

(c) (d)

(e)

Fig. 6. Results for the blue felt target spectra. (a) Adaptive LLE + SAM
detection map, unthresholded. (b) Adaptive LLE + SAM detection map,
displaying the top 1% of scores. The boxes show the locations of the targets;
green indicates a detection in the top 1%, and red indicates a missed detection
in the top 1%. (c) Subspace ACE detection map, unthresholded. (d) Subspace
ACE detection map, displaying the top 1% of scores. (e) ROC curves for the
two detection maps, plotted an a log scale to emphasize low false alarm rates.



VI. DISCUSSION AND FUTURE WORK

We have presented a graph-based and manifold learning
based approach to target detection in hyperspectral imagery
when working with spectrally variable solid targets. This
uses a different mathematical formulation than the traditional
parametric and linear models used in HSI, and for the data
presented here, outperforms the more commonly used ssACE
subspace detection algorithm. This research explores alterna-
tive models and formulations because in complex, cluttered
environments, we expect the structure of the data to be nonlin-
ear and non-gaussian. We implement an adaptive approach to
locally linear embedding, and bias the transformation - using
multiple target spectra - to separate out the material described
by the target spectra. It is in this lower-dimensional space
that we perform target detection. Future work for this research
would involve exploring the performance of different detectors
in the transformed space when considering multiple spectrally
variable targets, as well as potentially designing new detectors
that are optimized for this target vs. background separation in
this transformed space.
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