
Detecting a Malicious Executable without
Prior Knowledge of Its Patterns

aD. Michael Cai1, James Theiler2, and Maya Gokhale1

1Space Data Systems Group and 2Space and Remote Sensing Group
Los Alamos National Laboratory, Los Alamos, NM 87545

ABSTRACT

To detect malicious executables, often spread as email attachments, two types of
algorithms are usually applied under instance-based statistical learning paradigms: 1)
Signature-based template matching, which finds unique tell-tale characteristics of a
malicious executable and thus is capable of matching those with known signatures; 2)
Two-class supervised learning, which determines a set of features that allow benign and
malicious patterns to occupy a disjoint regions in a feature vector space and thus
probabilistically identifies malicious executables with the similar features. Nevertheless,
given the huge potential variety of malicious executables, we cannot be confident that
existing training sets adequately represent the class as a whole. In this study, we
investigated the use of byte sequence frequencies to profile only benign data. The
malicious executables are identified as outliers or anomalies that significantly deviate
from the normal profile. A multivariate Gaussian likelihood model, fit with a Principal
Component Analysis (PCA), was compared with a one-class Support Vector Machine
(SVM) model for characterizing the benign executables. We found that the Gaussian
model substantially outperformed the one-class SVM in its ability to distinguish
malicious from benign files. Complementing to the capabilities in reliably detecting those
malicious files with known or similar features using two aforementioned methods, the
one-class unsupervised approach may provide another layer of safeguard in identifying
those novel computer viruses.

Keywords: Mining high-dimensional data, One-class Support Vector Machine, Principal
Component Analysis, Malicious Executable File, Email Filtering

1. INTRODUCTION

While originally conceived as a convenient tool for text messages, email has since
evolved into the backbone of the Internet, and has become the primary medium not only
for communicating ideas, opinions, and appointments, but also for unauthorized accesses

a Email: {dmc, jt, maya}@lanl.gov

 1

and malicious attacks. For instance, a malicious executable program attached to an
apparently benign email can easily be sent to thousands of recipients.

Building a reliable computer security system to detect malicious codes resembles,
in many aspects, a natural immune system that protects animals from dangerous foreign
pathogen including bacteria, viruses, and toxins. The immune system comprises cells and
molecules and possesses an elegant self-defense mechanism distinguishing “self” from
dangerous “other” and eliminating other. To detect foreign pathogens, immune systems
remember previous infections and mount a more aggressive response against those seen
before, a so-called a secondary response. In the case of a novel infection, the immune
system initiates a primary response, evolving new detectors specialized for the new
infection. The process is not so quick as a secondary response but provides an essential
capability of novelty or anomaly detection that is lacking in many computer security
systems [10].

To detect malicious executables, two types of algorithms have been applied under
instance-based statistical learning paradigms: 1) Signature-based template matching,
which finds unique tell-tale characteristics of a malicious executable and thus is capable
of matching those with known signatures [5][7][8][13][14]; 2) Two-class supervised
learning, which determines a set of features that allow benign and malicious patterns to
occupy a disjoint regions in a feature vector space and thus probabilistically identifies
malicious executables with the similar features [3][12] [18][19][23]. Nevertheless, given
the huge potential variety of malicious executables, we cannot be confident that existing
training sets adequately represent the class as a whole.

In this study, we investigated the use of byte sequence frequencies to profile only

benign data [3][18]. The rationale for choosing only byte sequences as candidate features
is that those byte patterns are the most accessible and reliable information that represents
the machine code in an executable. Secondly, using embedded text strings as features,
such as head information, program names, authors’ names, or comments, is not robust
since they can be easily changed. Some malicious executables intentionally camouflage
these signatures by randomly generating these fields to deceive virus scanners [12][18].
The malicious executables are identified as outliers or anomalies that significantly
deviate from the normal profile. This unsupervised learning approach does not require
predefining the malicious patterns to be classified. Instead, it characterizes only patterns
of known benign files, which bears a resemblance to an immune system distinguishing
“self” from dangerous “other”. A multivariate Gaussian likelihood model, fit with a
Principal Component Analysis (PCA) [11], was compared with a one-class Support
Vector Machine (SVM) model [17][20] for characterizing the benign executables.

2. METHODS

2.1 Data Description and Preparation
Our experimental data were downloaded from the Intrusion Detection System site at
Columbia University: http://www.cs.columbia.edu/ids/mef/. It consists of total 4754 files

 2

with 1074 clean binary files and 3680 malicious ones. There are no duplicate programs in
the data set, and each file is labeled either malicious or benign. A more detailed
description of the dataset can be found in [18][19]. The downloaded files have been
already transformed from their binary form into hexadecimal text format. A byte
sequence pattern consists of n sequential bytes; for 1=n , the pattern consists of a single
byte (e.g., 07, eb, 0a, 56, etc.), for 2=n , two bytes (e.g., 07eb, eb0a, 0a56, etc.), so on.
Based on our previous results [3], there seems no advantage to use multiple byte
sequences as features, and so only the frequencies of single byte patterns are accounted
for potential features.

2.2 Classification Algorithms

2.2.1 Principal Component Analysis (PCA)

Principal component analysis [11] is frequently used in order to uncover significant
dimensions underlying a large set of data. Let x1, x2, …, xn denote n samples of
dimension d. These data points can be imagined to scatter with an orthogonal system of
d axes. One might wish to rotate the d axes by applying an orthogonal transformation P
in such a way that the new coordinates describe the d variables in a simpler manner. For
instance, if the data points form a d-dimensional ellipsoid, we would wish to rotate the
principal axes so that they lie along the directions with the maximum data variance.
Principal component analysis chooses the m (m≤d) largest eigenvectors of the d×d
covariance matrix of the n d-dimensional patterns. The linear transformation is defined
as:

P*XY = (1)

Where X is the given n×d pattern matrix, Y is the derived n×m pattern matrix (termed
“scores”), and P is the d×m matrix of linear transformation whose columns are the
eigenvectors corresponding to the m largest eigenvalues. The purpose of principal
component analysis is then to uncover the m “common” principal components that
“explain” the data and account for the maximum possible variance. The remaining d-m
“unique” components are viewed as accounting for nonessential variance reflecting the
individual differences or uniqueness of the n sample points.

We employed MATLAB statistical toolbox to perform principal component analysis on
the training set [11][15]. To quantify the disparity of the data, Hotelling’s T2, a statistical
measure of the multivariate distance of each observation from the center of the data set,
was computed. The same transformations were applied to calculate T2 statistics on the
testing sets with both benign and malicious files.

2.2.2 One-class Support Vector Machine (SVM)

Support Vector Machines (SVMs) were originally introduced by Vapnik and his
colleagues for solving the two-class pattern recognition problem [6][24]. The idea that

 3

uses kernels to compute inner products in feature space was recently extended to the
domain of unsupervised learning [17][20]. The one-class SVM used in this study is based
on the work Schölkopf and his colleagues [17].

One-class SVMs produce a model of the dataset even though the data samples are all
from a single class. The goal is to find a "smallest" set which encloses a specified
fraction (usually something like 95% or 99%) of the underlying probability distribution
for the one class. Since that underlying distribution is not available, it must be estimated
from the finite sample. A natural interpretation of "smallest" is minimum volume, but in
the one-class SVM, particularly the kernelized version, it is the "smoothest" description
(i.e., smallest coefficients) that is desired. For kernel functions (such as the Gaussian
radial basis function kernel) which depend only on the distance |x-y|, this corresponds to
the smallest volume sphere in kernel space. The form of the solution is a function

),()(xxx iK
i if ∑= α (2)

where k(x,y) is the kernel function, and the nonzero values of the coefficients αi
correspond to the support vectors. The sign of f(x) determines whether or not x is
predicted to be in the class.

The software package we used to generate SVM classifiers is called LIBSVM which was
developed by Chih-Chung Chang and Chih-Jen Lin [4]. The software is available for
downloading at http://www.csie.ntu.edu.tw/~cjlin/libsvm/.

The kernel function used in this study is radial basis function:

)||exp(),(2vuvuK −−= γ (3)

Its width γ was found to affect prediction accuracy of one-class SVMs and the results
were reported in the following sections.

2.3 Performance Measures

The effectiveness is evaluated using the performance of different classifiers defined in
last section. To enable direct comparison, the model performance uses a similar measure
to that used by [18][19].

1. True Positives (TP), the number of malicious executables correctly classified as
malicious;

2. True Negatives (TN), the number of benign programs correctly classified as
benign;

3. False Positives (FP), the number of benign programs falsely classified as
malicious,

 4

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

4. False Negatives (FN), the number of malicious executables falsely classified as
benign.

Detection Rate (DTR)=
FNTP

TP
+

 (4)

False Positive Rate (FPR)=
FPTN

FP
+

 (5)

Overall Accuracy (OA)=
FNFPTNTP

TNTP
+++

+ (6)

2.4 Experimental Setting

The results reported in our experiments are based on five-fold cross-validation. The
malicious and benign files were randomly partitioned into five sets. One of the five
(comprising 20% of the data samples) was held out as a test set and the remaining four
(80% of the data) were concatenated into a training set. Note that the trainings set only
consisted of benign files, but the validation sets were mixed with both benign and
malicious executables. This was done five times, once for each choice of training set, and
the performance was averaged over these five trials.

3. RESULTS

To illustrate differences between benign and malicious executables after their frequencies
of 256 single byte patterns have been transformed by an eigenvector matrix P, in Figure
1, we plot their exemplar distributions on scatter diagrams below

On the upper panel, the scores of 1st and 2nd principal components of benign files (blue,
or “dark” if seen in gray scale) and malicious files (magenta, or “light”) are overlaid.
Most benign data points sampled from the training set are intermingled with the
malicious ones, which indicates the first and second components could well explain the
maximum variance of feature variables but may not be the best features to distinguish
two classes. However, on the lower panel, the comparison was made on the scores of
254th and 255th components. As expected, the data from both classes are present in
smaller dynamic ranges. The benign data points are tightly clustered near the origin, and
the majority of malicious data points also forms a cluster but with a larger spread. And
the middle panel illustrates a pattern qualitatively in between. Note that the eigenvector
matrix P was calculated on the pattern matrix X of the training set, and the same matrix P
then projected both benign and malicious data points from the test set to the principal
axes. The patterns of benign and malicious files on the principal components suggest

 5

excluding some top principal components as features since two classes are not well
separated. Also, the magnitude of eigenvalues vary from 5 to 6 orders and the projection

Fi
tr

to those
influence
training a
dropped a

In our
classifica
measure
containin
compone
computed
were use
was then
experime
T2, whic
accuracie

gure 1: Comparison of principal components between benign (the
aining set) and malicious files.
components corresponding to extremely small eigenvalues might be more
d by round-off errors and by the larger expected relative differences between the
nd testing at that scale. Therefore some of principal components in the tail were
s well.

next table, we show the
tion made by Hotelling’s T2

calculated from a feature set
g 88th—158th principal
nts. Principal components were
 for the training data and these
d to define the T2 formula that
 applied to the test data. We
nted with different thresholds of
h yielded different prediction
s on in-sample data.

6

Table 1
measur
benign
contain

False Positive
Rate (%)

Detection
Rate (%)

1.58 42.88
1.86 59.57
2.70 71.66
3.63 86.79
4.93 91.60
6.61 94.19
8.10 95.95

11.64 98.04

: Classification made by Hotelling’s T2

e. The classifiers were trained only on
 but validated on the testing sets
ing both benign and malicious files.

The classifier gives reasonable performance in terms of prediction accuracy. For instance,
at 5% false positive rate, it detected over 92% of the unseen malicious files.

In the following experiments, we show the results made by one-class SVM classifiers.
The classifiers were trained on benign data. One-class SVMs take the input data either in
their original format (un-scaled) or scaled format in which each component of the data is
individually scaled linearly between –1 to 1 using a utility “svm-scale” included in
LIBSVM package. In Table 2, the results show parameter ν, which is an upper bound on
the fraction of outliers and lower bound on the fraction of SVs (Schölkopf, 2001),
correlates with false positive rate monotonically. The separation between benign and
malicious class is very modest. The one-class SVM trained on scaled data has slightly
better prediction accuracy, especially when the false positive rate is low.

γ=
1/256 Un-scaled Data Scaled Data

ν False Positive
Rate (%)

Detection Rate
(%)

False
Positive

Rate
(%)

Detection
Rate
(%)

0.01 1.68 1.22 1.49 2.94
0.02 2.23 1.32 2.42 5.43
0.05 4.93 3.27 5.21 15.27
0.10 9.87 8.45 9.87 33.22
0.20 19.92 24.86 19.83 65.56
0.30 29.98 43.43 30.26 83.99
0.50 50.84 75.73 50.83 94.22
0.70 71.23 93.43 70.20 98.77
0.90 89.11 99.67 89.94 99.82

Table 2: Performance of one-class SVM on un-scaled and scaled data. RBF
kernels were used. γ=1/256.

In Table 3, when parameter γ (width of Gaussian RBF) was increased from 1/256 to 1,
the impact to the one-class SVM trained on the un-scaled data was almost undetectable.
Nevertheless, for the SVM trained on scaled data, both false positive rate and detection
rate increased significantly. The trend seems towards an improvement of overall
prediction accuracy.

 7

γ=1 Un-scaled Data Scaled Data

ν False Positive
Rate (%)

Detection Rate
(%)

False
Positive

Rate
(%)

Detection
Rate
(%)

0.01 1.30 1.20 23.84 91.35
0.02 2.05 1.48 23.93 91.36
0.05 5.59 3.83 24.49 91.36
0.10 9.87 9.31 24.58 91.37
0.20 20.30 26.32 26.72 91.80
0.30 30.26 45.17 33.42 94.79
0.50 50.74 75.98 50.47 97.78
0.70 70.11 93.32 70.39 99.64
0.90 90.04 99.78 90.13 99.97

Table 3 Performance of one-class SVM on un-scaled and scaled data. RBF
kernels were used. γ=1.

In Figure 2, we illustrate classification performance with a plot of the ROC (Receiver
Operating Characteristic) curve that shows the trade-off between detection rate (y-axis)
and false positive rate (x-axis).

Figure 2: Performance comparison of one-class SVMs as a function of
parameter γ with un-scaled and scaled input data. The results made by T2
measure are displayed on the curve at the most left plot.

 8

Ideally, we want a high detection rate (to detect most of the malicious files) and a low
false alarm rate (to avoid mistakenly classifying benign files as malicious). The
parameter γ was chosen at 1/256, 10/256, 100/256, and 1, respectively with un-scaled
data (solid lines) and scaled data (dashed lines). When γ is increased from 1/256 to 1, for
the un-scaled training data, the performance of one-class SVMs remains unchanged. On
the flip side, the performance in terms of prediction accuracy has been improved when
one-class SVMs were trained on the scaled data. To give a direct performance
comparison between the PCA and one-class SVMs, the ROC of Hotelling’s T2 was also
plotted in this figure (dash-dotted line). It is clear that the prediction accuracy performed
by T2 statistic is better than all the one-class SVM variants.

4. DISCUSSION

In a traditional two-class supervised learning paradigm, we have exemplar data from both
classes, and the decision boundary is supported from both sides of samples to maximize
the separation between them. In one-class classification, only one class of training data is
available. It is very hard to determine how tight the decision boundary should be to best
characterize the known class. It is even more difficult to determine which features should
be selected to yield the best separation of the known class and other classes.

There are several ways to study one-class classification problem. For example,
use of artificial outlier data [16], weighted outputs [2], directly estimate the probability
density of the known class [1][9] and recent progress on estimation of minimal volume
representing the known class [17][20]. For a more complete review on the subject of one-
class classification, see [21].

In this study, motivated by the concept of computer immunology [10], we took an
unsupervised approach to detect malicious executables, a real threat to network security
and user privacy. A multivariate Gaussian likelihood model, fit with Principal
Component Analysis (PCA), was compared with a one-class Support Vector Machine
(SVM) model for characterizing the benign executables. Comparing to the supervised
learning approaches [3][18], in which both benign and malicious data are required in
training set, the one-class unsupervised approach tries to optimize the decision boundary
from one side. It could play a complementary role to detect those novel malicious files
that are likely missed using both signature-based template matching and supervised
learning-based detection.

Using principal component analysis, the benign and malicious data points were
projected to principal axes, as determined from a training set of only benign files. As our
results showed (Figure 1), the data of two classes were intermingled in some principal
components, and clustered differently in some other principal axes. The hope was to find
a set of selected principal components as features, and a proper distance metric
(Hotelling’s T2 statistic in this case) to separate two classes.

Our results show the PCA approach generates reasonable performance in terms of
prediction accuracy. For example, at 5% false positive rate, it detected 92% of unseen

 9

malicious executables correctly. Also, the performance between in-sample training and
out-of-sample validation is consistent.

On the other side, an elongated shape of input data seems to make one-class SVM
perform poorly. For instance, at about 93% detection rate, one-class SVM has as high as
70% false positive rate on un-scaled data. Scaling input data, and increasing the value of
gamma i.e. deceasing the width of radial basis kernels improved the performance of one-
class SVM. Nevertheless, its performance does not outperform the PCA approach.

This data scaling approach has the similar performance improvement reported by
Tax and Juszczak [22] using kernel whitening for data description. Their data is mapped
onto the principal components in a kernel space and then rescaled by the corresponding
eigenvalues. Whitening the data from elongated to spherical clusters, or scaling data to be
more uniformly distributed could improve performance of one-class SVM.

5. ACKOWLEDGEMENTS

We are grateful to Dr. Stolfo at the Columbia University for letting us use their data. We
also appreciate Drs. Chih-Jen Lin and Chih-Chung Chang for providing the LIBSVM
package. The work was supported by the LDRD program and DAPS program at Los
Alamos National Laboratory.

6. REFERENCES

[1] V. Barnett and T. Lewis, Outliers in Statistical Data, (John Wiley & Sons Ltd, 1978).

[2] C. Bishop, Neural Networks for Pattern Recognition, (Oxford University Press,
Oxford, 1995).

[3] D. M. Cai, M. Gokhale and J. Theiler, Comparison of Feature Selection and
Classification Algorithms in Identifying Malicious Executables, Submitted to Data and
Knowledge Engineering 2003.

[4] C. C Chang and C.J. Lin, LIBSVM: a Library for Support Vector Machines, Software
available at http://www.csie.ntu.edu.tw/~cjlin/libsvm/. 2001.

[5] F. Cohen, A Cryptographic Checksum for Integrity Protection, Computers and
Security 6 (1987) 505-510.

[6] C. Cortes and V. Vapnik, Support Vector Network, Machine Learning 20 (1995) 273-
297.

[7] R. Crawford, R. Lo, J. Crossley, G. Fink, P. Kerchen, W. Ho, K. Levitt, R. Olsson,
and M. Archer, A Testbed for Malicious Code Detection: A Synthesis of Static and
Dynamic Analysis Techniques, Proceedings of the Department of Energy Computer
Security Group Conference, 17, pp. 1-23, 1991.

 10

http://www.csie.ntu.edu.tw/~cjlin/libsvm/

[8] S. Crocker and M. M. Pozzo, A Proposal for a Verification to Malicious Code
Detection, Proceedings of IEEE Computer Soc. Symposium on Security and Privacy, pp.
319-324, 1989.

[9] E. Eskin, A. Arnold, M. Prerau, L. Portnoy, S. Stolfo, A geometric framework for
unsupervised anomaly detection: detecting intrusions in Unlabeled Data. On Application
of Data Mining in Computer Security, Edited by D. Barbará and S. Jajodia, (Kluwer
Academic Publisher, 2002).

[10] S. Forrest, S. A. Hofmeyr, and A. Somayaji. Computer Immunology,
Communications of the ACM, pp. 88-9, 1997.
[11] J. E. Jackson, A User’s Guide to Principal Components, (John Wiley and Sons,
1991).

[12] J. O. Kephart and W. C. Arnold, Automatic Extraction of Computer Virus
Signatures, 4th Virus Bulletin International Conference, pp. 178-184, 1994.

[13] R. W. Lo, P. Kerchen, R. Crawford, W. Ho, J. Crossley, G. Fink, K. Levitt, R.
Olsson, and M. Archer, Towards for Malicious Code Detection, IEEE Computer Society
International Conference, pp. 160-166, 1991.

[14] R. W. Lo, Karl N. Levvit, and Ronald A. Olsson, MCF: A Malicious Code Filter,
Computers & Security, 14, pp. 541-566, 1995.

[15] MathWorks, Statistical Toolbox for User’s Guide, MathWorks, 2001.

[16] S. Roberts, L. Tarassenko, J. Pardey, and D. Siegwart, A validation index for
artificial neural network, In Proceedings of Int. Conference on Neural Networks and
Expert System in Medicine and Healthcare, pp. 23-30, 1994.

[17] B. Schölkopf, J. C. Platt, J. Shawe-Taylor, A. J. Smola, and R. C. Williamson,
Estimating the support of high-dimensional distribution, Neural Computation (13), pp.
1443-1471, 2001.

[18] M. G. Schultz, E. Eskin, E. Zadok, and S. J. Stolfo, Data Mining Methods for
Detection of New Malicious Executables, Proceedings of IEEE Symposium on Security
and Privacy. Oakland, pp.38-49, 2001.

[19] M. G. Schultz, E. Eskin, and S. J. Stolfo, Malicious Email Filter - A UNIX Mail
Filter that Detects Malicious Windows Executables, Proceedings of USENIX Annual
Technical Conference - FREENIX Track. Boston, MA: June, 2001.

[20] D. Tax and R. Duin, Data domain description by support vectors, in Proc. ESANN,
M. Vefieysen, Ed., Brussels, pp. 251 -256, D. Facto Press, 1999.

 11

[21] D. M. J. Tax, One-class classification: concept-learning in the absence of counter-
examples, Doctorate Dissertation, TU Delft, 2001.

[22] D.M.J. Tax and P. Juszczak. Kernel whitening for data description, International
Workshop on Pattern Recognition with Support Vector Machines 2002, Niagara Falls,
Canada.

[23] G. Tesauro, J. O. Kephart, and G. B. Sorkin, Neural Networks for Computer Virus
Recognition, IEEE Expert, 11 (1996) 5-6.

[24] V. Vapnik, Statistical Learning Theory, (New York, John Wiley & Sons, Inc., 1998).

 12

	ABSTRACT
	Keywords: Mining high-dimensional data, One-class Support Ve

	1. INTRODUCTION
	2. METHODS
	2.1 Data Description and Preparation
	2.2 Classification Algorithms
	2.2.1 Principal Component Analysis (PCA)
	2.2.2 One-class Support Vector Machine (SVM)

	2.3 Performance Measures
	2.4 Experimental Setting

	3. RESULTS
	4. DISCUSSION
	5. ACKOWLEDGEMENTS
	6. REFERENCES

