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ABSTRACT 

To detect malicious executables, often spread as email attachments, two types of 
algorithms are usually applied under instance-based statistical learning paradigms: 1) 
Signature-based template matching, which finds unique tell-tale characteristics of a 
malicious executable and thus is capable of matching those with known signatures; 2) 
Two-class supervised learning, which determines a set of features that allow benign and 
malicious patterns to occupy a disjoint regions in a feature vector space and thus 
probabilistically identifies malicious executables with the similar features.  Nevertheless, 
given the huge potential variety of malicious executables, we cannot be confident that 
existing training sets adequately represent the class as a whole.  In this study, we 
investigated the use of byte sequence frequencies to profile only benign data. The 
malicious executables are identified as outliers or anomalies that significantly deviate 
from the normal profile.  A multivariate Gaussian likelihood model, fit with a Principal 
Component Analysis (PCA), was compared with a one-class Support Vector Machine 
(SVM) model for characterizing the benign executables. We found that the Gaussian 
model substantially outperformed the one-class SVM in its ability to distinguish 
malicious from benign files. Complementing to the capabilities in reliably detecting those 
malicious files with known or similar features using two aforementioned methods, the 
one-class unsupervised approach may provide another layer of safeguard in identifying 
those novel computer viruses. 
 
Keywords: Mining high-dimensional data, One-class Support Vector Machine, Principal 
Component Analysis, Malicious Executable File, Email Filtering 
 

1. INTRODUCTION 

While originally conceived as a convenient tool for text messages, email has since 
evolved into the backbone of the Internet, and has become the primary medium not only 
for communicating ideas, opinions, and appointments, but also for unauthorized accesses 
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and malicious attacks. For instance, a malicious executable program attached to an 
apparently benign email can easily be sent to thousands of recipients.  
 

Building a reliable computer security system to detect malicious codes resembles, 
in many aspects, a natural immune system that protects animals from dangerous foreign 
pathogen including bacteria, viruses, and toxins. The immune system comprises cells and 
molecules and possesses an elegant self-defense mechanism distinguishing “self” from 
dangerous “other” and eliminating other. To detect foreign pathogens, immune systems 
remember previous infections and mount a more aggressive response against those seen 
before, a so-called a secondary response. In the case of a novel infection, the immune 
system initiates a primary response, evolving new detectors specialized for the new 
infection. The process is not so quick as a secondary response but provides an essential 
capability of novelty or anomaly detection that is lacking in many computer security 
systems [10]. 
 

To detect malicious executables, two types of algorithms have been applied under 
instance-based statistical learning paradigms: 1) Signature-based template matching, 
which finds unique tell-tale characteristics of a malicious executable and thus is capable 
of matching those with known signatures [5][7][8][13][14]; 2) Two-class supervised 
learning, which determines a set of features that allow benign and malicious patterns to 
occupy a disjoint regions in a feature vector space and thus probabilistically identifies 
malicious executables with the similar features [3][12] [18][19][23].  Nevertheless, given 
the huge potential variety of malicious executables, we cannot be confident that existing 
training sets adequately represent the class as a whole. 

 
In this study, we investigated the use of byte sequence frequencies to profile only 

benign data [3][18]. The rationale for choosing only byte sequences as candidate features 
is that those byte patterns are the most accessible and reliable information that represents 
the machine code in an executable. Secondly, using embedded text strings as features, 
such as head information, program names, authors’ names, or comments, is not robust 
since they can be easily changed. Some malicious executables intentionally camouflage 
these signatures by randomly generating these fields to deceive virus scanners [12][18]. 
The malicious executables are identified as outliers or anomalies that significantly 
deviate from the normal profile. This unsupervised learning approach does not require 
predefining the malicious patterns to be classified. Instead, it characterizes only patterns 
of known benign files, which bears a resemblance to an immune system distinguishing 
“self” from dangerous “other”. A multivariate Gaussian likelihood model, fit with a 
Principal Component Analysis (PCA) [11], was compared with a one-class Support 
Vector Machine (SVM) model [17][20] for characterizing the benign executables. 

 
 

2. METHODS 

2.1 Data Description and Preparation 
Our experimental data were downloaded from the Intrusion Detection System site at 
Columbia University: http://www.cs.columbia.edu/ids/mef/. It consists of total 4754 files 
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with 1074 clean binary files and 3680 malicious ones. There are no duplicate programs in 
the data set, and each file is labeled either malicious or benign. A more detailed 
description of the dataset can be found in [18][19]. The downloaded files have been 
already transformed from their binary form into hexadecimal text format. A byte 
sequence pattern consists of n sequential bytes; for 1=n , the pattern consists of a single 
byte (e.g., 07, eb, 0a, 56, etc.), for 2=n , two bytes (e.g., 07eb, eb0a, 0a56, etc.), so on. 
Based on our previous results [3], there seems no advantage to use multiple byte 
sequences as features, and so only the frequencies of single byte patterns are accounted 
for potential features. 

 
 
2.2 Classification Algorithms 

2.2.1 Principal Component Analysis (PCA) 

Principal component analysis [11] is frequently used in order to uncover significant 
dimensions underlying a large set of data. Let x1, x2, …, xn denote n samples of 
dimension d.  These data points can be imagined to scatter with an orthogonal system of 
d axes. One might wish to rotate the d axes by applying an orthogonal transformation P 
in such a way that the new coordinates describe the d variables in a simpler manner.  For 
instance, if the data points form a d-dimensional ellipsoid, we would wish to rotate the 
principal axes so that they lie along the directions with the maximum data variance. 
Principal component analysis chooses the m (m≤d) largest eigenvectors of the d×d 
covariance matrix of the n d-dimensional patterns. The linear transformation is defined 
as: 

P*XY =                                                (1) 

Where X is the given n×d pattern matrix, Y is the derived n×m pattern matrix (termed 
“scores”), and P is the d×m matrix of linear transformation whose columns are the 
eigenvectors corresponding to the m largest eigenvalues. The purpose of principal 
component analysis is then to uncover the m “common” principal components that 
“explain” the data and account for the maximum possible variance. The remaining d-m 
“unique” components are viewed as accounting for nonessential variance reflecting the 
individual differences or uniqueness of the n sample points.  

We employed MATLAB statistical toolbox to perform principal component analysis on 
the training set [11][15]. To quantify the disparity of the data, Hotelling’s T2, a statistical 
measure of the multivariate distance of each observation from the center of the data set, 
was computed. The same transformations were applied to calculate T2 statistics on the 
testing sets with both benign and malicious files.  

 
2.2.2 One-class Support Vector Machine (SVM) 

Support Vector Machines (SVMs) were originally introduced by Vapnik and his 
colleagues for solving the two-class pattern recognition problem [6][24].  The idea that 
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uses kernels to compute inner products in feature space was recently extended to the 
domain of unsupervised learning [17][20]. The one-class SVM used in this study is based 
on the work Schölkopf and his colleagues [17].  
 
One-class SVMs produce a model of the dataset even though the data samples are all 
from a single class.  The goal is to find a "smallest" set which encloses a specified 
fraction (usually something like 95% or 99%) of the underlying probability distribution 
for the one class.  Since that underlying distribution is not available, it must be estimated 
from the finite sample.  A natural interpretation of "smallest" is minimum volume, but in 
the one-class SVM, particularly the kernelized version, it is the "smoothest" description 
(i.e., smallest coefficients) that is desired.  For kernel functions (such as the Gaussian 
radial basis function kernel) which depend only on the distance |x-y|, this corresponds to 
the smallest volume sphere in kernel space.  The form of the solution is a function 
 

),()( xxx iK
i if ∑= α       (2) 

where k(x,y) is the kernel function, and the nonzero values of the coefficients αi 
correspond to the support vectors. The sign of f(x) determines whether or not x is 
predicted to be in the class. 
 
The software package we used to generate SVM classifiers is called LIBSVM which was 
developed by Chih-Chung Chang and Chih-Jen Lin [4]. The software is available for 
downloading at http://www.csie.ntu.edu.tw/~cjlin/libsvm/. 
 
The kernel function used in this study is radial basis function: 
 

)||exp(),( 2vuvuK −−= γ      (3) 
 

Its width γ was found to affect prediction accuracy of one-class SVMs and the results 
were reported in the following sections. 
 

2.3 Performance Measures 

The effectiveness is evaluated using the performance of different classifiers defined in 
last section. To enable direct comparison, the model performance uses a similar measure 
to that used by [18][19]. 
 

1. True Positives (TP), the number of malicious executables correctly classified as 
malicious; 

2. True Negatives (TN), the number of benign programs correctly classified as 
benign; 

3. False Positives (FP), the number of benign programs falsely classified as 
malicious, 
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4. False Negatives (FN), the number of malicious executables falsely classified as 
benign. 

 

Detection Rate (DTR)= 
FNTP

TP
+

      (4) 

 

False Positive Rate (FPR)= 
FPTN

FP
+

                                   (5) 

 

Overall Accuracy (OA)= 
FNFPTNTP

TNTP
+++

+                        (6) 

 
2.4 Experimental Setting 

The results reported in our experiments are based on five-fold cross-validation.  The 
malicious and benign files were randomly partitioned into five sets.  One of the five 
(comprising 20% of the data samples) was held out as a test set and the remaining four 
(80% of the data) were concatenated into a training set.  Note that the trainings set only 
consisted of benign files, but the validation sets were mixed with both benign and 
malicious executables. This was done five times, once for each choice of training set, and 
the performance was averaged over these five trials. 
 
 
3. RESULTS 

To illustrate differences between benign and malicious executables after their frequencies 
of 256 single byte patterns have been transformed by an eigenvector matrix P, in Figure 
1, we plot their exemplar distributions on scatter diagrams below 
 
On the upper panel, the scores of 1st and 2nd principal components of benign files (blue, 
or “dark” if seen in gray scale) and malicious files (magenta, or “light”) are overlaid.  
Most benign data points sampled from the training set are intermingled with the 
malicious ones, which indicates the first and second components could well explain the 
maximum variance of feature variables but may not be the best features to distinguish 
two classes. However, on the lower panel, the comparison was made on the scores of 
254th and 255th components. As expected, the data from both classes are present in 
smaller dynamic ranges. The benign data points are tightly clustered near the origin, and 
the majority of malicious data points also forms a cluster but with a larger spread. And 
the middle panel illustrates a pattern qualitatively in between. Note that the eigenvector 
matrix P was calculated on the pattern matrix X of the training set, and the same matrix P 
then projected both benign and malicious data points from the test set to the principal 
axes. The patterns of benign and malicious files on the principal components suggest  
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excluding some top principal components as features since two classes are not well 
separated. Also, the magnitude of eigenvalues vary from 5 to 6 orders and the projection  
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Table 1  
measur
benign
contain
 

False Positive 
Rate (%) 

Detection 
Rate (%) 

1.58 42.88 
1.86 59.57 
2.70 71.66 
3.63 86.79 
4.93 91.60 
6.61 94.19 
8.10 95.95 

11.64 98.04 

: Classification made by Hotelling’s T2

e. The classifiers were trained only on 
 but validated on the testing sets 
ing both benign and malicious files. 



The classifier gives reasonable performance in terms of prediction accuracy. For instance, 
at 5% false positive rate, it detected over 92% of the unseen malicious files. 
 
In the following experiments, we show the results made by one-class SVM classifiers. 
The classifiers were trained on benign data. One-class SVMs take the input data either in 
their original format (un-scaled) or scaled format in which each component of the data is 
individually scaled linearly between –1 to 1 using a utility “svm-scale” included in 
LIBSVM package. In Table 2,  the results show parameter ν, which is an upper bound on 
the fraction of outliers and lower bound on the fraction of SVs (Schölkopf, 2001), 
correlates with false positive rate monotonically. The separation between benign and 
malicious class is very modest. The one-class SVM trained on scaled data has slightly 
better prediction accuracy, especially when the false positive rate is low.  

 
γ= 
1/256 Un-scaled Data Scaled Data 

ν False Positive 
Rate (%) 

Detection Rate 
(%) 

False 
Positive 

Rate 
(%) 

Detection 
Rate 
(%) 

0.01 1.68 1.22 1.49 2.94 
0.02 2.23 1.32 2.42 5.43 
0.05 4.93 3.27 5.21 15.27 
0.10 9.87 8.45 9.87 33.22 
0.20 19.92 24.86 19.83 65.56 
0.30 29.98 43.43 30.26 83.99 
0.50 50.84 75.73 50.83 94.22 
0.70 71.23 93.43 70.20 98.77 
0.90 89.11 99.67 89.94 99.82 

 
Table 2: Performance of one-class SVM on un-scaled and scaled data. RBF 
kernels were used. γ=1/256. 

 

 

 

 

 

 

 

 

 

In Table 3, when parameter γ (width of Gaussian RBF) was increased from 1/256 to 1, 
the impact to the one-class SVM trained on the un-scaled data was almost undetectable. 
Nevertheless, for the SVM trained on scaled data, both false positive rate and detection 
rate increased significantly. The trend seems towards an improvement of overall 
prediction accuracy.  
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γ=1 Un-scaled Data Scaled Data 

ν False Positive 
Rate (%) 

Detection Rate 
(%) 

False 
Positive 

Rate 
(%) 

Detection 
Rate 
(%) 

0.01 1.30 1.20 23.84 91.35 
0.02 2.05 1.48 23.93 91.36 
0.05 5.59 3.83 24.49 91.36 
0.10 9.87 9.31 24.58 91.37 
0.20 20.30 26.32 26.72 91.80 
0.30 30.26 45.17 33.42 94.79 
0.50 50.74 75.98 50.47 97.78 
0.70 70.11 93.32 70.39 99.64 
0.90 90.04 99.78 90.13 99.97 

 
Table 3 Performance of one-class SVM on un-scaled and scaled data. RBF 
kernels were used. γ=1. 

 
 
 
 
 
 
 
 
 
 
 

 

 

 

 

 

 

In Figure 2, we illustrate classification performance with a plot of the ROC (Receiver 
Operating Characteristic) curve that shows the trade-off between detection rate (y-axis) 
and false positive rate (x-axis).  

 

Figure 2: Performance comparison of one-class SVMs as a function of 
parameter γ with un-scaled and scaled input data. The results made by T2 
measure are displayed on the curve at the most left plot. 
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Ideally, we want a high detection rate (to detect most of the malicious files) and a low 
false alarm rate (to avoid mistakenly classifying benign files as malicious). The 
parameter γ was chosen at 1/256, 10/256, 100/256, and 1, respectively with un-scaled 
data (solid lines) and scaled data (dashed lines). When γ is increased from 1/256 to 1, for 
the un-scaled training data, the performance of one-class SVMs remains unchanged. On 
the flip side, the performance in terms of prediction accuracy has been improved when 
one-class SVMs were trained on the scaled data. To give a direct performance 
comparison between the PCA and one-class SVMs, the ROC of Hotelling’s T2 was also 
plotted in this figure (dash-dotted line). It is clear that the prediction accuracy performed 
by T2 statistic is better than all the one-class SVM variants. 

 

4. DISCUSSION 

In a traditional two-class supervised learning paradigm, we have exemplar data from both 
classes, and the decision boundary is supported from both sides of samples to maximize 
the separation between them. In one-class classification, only one class of training data is 
available. It is very hard to determine how tight the decision boundary should be to best 
characterize the known class. It is even more difficult to determine which features should 
be selected to yield the best separation of the known class and other classes. 

There are several ways to study one-class classification problem. For example, 
use of artificial outlier data [16], weighted outputs [2], directly estimate the probability 
density of the known class [1][9] and recent progress on estimation of minimal volume 
representing the known class [17][20]. For a more complete review on the subject of one-
class classification, see [21].  

In this study, motivated by the concept of computer immunology [10], we took an 
unsupervised approach to detect malicious executables, a real threat to network security 
and user privacy. A multivariate Gaussian likelihood model, fit with Principal 
Component Analysis (PCA), was compared with a one-class Support Vector Machine 
(SVM) model for characterizing the benign executables. Comparing to the supervised 
learning approaches [3][18], in which both benign and malicious data are required in 
training set, the one-class unsupervised approach tries to optimize the decision boundary 
from one side. It could play a complementary role to detect those novel malicious files 
that are likely missed using both signature-based template matching and supervised 
learning-based detection. 

Using principal component analysis, the benign and malicious data points were 
projected to principal axes, as determined from a training set of only benign files. As our 
results showed (Figure 1), the data of two classes were intermingled in some principal 
components, and clustered differently in some other principal axes. The hope was to find 
a set of selected principal components as features, and a proper distance metric 
(Hotelling’s T2 statistic in this case) to separate two classes.  

Our results show the PCA approach generates reasonable performance in terms of 
prediction accuracy. For example, at 5% false positive rate, it detected 92% of unseen 
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malicious executables correctly. Also, the performance between in-sample training and 
out-of-sample validation is consistent.  

On the other side, an elongated shape of input data seems to make one-class SVM 
perform poorly.  For instance, at about 93% detection rate, one-class SVM has as high as 
70% false positive rate on un-scaled data. Scaling input data, and increasing the value of 
gamma i.e. deceasing the width of radial basis kernels improved the performance of one-
class SVM. Nevertheless, its performance does not outperform the PCA approach.  

This data scaling approach has the similar performance improvement reported by 
Tax and Juszczak [22] using kernel whitening for data description. Their data is mapped 
onto the principal components in a kernel space and then rescaled by the corresponding 
eigenvalues. Whitening the data from elongated to spherical clusters, or scaling data to be 
more uniformly distributed could improve performance of one-class SVM. 
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