
Pattern Recognition 37 (2004) 875–887
www.elsevier.com/locate/patcog

Two realizations of a general feature extraction framework

Junshui Ma∗, James Theiler, Simon Perkins
Los Alamos National Laboratory, Los Alamos, NM 87544,USA

Received 6 November 2002; accepted 7 October 2003

Abstract

A general feature extraction framework is proposed as an extension of conventional linear discriminant analysis. Two
nonlinear feature extraction algorithms based on this framework are investigated. The 1rst is a kernel function feature extraction
(KFFE) algorithm. A disturbance term is introduced to regularize the algorithm. Moreover, it is revealed that some existing
nonlinear feature extraction algorithms are the special cases of this KFFE algorithm. The second feature extraction algorithm,
mean–STD 1 –norm feature extraction algorithm, is also derived from the framework. Experiments based on both synthetic
and real data are presented to demonstrate the performance of both feature extraction algorithms.
? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Feature extraction (FE) techniques are widely employed
in many areas such as pattern recognition, machine learn-
ing, and data mining. They can be classi1ed into wrapper-
and 1lter-type FE algorithms. The 1lter-type FE algorithms
can be further loosely classi1ed into two categories [1]: (a)
FE algorithms for generating representative features; and
(b) FE algorithms for generating discriminant features or
classi!cation-oriented features. As well as providing a more
parsimonious description of the data, the use of a small num-
ber of features also permits a faster computation of the clas-
si1er, and by eliminating irrelevant or redundant features,
can also produce more robust and accurate classi1cation.

Most of the algorithms in the 1rst category try to extract
features with a goal of maximally retaining the energy in the
original patterns, and are usually derived from signal pro-
cessing techniques [2,3], or based on some knowledge-based

1 STD: Standard Deviation.
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models [4,5]. Typical examples of this class of algorithms
are the principal component analysis (PCA) [6,7], and its
kernel version of kernel PCA [8].

In the past 10 years, increasing attention has been raised
to the FE algorithms belonging to the second category. Nu-
merous algorithms of this type have been developed, among
them are the discriminant component analysis algorithm
[9,10], a FE algorithm based on decision boundaries [11],
and the local discriminant basis algorithm [12]. However,
these examples generally explore only linear discriminants.
The breakthrough on the direction of general nonlinear dis-
criminant FE algorithms was made by Mika et al. [13] with
the kernel 1sher discriminant (KFD) algorithm. However,
the KFD algorithm can only handle 2-class problems, be-
cause it was derived from the 2-class Fisher’s discriminant
analysis. Thereafter, quite a few improvements and variants
of the KFD algorithm which can cope with multiple class
problems came into being by following the general idea pro-
posed in KFD [14–17]. These algorithms were all derived
using the kernel trick [18], and thus require expensive com-
putation when the training set is not small. Mika et al. later
on proposed an alternative formulation of the original KFD
algorithm, which suggested a promising direction to reduce
the computation requirement of the original KFD algorithm
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[19,20]. However, it can only deal with 2-class problems.
In order to simplify our following presentation, the original
KFD algorithm, as well as all these algorithms that were
devised following the original KFD algorithm, is generally
called KFD-like nonlinear FE algorithms in this paper.

The results presented in this paper are a set of nonlinear
FE algorithms to generate classi1cation-oriented features.
The main contributions of this paper are listed as follows:

(1) A FE framework for general multi-class problems is
proposed as an extension of the linear discriminant
analysis (LDA). This framework provides a systematic
avenue to easily devise new nonlinear FE algorithms,
which is demonstrated in this paper by deriving two
new FE algorithms based upon this framework.

(2) The 1rst new FE algorithm, called the kernel function
feature extraction (KFFE) algorithm, is proposed un-
der this FE framework. The relationship between the
KFFE algorithm and the existing KFD-like algorithms
is discussed. We discover that many existing KFD-like
algorithms are special cases of the proposed KFFE al-
gorithm. Moreover, the KFFE algorithm suggests a new
direction to reduce the computation burden bothering
most of the KFD-like algorithms when dealing with
large data set.

(3) The second new FE algorithm, called the mean–STD–
norm feature extraction (MSNFE) algorithm, is also
derived based upon the FE framework. This algorithm is
experimentally demonstrated to have high performance
for time-series type of data.

In order to clarify the notation and facilitate subsequent
derivation, the LDA is presented in Section 2. The general
FE framework is introduced in Section 3. In Sections 4 and
5 two concrete nonlinear FE algorithms are developed based
on the framework. A set of experiments are implemented
and presented in Section 6 both to justify some discussion in
Section 4 and to demonstrate the performance of proposed
two FE algorithms. The famous No Free Lunch Theorem
[21] suggests that no FE algorithms can universally improve
the class separability. Therefore, we do not only present
the results that demonstrate the outstanding performance of
our proposed algorithms. Instead, in this paper we select
three fairly diHerent problems, and demonstrate the diHerent
algorithmic performance for all these problems. We hope
this practice can help readers 1gure out when they should
and/or should not consider the proposed algorithms in this
paper.

2. Linear discriminant analysis (LDA)

We 1rst de1ne some notations that are frequently used in
this paper.

• Xl: the lth n-feature pattern in a available pattern set,

• X(i)
l : the lth n-feature pattern among all patterns from the

ith class,
• IN : a N × N identity matrix,
• 1N1×N2 : a N1 × N2 matrix, whose elements are all one.

When N1 = N2, it can be simpli1ed as 1N1 .

In order to simplify our notation system, in the following
derivation we do not explicitly distinguish a random variable
from its realization, as well as a random parameter from its
estimation, in representation. Its real meaning is self-telling
in the context.

The foundation of the LDA is the de1nition of a group
of scatter-matrices, among which within-class matrix and
between-class matrix are two related to our subsequent pre-
sentation.

If we denote the mean of all the patterns from class i,
or !i, as MX

i , or MX
i = E{X |!i}, the within-class scatter

matrix, SXw , can thus be represented as [1]

SXw =
L∑

i=1

PiE{(X −MX
i )(X −MX

i )T |!i}

=
L∑

i=1

Pi�i ; (1)

where L is the number of classes, Pi is the prior probability
of class i, or !i. The within-class matrix captures the spread
of patterns around their individual class means.

If we replace Pi with the pattern frequency of class i, and
replace E{·} with the pattern average, we can obtain the
estimate of SXw directly from a set of patterns

SXw =
L∑

i=1

Ni

N

[
1
Ni

Ni∑
k=1

(X(i)
k −MX

i )(X(i)
k −MX

i )T

]

=
1
N
�XW�

T
X; (2)

where

W =




IN1 − 1
N1
1N1

. . .

INL − 1
NL
1NL



;

Ni is the number of patterns from class i in the available pat-
tern set, N is the total number of patterns from all classes,
and �X is a set of available patterns with the patterns from
the same class grouped together. That is, �X can be repre-
sented as

�X = [�(1)
X �(2)

X · · · �(L)
X ] = [X1 X2 · · · XN ];

where �(i)
X = [X(i)

1 X(i)
2 · · · X(i)

Ni
]. In this paper, we call �X

the training set. Note that (INi − 1
Ni
1Ni )=(INi − 1

Ni
1Ni )(INi −

1
Ni
1Ni ) when deriving Eq. (2).
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The between-class scatter matrix, SXb , can be represented
as [1]

SXb =
L∑

i=1

Pi(MX
i −MX

0 )(MX
i −MX

0 )T; (3)

where MX
0 = E{X} =

∑L
i=1 PiMX

i denotes the mean of the
mixture distribution of all the classes. This between-class
matrix captures the spread of the mean of each class around
the mean of all the classes.

The estimate of SXb can be obtained similarly to that of
SXw , and can be expressed as

SXb =
L∑

i=1

Ni

N
(MX

i −MX
0 )(MX

i −MX
0 )T =

1
N
�XB�

T
X; (4)

where

B =G



N1

. . .

NL


GT and

G =




1
N1
1N1×1

. . .

1
NL
1NL×1




− 1
N
1N×L:

Reorganizing the de1nition of within-class matrix SXw and
between-class matrix SXb in the forms of Eqs. (2) and (4),
respectively, are very critical in our subsequent derivation,
which will become clearer in our following presentation.

Intuitively, it is easy to reason that a bigger between-class
scatter matrix and/or a smaller within-class scatter matrix
imply higher class separability, which in turn suggests that
the involved feature set is better. This intuition can be quan-
titatively represented as trying to maximize the criterion de-
1ned in

J = tr(S−1
w Sb); (5)

where tr{•} denotes the trace operation of a matrix. This
separability criterion J is attractive because of its simplic-
ity and its coordinate-independent property—it is invariant
under any nonsingular linear transformation [1].

As is well known, any linear FE algorithm can be repre-
sented as

R = ATX; (6)

where X is a original n-feature pattern, and is thus a 1 ×
n vector; R is a new pattern formed by m extracted new
features, and is thus a 1 × m vector; A is the n × m matrix
that characterizes the linear FE algorithm.

From the de1nitions of within-class matrix in Eq. (1),
and between-class matrix in Eq. (3), it is straightforward
to derive the relationship between the scatter matrix of the

original patterns and that of the new patterns. The relation-
ship can be represented as

SRw = ATSXwA; (7a)

SRb = ATSXbA: (7b)

The LDA can thus be de1ned as, given a separability
criterion J , 1nd a best n×m transform matrix A, which can
be used to generate the m-feature new pattern R from the
n-feature original pattern X. That is

A = arg max
A

J (A)

= arg max
A

tr{(SRw)−1SRb }

= arg max
A

tr{(ATSXwA)−1(ATSXbA)}: (8)

It can be proved that the best transform matrixA is formed
by the m eigenvectors corresponding to the m largest eigen-
values of the matrix (SXw)−1SXb [1]. That is

A = [a1 a2 · · · am]; (9)

where ((SXw)−1SXb )ai=�iai ; i=1; : : : ; n; �1¿ �2¿ · · ·¿ �n,
and m6 n.

3. A general feature extraction framework

A simple analysis of the LDA can expose at least its
two critical drawbacks. First, it can only exploit linear class
separability in the underlying problem; and second, linear
FE algorithms based on the criterion J cannot robustly deal
with the situation where the means of diHerent classes are
very close to each other.

These limitations of LDA motivate us to introduce a more
general form of FE framework, which is obtained using an
operation called function replacement [22]:

R = ATF(X); (10)

where F(X) is a functional vector, and can be represented as

F(X) = [F1(X) F2(X) · · · Fk(X)]T:

If we de1ne SF(X)
w and SF(X)

b as the within-class and
between-class matrices, respectively, of the data in the
F(X) space, then based on Eqs. (7)–(8), we know that the
best transform matrix A in Eq. (10) is formed by the m
eigenvectors corresponding to the m largest eigenvalues of
the matrix (SF(X)

w )−1SF(X)
b . That is

A = [a1 a2 · · · am]; (11)

where ((SF(X)
w )−1SF(X)

b )ai = �iai ; i = 1; : : : ; k; �1¿ �2¿
· · ·¿ �k , and m6 k.
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If we de1ne the element function Fi(X) of Eq. (10) as
nonlinear functions of the original patternX, Eq. (10) can be
employed to represent almost any nonlinear FE algorithm.
On the other hand, the original linear formulation (6) is
a special case of Eq. (10). Therefore, Eqs. (10) and (11)
jointly represent a general framework of feature extraction.
In the remaining part of this paper, we mostly focus on the
cases where Fi(X) is a nonlinear function.

Generally speaking, nonlinear FE algorithms have more
Lexibility to explore the class separability embedded in a
problem than corresponding linear algorithms, and thus po-
tentially have higher performance. However, optimization
of a nonlinear problem is usually not straightforward. Com-
pared with Eq. (6), Eq. (10) can be obtained by simply
replacing X in Eq. (6) with the nonlinear functional vec-
tor F(X) in Eq. (10). This function replacement operation
seems trivial at 1rst glance. However, it incorporates two
immediate advantages in Eq. (10) over Eq. (6).

(1) It introduces a nonlinear relationship between X and
Y, while retains the theoretic tractability of Eq. (6).
That is, the nonlinearity is achieved by the choice of a
nonlinear functional vector F(X), while the tractability
is maintained by only 1nding the transform matrix A
in Eq. (10). This FE framework provides a mechanism
to separate the nonlinearity of a FE algorithm from its
optimization procedure.

(2) The dimension of F(X), k, is a variable, and can be
chosen according to the underlying problem. It thus
relieves us from the restriction of the dimension of input
vector X.

These two advantages will become clearer in our subse-
quent presentation.

Now, the only problem we are facing is how to de1ne the
functional vector F(X). From Eq. (10), we can see that the
1nal FE functions are the weighted linear combination of
those element functions in the functional vector F(X). That
is, the resultant FE functions must be in a space spanned by
the element functions in the selected functional vector F(X).
Therefore, the choice of F(X) will critically determine the
1nal performance of the resultant FE functions.

Intuitively, there are two directions to choose F(X). One
direction is problem-dependent. That is, we can choose ele-
ment function Fi(X) based on prior knowledge of the prob-
lem. For example, we can ask an expert in that area to
propose some element functions as 1nding the energy of
X, or the frequency where X reaches its spectral peak,
etc. The second direction of choosing F(X) is, in contrast,
problem-independent. As suggested in Ref. [23], we can de-
1ne F(X) in a way that will apply to all kinds of problems.
For example, we can choose the elements of F(X) as a ba-
sis of a functional space, in which the resultant FE func-
tions will reside. The two algorithms presented in the subse-
quent two sections are examples in this problem-independent
direction.

4. Kernel function feature extraction (KFFE)

Theories in the area of reproducing kernels Hilbert space
and support vector machines inspired us to consider a set
of kernel functions to form the functional vector F(X)
[8,13,15]. That is,

F(X) = K(•;X)

= [K(X1;X) K(X2;X) · · · K(Xk ;X)]T; (12)

where Xi ∈.X, and .X is a set of available patterns. In this
paper, we call .X the reference set. Note that there is no
requirement that this reference set .X should coincide with
the training set,�X, of the underlying problem, although, in
order to make full use of all available patterns, we usually
choose.X to be the same as�X, or to be a subset of�X. In
fact, when the size of training set �X is very large, de1ning
.X as only a subset of �X will signi1cantly reduce the sub-
sequent computation. From this perspective, diHerentiating
the concept of .X and �X provides a diHerent perspective,
or potentially a diHerent solution, of the study presented in
Ref. [24].

Theoretically speaking, many functions can be used as the
kernel function K(X;Y). Among them, two typical choices,
which are widely used in machine learning area [8], are
listed as follows:

(i) The radial basis functions (RBFs), such as

K(X;Y) = exp{−�‖X − Y‖2}; (13)

where � is a positive real value.
(ii) The polynomial functions:

K(X;Y) = (〈X;Y〉 + 1)d = (XTY + 1)d; (14)

where d is the degree of the polynomial function.
Note that it is not required that the kernel functions in Eq.

(12) must meet the Mercer Theorem, although both Eqs.
(13) and (14) do [8].

This choice of F(X) however incurs a special situation in
the property of F(X). Because the functional vector K(•;X)
is based upon a set of available patterns, or the reference
set .X; K(•;X) will vary with the diHerent choice of .X.
In order to roughly capture the variance of K(•;X), we
introduce a disturbance term into Eq. (12), and thus obtain
a new realization of F(X):

F(X) = K(•;X) + �; (15)

where � = [�1 �2 · · · �k ]T, where �i; i = 1; : : : ; k, are inde-
pendent random variables with zero mean and a constant
variance of �. That is,

E{�i} = 0; E{�i�j} =

{
�; i = j;

0; i = j:

By substituting Eq. (15) into Eqs. (1) and (3), we obtained
the within-class and between-class matrices regarding F(X)
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as follows:

SF(X)
w = SK(•;X)

w + �I; (16a)

SF(X)
b = SK(•;X)

b ; (16b)

where SK(•;X)
w and SK(•;X)

b are the within-class and
between-class matrices regarding K(•;X), respectively.

More light can be shed to the eHects of adding the distur-
bance term by substituting Eq. (16) into Eq. (8),

J (A) = tr{(ATSK(•;X)
w A + �ATA)−1(ATSK(•;X)

b A)}: (17)

Eq. (17) presents a relationship between adding a distur-
bance term and adding a regularization term. That is, adding
the disturbance term is equivalent to adding a regulariza-
tion term of the transform matrix A, which makes the role
of the parameter � in KFFE algorithm clearer. That is, if �
is too big, the resultant FE functions tend to under 1t the
available patterns, while, if � is too small, the resultant FE
functions are more likely to over 1t the available patterns,
and result in poor generalization. Therefore, the value of �
has the function of adjusting the generalization property of
the KFFE algorithm. This mechanism is very useful for this
kind of learning-from-training-pattern algorithms. Because
� is directly related to the generalization property of the
whole algorithm, we call � the regularization coe5cient. In
Section 5, an experiment is designed and implemented to
further demonstrate the eHect of � in avoiding over1tting.

By substituting Eq. (16) into Eq. (11), we can 1-
nally obtain a general-purpose nonlinear FE algorithm,
Kernel-function-based feature extraction method (KFFE).
The steps to implement this algorithm can thus be summa-
rized as follows:

(1) Form a kernel matrix K from a training set �X accord-
ing to Eq. (12). That is, if �X is represented as

�X = [X1 X2 · · · XN ];

the kernel matrix K can be represented as:

K = [K(•;X1) K(•;X2) · · · K(•;XN )]: (18)

(2) Form the within-class matrix SK(•;X)
w and between-class

matrix SK(•;X)
b regarding K(•;X) by substituting Eq.

(18) into Eqs. (2) and (4), respectively.
(3) Calculate matrix

C= (SK(•;X)
w + �I)−1SK(•;X)

b : (19)

(4) Eigen-decompose the matrix C, and build the transform
matrix A:

A = [a1 a2 · · · am];

where Cai =�iai ; i=1; : : : ; k; �1¿ �2¿ · · ·¿ �k , and
m6 k.

(5) By substituting matrix A obtained in Eq. (4) into Eq.
(10), the 1nal FE function for a given pattern X is

obtained as

R = ATK(•;X) =




k∑
i=1

�i;1K(Xi ;X)

k∑
i=1

�i;2K(Xi ;X)

...

k∑
i=1

�i;mK(Xi ;X)




=




H1(X)

H2(X)

...

Hm(X)



; (20)

where Hi(X) is called the ith feature extraction func-
tion, where i = 1; : : : ; m.

We note that the form of FE functions in Eq. (20) is sim-
ilar to that of the KFD-like algorithms proposed in Refs.
[13,15–17]. However, all of the KFD-like algorithms were
derived through applying the “kernel trick” [18] to some
linear algorithms, while our KFFE algorithm is obtained
simply by replacing the original pattern with a functional
vector F(X), and is thus much more straightforward. Our
simply derivation conveys an insight into these KFD-like
algorithms. That is, we can obtain similar form of FE func-
tions without even implicitly mapping the patterns from the
input-space into a huge dimensional feature-space using the
“kernel trick”, which provides a diHerent perspective to un-
derstand the impact of the feature-space on the 1nal perfor-
mance of the KFD-like algorithms.

From our derivation we can also see that the KFFE algo-
rithm does not require the selected kernel functions to meet
the Mercer’s Theorem [8], while all of the KFD-like algo-
rithms do. This implies a wider choice of kernel functions in
KFFE algorithm. Furthermore, the derivation of our KFFE
algorithm demonstrates that it is not necessary for the refer-
ence set.X to be the same as the training set�X. In contrast,
almost all of the KFD-like algorithms require .X to be the
same as �X, which is an intrinsic consequence of deriving
the KFD-like algorithms through “kernelizing” linear algo-
rithms. From these two perspectives, most of the KFD-like
algorithms can therefore be considered as the special cases
of the KFFE algorithm.

However, that unnecessary requirement of equating .X
with �X introduces at least two diPcult situations in most
of the KFD-like algorithms. The 1rst diPculty arises, when
the training set �Xbecomes very large; then the number of
element functions in F(X) will be very large according to Eq.
(12), which in turn will make the resultant FE algorithm very
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computationally expensive. The second diPculty happens
when trying to take the inverse of SK(•;X)

w , which is required
in some of the KFD-like algorithms. However, if the number
of patterns in the training set is N , and the number of classes
involved is L, the rank of SK(•;X)

w is at most N − L [15].
However, SK(•;X)

w is anN×N matrix when the algorithms are
directly derived via kernelizing the linear algorithms, which
makes the direct inverse of SK(•;X)

w impossible. Currently, the
method that most of the KFD-like algorithms employed to
deal with the singularity of SK(•;X)

w is to replace SK(•;X)
w with

(SK(•;X)
w +�I) [13,15,17]. However, none of these algorithms

provide a satisfactory explanation for the physical meaning
of �, and instead simply suggest that introducing �I is helpful
in stabilizing, or regularizing, the algorithm. In contrast, in
our KFFE algorithm, SK(•;X)

w is a k × k matrix, where k
is the size of the reference set .X, and can be chosen by
us. Therefore, direct inversion of SK(•;X)

w becomes possible
in our KFFE. Moreover, although we 1nally also adopt the
inverse of (SK(•;X)

w +�I) in our implementation, the physical
meaning of the parameter � becomes relatively clearer during
our derivation, as well as the role that it plays in the whole
algorithm.

Another issue worth mentioning relates to the between-
class matrix SK(•;X)

b . From its de1nitions (3) and (4), we
know that the rank of SK(•;X)

b will be no more than L − 1,
where L is the number of classes involved. Therefore, from
Eq. (19) we know that our KFFE algorithm can only maxi-
mally extract L−1 meaningful features, which will limit its
Lexibility when the number of classes, L, is small. For ex-
ample, for a 2-class problem, the KFFE currently can only
extract one meaningful feature. One approach for addressing
this limitation was discussed in our previous study [25], and
that result can be readily incorporated into the KFFE algo-
rithm by introducing a data-set-dependent structural matrix
to the F(X) in Eq. (12), which can also be considered as a
new choice of the F(X) in the framework.

Finally, we end this section with a summary of the pa-
rameters required by the KFFE algorithm:

(1) Type of kernel function, as well as the parameter(s)
associated with it, such as the � associated with RBF
kernel in Eq. (13) and the degree d associated with the
polynomial kernel in Eq. (14).

(2) Regularization coePcient �.
(3) Number of new features to extraction m.
(4) Choice of the reference set .X.

As for m, we generally choose the maximally extractable
number of features, which is L − 1, where L is the number
of classes involved. As for the choice of reference set .X,
when the training data set is not too large, we tend to set the
whole training set as the reference set; when the training set
is very large, how to select an optimal reference set from
the training set is still an open topic. The ideas proposed
in [19,20,24] could be promising directions, although the
algorithm in Refs. [19,20] only targets 2-class problems.

How to directly 1nd an optimal set of kernel parameters and
the regularization coePcient �, given a particular problem,
is unfortunately also an open topic. Cross-validation-based
parameter selection is generally used in real-world practice.

5. Mean–STD–norm feature extraction (MSNFE)

In this section, a new FE algorithm is proposed by em-
ploying a diHerent way to choose the elements of F(X) in
Eq. (10).

With the time-series-type data in mind and inspired by the
wavelet analysis theory, we speculate that, if we can extract
characteristic of a pattern X at its diHerent scale levels, a lin-
ear combination of all these characteristics is promising for
generating a set of high-performance features of the pattern
X. This idea exactly 1ts the general FE framework. That is,
as long as we can de1ne a way to extract the characteris-
tics of X at diHerent levels, and use them as the elements
of F(X) in Eq. (10), the general FE framework can readily
1nd a set of new features, which are the linear combination
of the obtained characteristics. The new features can maxi-
mize the class separability.

In order to implement the above idea, we need to de1ne
both what kind of characteristics we want to extract and how
to de1ne the scale levels of a pattern X. Given an l-element
pattern X= [x1 x2 · · · xl]T, its characteristics that we want
to extract are de1ned by three basic operations:

(1) mean:

M (X) =
1
l

l∑
i=1

xi; (21a)

(2) standard deviation (STD):

S(X) =

√√√√√ 1
L − 1


 l∑

i=1

x2
i −

(
l∑

i=1

xi

)2

; (21b)

(3) norm:

N (X) = ‖X‖ =

√√√√ l∑
i=1

x2
i : (21c)

Scale levels of the pattern X are de1ned in Fig. 1. That is,
we iteratively evenly split the pattern X into many segments
in a way following a binary tree structure, which is illus-
trated in Fig. 1. Note that Fig. 1 only plots two levels of the
splitting. In fact, the number of levels that this splitting can
move down is only limited by the number of features in X.

We can thus de1ne a group of functions by applying the
three operations de1ned in Eq. (21) to each of the segments
in Fig. 1, and use this group of functions as the element
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Fig. 1. Illustration of iteratively evenly splitting pattern X into many segments.

functions of F(X) in Eq. (10). That is,

F(X) =




F1(X)

F2(X)

F3(X)

F4(X)

...

Fk−1(X)

Fk(X)




=




M (X1)

S(X1)

N (X1)

M (X10)

...

S(X1···1)

N (X1···1)




: (22)

Because the three basic operations are mean, standard de-
viation, and norm, and segments were obtained by splitting
a pattern X in a binary tree structure, the group of functions
in Eq. (22) is called as MSNTree functions. The feature
extraction algorithm obtained by replacing Eq. (22) into the
FE framework (10) is named as mean–STD–norm feature
extraction (MSNFE) algorithm. Because two operations
de1ned in Eq. (21) are nonlinear operations, the MSNFE
algorithm is also a nonlinear FE algorithm with regard
to X.

Note that the procedure to build up the MSNTree func-
tions is inspired mainly from experience and intuition,
instead of rigorous theoretically analysis. Neither the se-
lection of the three basic operations nor the way to split
X is the only proven optimal choice. One of our major
purposes to propose MSNFE is to demonstrate the utility
of the general FE framework, and to illustrate a diHerent
approach to de1ne the F(X) under framework (10). In fact,
it can be predicted that the MSNFE algorithm performs
well mainly for time-series-type problems according to
the way it constructs the MSNTree functions. This predic-
tion is con1rmed by the experimental results presented in
Section 6.

The MSNFE algorithm only requires one parameter,
which is the number of levels to split a given pattern X.
The maximal possible value of this parameter is determined

by the number of features in X through the relationship
in (23):

LNmax = �log2(n=2)�; (23)

where LNmax is the maximal number of levels that the split-
ting of X can move down, and n is the number of features
in X. Basically, Eq. (23) guarantees that each segment of
X at least has two features inside, which ensures the three
basic operations on that segment nontrivial.

According to the discussion in Section 4, the regulariza-
tion coePcient � plays an important role in preventing the FE
algorithms from over1tting the training set. Therefore, the
regularization coePcient � is also introduced in the MSNFE
algorithm. Surely, the � used in MSNFE algorithm losses
the physical meaning when it was introduced in KFFE algo-
rithm, and it is used here only for the purpose of algorithmic
robustness.

Similar to the KFFE algorithm, the MSNFE algorithm
can be summarized as follows:

(1) Split each pattern Xi in the training set �X =
[X1 X2 · · · XN ] in the way demonstrated in Fig. 1.
Construct the functional vector F(Xi) from each pat-
tern Xi according to Eq. (22), and form the matrix
F(�X ) as

F(�X ) = [F(X1) F(X2) · · · F(XN )]:

(2) Form the within-class matrix SF(X)
w and between-class

matrix SF(X)
b regarding F(Xi) by substituting F(Xi) into

Eqs. (2) and (4), respectively.
(3) Calculate the matrix C= (SF(X)

w + �I)−1SF(X)
b .

(4) Eigendecompose the matrix C, and build the transform
matrix A:

A = [a1 a2 · · · am];

where Cai =�iai ; i=1; : : : ; k; �1¿ �2¿ · · ·¿ �k , and
m6 k.

(5) By substituting matrix A obtained in Eq. (4) into
Eq. (10), the 1nal FE function for a given pattern X
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is obtained as

R = ATF(X) =




k∑
i=1

�i;1Fi(X)

k∑
i=1

�i;2Fi(X)

...

k∑
i=1

�i;mFi(X)




=




H1(X)

H2(X)

...

Hm(X)



;

(20)

where Hi(X) is called the ith feature extraction func-
tion, where i = 1; : : : ; m.

6. Experiments

Experiment 1: Demonstrating the e8ect of � in avoiding
over!tting in KFFE algorithm. The experimental data set
is a group of 2-feature patterns from two classes, which is
plotted in Fig. 2. The random process to generate the patterns
is represented in Eq. (24):

X =

[
X1

X2

]
=

[
r cos(")

r sin(")

]
; (24)

where " is a random variable with a uniform distribution
between [ − #; #]. For class 1, r is a zero-mean Gaussian
random variable with a standard deviation (STD) of 0.5,
while, for class 2, r is a Gaussian random variable with a
mean of 0.75 and a STD of 0.5.

We set m = 1, and used a RBF kernel with � = 1. When
we set �=0:01, the resultant FE function H1(X) is plotted in
Fig. 3. It is clearly shown that, although this FE function is
good enough to generate new feature samples to distinguish
the patterns in training set, the unnecessary warp suggests
an over1tting over the current training set.

After we set � = 5, the resultant FE function H1(X) is
plotted in Fig. 4. We can see that the shape of the FE function
becomes more regular, and is basically in accordance with
the ideal feature extraction function directly derived from
the generation random process de1ned in Eq. (21). This
experiment con1rms our discussion in Section 4 that bigger
� is helpful in avoiding over1tting.

Experiment 2: Demonstrating the performance of the
KFFE algorithm given a synthetic multi-class data set. The
original data set is a 3-class problem, formed by a group
of 2-feature patterns centering around 6 diHerent locations,
which is plotted in Fig. 5(a). From the plot, we can see that
this is not a linearly separable problem. We set m=2; �=0:1,
and used a RBF kernel with � = 1. The distribution of the
new patterns, R, formed from 2 extracted features is shown
in Fig. 5(b). We can see that the class distribution of the
new patterns becomes generally linearly separable.

Fig. 2. Original distribution of a 2-class problem composed by
2-feature patterns.

The two FE functions, H1(X) and H2(X), employed to
extract the new patterns are shown in Figs. 5(c)–(f).

Experiment 3: Demonstrating the performance of KFFE
and MSNFE algorithm on real-world data sets. Some facts
of the selected data sets are listed in Table 1. Note that the
last column in Table 1 shows the number of new features that
will be extracted from the original patterns using both the
KFFE and MSNFE algorithms. Basically, they are chosen
as L− 1, where L is the number of classes involved. As for
the reason why they are chosen in this way, please refer to
the last two paragraphs in Section 4, and we will not repeat
it here.

The data set IRIS and Glass are from the UCI Machine
Learning Repository. The data set FORTQE is a group
time-series data collected from a satellite named FORTQE
[26]. It is composed of 143 samples from seven diHerent
types of lightning, and each of the samples is a 3180-element
time series. The relatively small number of available sam-
ples, the considerable number of classes involved, and the
huge number of features in each sample altogether make it
a diPcult classi1cation problem.

Although our goal is to examine the performance of the
FE algorithms, it is diPcult to isolate the role of the clas-
si1ers used when we employ the classi1cation rate as the
performance measurement. In order to avoid being misled
by a special classi1er, two quite diHerent classi1ers, support
vector machine (SVM) classi1ers and k-nearest-neighbor
(kNN) classi1ers, are employed. Note that each FE algo-
rithm requires a set of parameters to be pre-determined, such
as the kernel function in KFFE, the number of levels in
MSNFE, and the regularization coePcient � in both algo-
rithms. Ten-fold cross-validation method is employed to 1nd
the optimal parameter set for each problem. Once the optimal
set of parameters is identi1ed, the 10-fold cross-validation
result under this parameter set is reported as the estimation
of the 1nal classi1cation rate.
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Fig. 3. (a) 3-D plot of the 1rst FE function, H1(X) when � = 0:01. (b) Gray-scale representation of the H1(X) in (a), overlapped with
original patterns.

Fig. 4. (a) 3-D plot of the 1rst FE function, H1(X) when �= 1. (b) Gray-scale representation of the H1(X) in (a), overlapped with original
patterns.

(1) Experimental results obtained using KFFE algo-
rithm: Nonlinear SVM classi1ers are applied to the original
patterns, while linear SVM classi1ers are applied to the ex-
tracted new patterns. This is for a “fair” comparison between
the FE extraction capability embedded in nonlinear SVM
classi1ers and the KFFE algorithms. In order to demonstrate
that our KFFE algorithm diHerentiates the reference set .X
from the training set�X, besides presenting the results when
.X is de1ned the same as the training set �X, we also pre-
sented the results when the reference set .X is formed by
just picking up every other pattern in the training set �X.
That is, .X is composed of only half of the patterns in �X.

Comparing the last two columns in Table 2, we can see
that the results obtained when the reference set .X is only
half of the training set �X are fairly comparable with those
obtained when .X and �X are the same. When .X is half
of �X, the size of matrix C in Eq. (19) is only one forth of
that of the C when .X=�X. The computation required can
thus be scaled down with an even bigger factor. This result

validates that separating .X from �X in the KFFE algo-
rithm is a reasonable direction to reduce computation. Also,
the smaller reference set.X is currently obtained simply by
picking every other pattern in �X. It is highly possible that
better performance can be achieved if we employ a method
to construct the .X from �X optimally, or sub-optimally.
Note that a diHerent approach to reduce the computation of
the original KFD algorithms for 2-class problems is pre-
sented in Refs. [19,20]. Constructing a sub-optimal .X for
KFFE algorithm using the idea in [19,20] is a promising
future topic.

(2) Experimental results obtained using MSNFE al-
gorithm: The experimental results obtained using MSNFE
algorithm is presented in Table 3. Again, comparable,
even better, classi1cation performance was achieved based
on a much smaller number of features extracted using
MSNFE.

In additions, compared with the results in Table 2,
Table 3 illustrates two more interesting points. First, both FE



884 J. Ma et al. / Pattern Recognition 37 (2004) 875–887

Fig. 5. (a) Original distribution of a 3-class problem composed by 2-feature patterns. (b) Resultant distribution of new patterns formed from
2 extracted features. (c) 3-D plot of the 1rst FE function, H1(X). (d) Gray-scale representation of the H1(X) in (c), overlapped with original
patterns. (e) 3-D plot of the second FE function, H2(X). (f) Gray-scale representation of the H2(X) in (e), overlapped with original patterns.

algorithms, after reducing the number of features, improve
the classi1cation rate for the FORTQE Data, degrade it in the
UCI Glass, and maintain it for the UCI IRIS. This observa-
tion suggests that how signi1cantly FE algorithms can aHect
the overall performance in an application is heavily related to
the property of the underlying problems. It is easy to reason
that, if there is not too much redundancy among the features
in the original patterns, FE algorithms that forcefully reduce
the number of features in the new patterns will corrupt the

class separability. Second, signi1cant performance improve-
ment is achieved using the MSNFE algorithm for FORTQE
Data. This observation con1rms our prediction in Section 5
that the MSNFE will work well for time-series-type prob-
lem due to the way the MSNTree functions are constructed.
Meanwhile, considerable performance corruption is also
observed using this algorithm for UCI Glass, which again
coincides with the idea presented in the No Free Lunch
Theorem [21].
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Table 1
Experimental data sets

No. class No. available No. original features in No. extracted features in
patterns each original pattern each new pattern

FORTQE 7 143 3180 6
UCI IRIS 3 150 4 2
UCI glass 6 214 13 5

Table 2

CV rate (%) Nonlinear SVM with Linear SVM with new Linear SVM with new
original patterns patterns (.X =�X) patterns (.X = half �X)

(a) Results obtained using KFFE algorithm and SVM classi!ers
FORTQE data 68.62 70.43 69.95
UCI IRIS 98.67 98.67 96.00
UCI glass 73.81 73.31 72.45

CV rate (%) kNN with kNN with new kNN with new
original patterns patterns (.X =�X) patterns (.X = half �X)

(b) Results obtained using KFFE algorithm and kNN classi!ers
FORTQE data 69.14 73.38 73.43
UCI IRIS 97.33 98.00 98.00
UCI glass 75.67 74.24 73.90

Table 3

CV rate (%) Nonlinear SVM with Linear SVM with
original patterns new patterns

(a) Results obtained using MSNFE algorithm and SVM classi!ers
FORTQE data 68.62 76.19
UCI IRIS 98.67 98.67
UCI glass 73.81 65.30

CV rate (%) kNN with kNN with
original patterns new patterns

(b) Results obtained using MSNFE algorithm and kNN classi!ers
FORTQE data 69.14 78.48
UCI IRIS 97.33 98.00
UCI glass 75.67 72.88

In sum, the bene1ts of the proposed algorithms can be
summarized as reducing the number of features while main-
taining, or even improving, the class separability. Less num-
ber of features, or lower pattern dimension, has many posi-
tive impacts on the downstream processing, such as a wider
choice of downstream processing algorithms, less demand
in memory, and shorter processing time. However, given a
class-separability criterion in Eq. (5), existing linear FE al-
gorithms generally reduce the number of features at the cost

of class separability [1,11]. In contract, the experimental re-
sults obtained using KFFE and MSNFE algorithms, which
are presented in Tables 2 and 3 respectively, illustrate that
the patterns obtained from both algorithms can achieve com-
parable class separability with much smaller number of fea-
tures. In some cases, they can even outperform the original
patterns. Meanwhile, Table 4 shows the computational ad-
vantages at the classi1cation stage for the feature reduction
that we have done in these experiments.
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Table 4
Computation time for classi1ers is reduced when using a smaller number of features

Data set SVM classi1er (in s) KNN classi1er (in s)

FORTQE data w/o Feature Extraction 9.467 5.146
w/ Feature Extraction 0.092 0.232

UCI IRIS w/o Feature Extraction 0.054 0.162
w/ Feature Extraction 0.027 0.162

UCI glass w/o Feature Extraction 0.160 0.275
w/ Feature Extraction 0.084 0.300

Reported time does not include time to perform the feature extraction.

7. Conclusions

Feature extraction (FE) methods have been widely em-
ployed in the statistics literature. Fukunaga [1] provides an
excellent overview in the context of supervised classi1ca-
tion; see also Ref. [23] which describes the problem from
a machine learning and data mining point of view. Gordon
[27] discusses the issue primarily from the point of view of
unsupervised classi1cation, and makes some cogent remarks
on the confounding eHects of including too many features.
Fowlkes et al. [28], in particular, study the problem of fea-
ture selection for clustering.

In this paper, a general FE framework for multi-class
problems is proposed by extending the linear discriminant
analysis. The signi1cance of introducing this FE framework
is that it provides a mechanism to separate the nonlinearity
of a FE algorithm from its optimization procedure. Based
on this framework, two concrete FE algorithms are read-
ily developed. The 1rst algorithm, kernel function feature
extraction (KFFE) algorithm, is derived based a set of ker-
nel functions. Discussion on the KFFE algorithm reveals
that some existing KFD-like algorithms are its special cases.
Moreover, the KFFE algorithm proposes a new direction to
reduce the computation required by the existing KFD-like
algorithms. The second algorithm, MSNFE algorithm, is ob-
tained by introducing into the FE framework a diHerent set
of functions, the MSNTree functions. Experimental results
suggest that the MSNFE algorithm is promising in boost-
ing the performance of the time-series-type problems. Three
fairly diHerent problems are specially chosen to demonstrate
the diHerent performance of the proposed algorithms, which
hopefully help readers have an easier judgment on when our
algorithms should and should not be considered in their ap-
plications.

The research presented in this paper also invokes a few
topics, which are still open, such as (a) developing new algo-
rithms based on diHerent choices of F(X) in (10); (b) devel-
oping the framework by choosing diHerent class-separability
criterion from the criterion J in Eq. (5). Meanwhile, some
open topics regarding the KFFE algorithm include (a) how
to directly determine an optimal set of algorithm parameters;
(b) when the reference set .X is a subset of the training set
�X, how to de1ne an optimal subset .X from �X; (c) how

to re1ne the KFFE algorithm to make it more computation-
ally ePcient.
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