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ABSTRACT 

 
Detecting damage in a large scale structure such as a bridge or dam requires 

the collection of data at multiple time and length scales.  The collection of these data 
generally requires the structure under observation to be instrumented with a variety of 
sensors, each with a unique sampling rate.  One of the principal challenges to the 
structural health monitoring (SHM) community is to take this large, heterogeneous set 
of data, and extract information that allows the estimation of the remaining service life 
of a structure.  Another important challenge is to collect relevant data from a structure 
in a manner that is cost effective, and respects the size, weight, cost, energy 
consumption, and bandwidth limitations placed on the system.  Both of these 
challenges have proven to be formidable hurdles to the wide-scale implementation of 
SHM systems.  In this work we explore the suitability of compressed sensing to 
address both challenges.   

Recently compressed sensing has presented itself as a candidate solution for 
directly collecting relevant information from sparse, high-dimensional measurements.  
The main idea behind compressed sensing is that by directly collecting a relatively 
small number of coefficients it is possible to reconstruct the original measurement.  
The coefficients are obtained from linear combinations of (what would have been the 
original direct) measurements.  At first glance it would appear that this should not be 
possible because it would require solving an underdetermined linear system of 
equations.  However, it has been shown that if the solution is sparse in some basis, it is 

possible to find the solution using l1 norm regularization.  Conveniently, most signals 

found in nature are indeed approximately sparse (in some basis) with the notable 
exception of random noise.  Therefore, the findings of the compressed sensing 
community hold great potential for changing the way SHM data is collected.   

In this work a digital version of a compressed sensor is implemented on-board 
a microcontroller similar to those used in embedded SHM sensor nodes.  The sensor 
node is tested in a surrogate SHM application requiring acceleration measurements.  
Currently the prototype compressed sensor is capable of collecting compressed 
coefficients from measurements and sending them to an off-board processor for 
reconstruction using L1 norm minimization.  A compressed version of the matched 
filter known as the smashed filter, has also been implemented on-board the sensor 
node, and its suitability for detecting structural damage will be discussed.   
 
INTRODUCTION 

 
 Data for structural health monitoring applications is generally collected using a 
distributed sensor network.  Distributed sensor networks made up of nodes with hard-
wired data and communication lines are generally have high installation costs.  The 
goal is to transition to low-power, wireless sensor networks featuring minimal 
installation costs [1].  Two of the major problems with these types of sensor networks 
are the conservation of energy and bandwidth.  Compressed sensing techniques hold 
promise to help address both of these problems.  By collecting compressed 
coefficients, the signal of interest can be represented using a fraction of the 
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measurements required by traditional Nyquist sampling.  The result is reduced energy 
consumption for data collection, storage and transmission.  In addition, the bandwidth 
required to transmit the data from a signal is also significantly reduced.  The focus of 
this work is to evaluate the applicability of compressed sensing techniques to expand 
the capabilities of wireless sensor networks for structural health monitoring 
applications.   
  
BACKGROUND OF COMPRESSED SENSING 
 
Compressed sensing has been a prolific research topic over the last few years.  
Excellent tutorials covering the basics of compressed sensing can be found in [2] and 
[3].  To summarize, a signal of interest x can be represented as: 

  or in matrix form as    (1) 

Where Ψ is an orthonormal basis and “s” is the representation of the signal in the Ψ 
domain.  In the case of compressed sensing we are interested in the case where x is 
compressible in some domain.  That is, the number of significant non-zero elements of 
s is equal to k and k << N.  A measurement matrix “Φ” is then introduced to produce 
compressed sensing coefficients y.   

     (2) 
Where Φ has M<N rows.  At this point it is important to note that this equation 
represents an underdetermined system of linear equations.  One of the major 
breakthroughs of the compressed sensing community was the finding that assuming 
k<<M  it is possible to recover x from y assuming the matrix Φ possesses certain 
properties.  The direct formulation of this problem is finding the vector s with minimal 

l0 norm.  Unfortunately l0 norm minimization is numerically unstable and NP-

complete.  It has been shown though that the associated l1 norm regularization 

problem [5] can be solved to recover compressible signals from the compressed 

coefficients y.  In this work, the l1 norm regularization approach will be explored for 

recovering the signal x from compressed coefficients y. 
 
EXPERIMENTAL SETUP 
 In order to evaluate the applicability of compressed sensing for embedded 
structural health monitoring sensor nodes, a digital prototype of a compressed sensor 
node was built.  The prototype consisted of an ATmega1281 microcontroller, an ICP 
accelerometer, and the associated amplification and ICP circuitry required to interface 
the analog-to-digital converter (ADC) of the microcontroller to the ICP accelerometer.  
The accelerometer was then attached to the second floor of a representative 3 story 
structure as shown in Figure 1.  The accelerometer was oriented to measure the 
transverse vibration of the 3-story structure.    An electro-magnetic shaker was then 
attached to the base of the three story structure to provide a source of excitation.  The 
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excitation to the structure was a sine wave with a frequency of 30.7 Hz which 
corresponds to the first resonant frequency of this structure.    In order to introduce 
damage into the structure, a rubber bumper was used to induce a nonlinear response 
when the relative transverse displacement between the second floor and the base 
would exceed a threshold value.  The signal from the accelerometer was sampled by 
the ATmega1281 with a 10 bit ADC at a sampling rate of about 3000 Hz.  In this 
work, 256 point time series were collected by the Atmega1281 and subsequently 
converted into compressed measurements by the microcontroller.  The elements of the 
measurement matrix Φ were chosen to be either ±1.  The generation of the 
measurement matrix Φ was accomplished using a linear feedback shift register 
(LFSR) similar to that mentioned in [4].  The ±1 measurement matrix was selected in 
order to allow the generation of the compressed coefficients on-board the 
microcontroller using integer arithmetic.  The ATmega1281 was placed onboard an 
STK500 evaluation board.  A base station laptop was then connected to the STK500 in 
order to facilitate the debugging of the compressed sensing algorithms, and to expedite 
the collection of compressed coefficients from the embedded sensor node.  For the 
purpose of this experiment, the ATmega1281 would transmit both the compressed 
measurements as well as the original signal when it was queried for a measurement.  
By collecting both pieces of data the reconstructed signal derived from the compressed 
coefficients could be compared to the original signal in order to evaluate the 
performance of compressed sensing techniques.   
 

 
Figure 1- Representative 3 story structure used to evaluate the compressed 
sensor node. 
 

RESULTS FROM l1 NORM REGULARIZATION EXPERIMENTS 
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The Structure described in the previous section was placed in a configuration so that it 
could assume either a damaged state or an undamaged state.  In the undamaged state, 
the output from the accelerometer should assume a sine wave with a frequency of 30.7 
Hz that corresponds to the shaker excitation frequency.  In the damaged state, the 
rubber bumper interacts with the structure and the frequency content of the resulting 
output from the structure is more widely distributed across the spectrum.  For this 
work we assume that the resulting signals from the structure should be sparse in the 
Fourier basis.  Data was collected from the structure in both the damaged and 
undamaged states, and was subjected to the compressed sensing measurement process.  

The resulting compressed measurements were then cast into the l1 norm regularization 

framework to attempt recovery of the original signal.   The l1 norm regularization 

problem can be written as: 
             (3)       

The l1 norm regularization problem trades off between the size of the residual and the 

sparsity of s.  The l1 norm regularization was implemented using the CVXMOD 

software [6].  256 pt time series data was collected from the structure using the 
ATmega1281 and was transmitted to the base station laptop.  The compressed 
coefficients were calculated using the measurement matrix generated by the LFSR.  

The resulting compressed coefficients were subjected to the l1 norm regularization 

with  γ = 0.01.  The value of γ was selected heuristically.  The l1 norm regularization 

problem was solved using 64, 128, 160, and 200 compressed coefficients for both the 
damaged and undamaged cases.  These correspond to compression factors of 25%, 
50%, 63%, and 78% respectively.  The resulting reconstructions can be found in 
Figure 2 and Figure 3.  The values of the Fourier basis coefficients for the undamaged 
and damaged cases are found in Figure 4 and Figure 5 respectively.  It should be noted 
that the sine wave measured in the undamaged case has a slight non-linearity caused 
by clipping in the signal conditioning electronics at low-voltages.  This situation was 
unavoidable in order to excite with an appropriate amplitude to induce nonlinearities 
in the damage case.   
 From the reconstructed signals in Figure 2 and Figure 3 we can see that the 
nature of the output signal does not begin to become apparent until about 160 
compressed measurements are taken.  The reconstructed signals generated from a 
lower number of compressed coefficients also tend to exhibit significant high-
frequency components that do not show up in the original signal.  As the number of 
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compressed coefficients increases the magnitude of the non-existent high-frequency 
components tends to decrease and the accuracy of the reconstruction improves.     

 
Figure 2 - Nondamaged case compressed sensing reconstruction 

 
Figure 3 - Damaged case compressed sensing reconstruction 
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Figure 4 - Fourier coefficients from undamaged structure, original and reconstructed signals. 

 
Next consider the plots of the Fourier basis coefficients displayed in Figure 4 

and Figure 5.  In both the damaged and undamaged cases the l1 norm regularization 

problem finds at least either the sine or cosine component of the original signal.  From 
these plots it is easy to see the inclusion of false, high-frequency components as 
evidenced by the non-zero components present in the middle of the Fourier basis plots.  
As the number of compressed sensing coefficients included in the plots is increased, 
the magnitude of the false high-frequency components decreases, and the accuracy of 
the reconstructed signal also improves.  At this time it is not entirely clear why the 
reconstructed signals tend to exhibit significant contributions from high frequency 
components.    One possibility is that the reconstructions are amplifying noise present 
in the signal.  Future work is going to consider methods for improving the accuracy of 
the reconstructed signals.   
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Figure 5 - Fourier coefficients from damaged structure, original and reconstructed signals. 

 
SMASHED FILTER 
 

The initial l1 norm regularization results showed that a fairly significant number of 

compressed coefficients were needed to begin to accurately reconstruct the signal of 
interest.  In structural health monitoring, the main concern is generally the detection of 
damage and not necessarily the collection of accurate time series.  With this in mind it 
was decided to investigate alternate techniques to try and detect the presence of 
damage while using a relatively small number of compressed coefficients.  An 
extension of the matched filter to the compressed domain known as the “smashed 
filter” seemed an appropriate technique to evaluate.  [7].    To summarize, the smashed 
filter is implemented in basically the same manner as the conventional matched filter.  
The main difference is that the smashed filters are generated by taking phase shifted 
versions of the signals of interest, and then subjecting them to the measurement 
process Φ.  The matched filters hm are generated from the signals of interest h as: 

     
For this work, training signals from both the damaged and undamaged states were 
collected.  The damage case training signal was collected in such a manner that it 
featured a small mismatch with the operational damage case signals used to evaluate 
the performance of the smashed filter.  By allowing a small mismatch between the 
training damage case, and the operational damage case we can get an initial sense of 
the robustness of the smashed filter to small perturbations.  This mismatch was 

(4) 
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achieved by perturbing the location of the rubber bumper.  Once the smashed filters 
were generated, 100 experiments resulting in 128 compressed coefficients per 
experiment were collected from the structure in both the damaged and undamaged 
cases.  Subsets of the 128 compressed coefficients were then used to evaluate the 
performance of the smashed filter for various numbers of compressed coefficients.  To 
implement the smashed filter, the inner product of the compressed coefficients and the 
smashed filter vectors was calculated for each experiment.  The smashed filter with 
the largest inner product was then selected and the experiment was classified as 
damaged or undamaged based on whether or not the corresponding smashed filter 
came from the damaged or undamaged case. Table 1 and Table 2 illustrate the results 
of applying the smashed filter to the experiments for the undamaged and damaged 
cases respectively.  From this data we see that once at least 32 compressed coefficients 
are used to calculate smashed filters, the probability of misclassifications become very 
low.  It is noteworthy that the number of compressed coefficients needed to achieve 
accurate classification with the smashed filter is only 1/8 the number of data points in 
the original time series measurement.  Based on these results, the smashed filter has 
the potential to significantly reduce the number of measurements needed to classify 
whether or not a structure is damaged.   
 

Table 1. 
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Table 2. 
 
CONCLUSIONS 
 
In this work the performance of compressed sensing techniques for embedded 
structural health monitoring sensor nodes have been investigated.  A preliminary look 

at the ability of l1 norm regularization to reconstruct time series measurements of 

acceleration collected from structures has been presented.  The suitability of the 
smashed filter for damage classification in structures has also been presented.  It was 
found that the smashed filter has potential to significantly reduce the number of 
measurements required to classify the state of health of a structure.  Although not 
discussed in detail, results obtained in this work suggest that compressed sensing has 
the potential to conserve energy and bandwidth in embedded wireless sensor nodes for 
structural health monitoring applications.  Future work will focus on better quantifying 
these savings. 
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