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ABSTRACT 

    A VLSI design methodology is proposed for the efficient generation of multiple pseudo-random 

number sequences based on a simplification of Cauwenberghs’ counter-propagation technique. We 

demonstrate that the counter-propagation of two sequences can be replaced by one propagating and 

one non-propagating sequence, requiring as few as half the number of flipflops, while still allowing 

new circuits to be added to the system without additional calculations – there is no need to keep 

track of random starting values, tap combinations, or time shifts. Moreover we extend our method 

from multiple bit sequences to multiple random number sequences that are uniformly distributed 

over any range of integers. In particular we address the more general problem of generating 

sequences over the range , where ],0[ K 1+K  is any desired integer, including a power of two or a 

prime number. To this end we demonstrate that the simple concatenation of random bits to form 

random bytes is a special case of a more general concept whereby random integers distributed over 

prime number ranges are concatenated to form random integers distributed over any range. We find 

that the proposed design compares favorably with design strategies based on cellular automata, both 

in terms of statistical  properties and implementation efficiencies. 

 

Index: random number generator, PRNG, uniform sequence, VLSI circuit, stochastic computing, 

stochastic processing, cellular automata 
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1 INTRODUCTION 

    Inserting small random number generators into hardware has a wide variety of potential 

applications, such as the computational elements of artificial neural networks [1][2]. The 

methodology presented in this paper was originally developed for stochastic computing, a technique 

that provides very low computation hardware area, fault tolerance, and efficient hardware 

implementations for high clock rates. Consider a generalized digital-to-stochastic converter 

consisting of a register containing the input , a pseudo-random number generator producing , 

and a comparator, as described in [3][4][5] and shown in Fig. 1.  

nX nR

                                                                  

nX

nR
nY+

-
 

 
Fig. 1. In a digital-to-stochastic converter the digital input is compared to a uniformly distributed sequence to generate a 

Bernoulli sequence. 

 

If  is restricted to  and  is uniformly distributed over the same range, then  is a 

Bernoulli random variable with 

nX KX n ≤≤0 nR nY

KXYP nn == }1{ . The Bernoulli sequence  thus represents 

the value of 

}{ nY

KX n  as a stochastic code, where the constant K  is an important designer-specified 

parameter. In IIR filters, for example, the range of the random number distribution  controls 

the width of the passband [6]. 

],0[ K

     Stochastic computing has been successfully applied to artificial neural networks by using large 

numbers of these relatively simple computing elements [1]. Multiple circuits, each with an 

independent source of random numbers, are used to create a massively parallel system. This often 

requires separate pseudo-random number generators (PRNGs) for each circuit, so that a large 

amount of silicon area is consumed by random number production.  Moreover, to ensure that the 

numbers are statistically uncorrelated, each PRNG must be designed using a different algorithm or a 

different starting value. This adds complexity to the design and increases the size of hardware 

implementations. 

     Where the numbers being produced are uniformly distributed over a range , where ],0[ K 1+K  

is a power of two, Hortensius et al. have shown that a cellular automata-based approach has far 

better randomness characteristics than using the bits of a single linear feedback shift register (LFSR) 
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in parallel [7]. According to this method, numbers are represented as collections of single-bit cells. 

A cell’s value is determined by its previous value and the previous values of nearby cells. 

     Alspector et al. propose an alternative, LFSR-based approach [1]. Also called Tausworthe 

generators, linear feedback shift registers have been shown to have useful theoretical properties [8] 

and combined LFSR generators have additional advantages [9]. In particular they have very long 

periods. Alspector et al. create multiple random bit sequences from a single LFSR by tapping into 

the shift register. Three taps are added together modulo-2 to produce identical sequences shifted in 

time by an amount that can be calculated, with different tap combinations resulting in different time 

shifts. Although the resulting bit patterns are the same, the time shifts between them are designed to 

be long enough so that they are effectively uncorrelated. In accordance with their methodology, the 

designer solves a set of equations to determine the time shift produced by each possible combination 

of 3 taps. A set of tap combinations is then selected to ensure that the time shifts between bit 

sequences are sufficient. 

     Alspector’s method enables the system to use only one random bit generator, but numerous taps 

must be routed throughout the system, resulting in circuits that are difficult to interconnect 

efficiently in VLSI. Moreover, the requirement to compute and select the time shift for each 

individual circuit is administratively tedious - the designer must choose a new time shift whenever a 

new circuit is added to the system. Saarinen et al. review other methods of generating time-shifted 

sequences, but note that an optimum method of dealing with the complexity of the problem has not 

yet been developed [10]. 

     Cauwenberghs developed a simplified scheme using counter-propagating linear feedback shift 

registers. The generated bit sequences are obtained from the XOR of the parallel outputs of two 

counter-propagating shift registers driven by different primitive polynomials. This technique 

drastically reduces the implementation complexity and routing requirements of Alspector’s 

approach and has been used successfully in analog neural networks [2]. 

     In this paper we propose a methodology based on a simplification of Cauwenberghs’ technique. 

We demonstrate that the counter-propagation of two sequences can be replaced by one propagating 

and one non-propagating sequence, requiring as few as half the number of flipflops, depending on 

fanout constraints, while still allowing new circuits to be added to the system without additional 

calculations – there is no need to keep track of random starting values, tap combinations, or time 

shifts. Moreover we extend our method from multiple bit sequences to multiple random number 

sequences that are uniformly distributed over any range of integers. In particular we address the 

more general problem of generating sequences over the range , where ],0[ K 1+K  is any desired 
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integer, including a power of two or a prime number. To this end we demonstrate that the simple 

concatenation of random bits to form random bytes is a special case of a more general concept 

whereby random integers distributed over prime number ranges are concatenated to form random 

integers distributed over any range. 

     The paper is organized as follows. In Section 2 we describe the mathematical basis for our 

methodology. In Section 3 the generation of parallel bit sequences is presented. Section 4 extends 

these techniques to the generation of parallel sequences uniformly distributed over any integer 

range. Section 5 computes the number of logic gates needed by the system as a function of the 

desired distribution range as compared to other methods. Experimental results are presented in 

Section 6. Section 7 concludes this work. 

2 MATHEMATICAL PRELIMINARIES 

In this section we prove two theorems that will be used in later sections to propose a memory-

efficient alternative to counter-propagation. These theorems, which are an extension of the concepts 

introduced by Fillmore and Marx [11], apply to the generation of random numbers over a range 

, where ],0[ K 1+K  is a prime number, including random bit generation where 21=+K . In this 

section we also introduce a third theorem that will be used to extend the design methodology to 

random numbers uniformly distributed over any range of integers. 

 

DEFINITION 1. A sequence , composed of elements  is called a linear recursive 

sequence over the field 

v ,...,, 210 vvv

F  if there exist  in mccc ,...,, 21 F  such that 

           (2.1) ∑
=

−++ =
m

i
imnimn vcv

1

for every integer . 0≥n

 

DEFINITION 2. The shift operator σ  is defined for the sequence v  by wv =σ , where 1+= nn vw  

for . 0≥n

 

We will use  to denote  applications of the shift operator so that if  then kσ k wvk =σ knn vw += . 

We will use  as a notation for . wvk =−σ vwk =σ
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DEFINITION 3. A characteristic polynomial in x over F  is defined as 

          (2.2) ∑
=

−−≡
m

i

im
i

m xcxxf
1

)(

In this context  is called the degree of . The sequence m )(xf v  is said to satisfy the recursion 

associated with . )(xf

 

PROPOSITION 1. A linear recursive sequence v  satisfies  if and only if )(xf 0)( =vf σ . 

 

Proof: If the linear recursive sequence  satisfies the characteristic polynomial  corresponding 

to 

v )(xf
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m

i
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1
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The reverse of these steps is also true, so we conclude that the linear recursive sequence v  satisfies 

the characteristic polynomial  if and only if )(xf 0)( =vf σ . 

 

PROPOSITION 2. If , where wvu km σσ += v  and  satisfy the polynomials  and , 

respectively, then u  satisfies . 

w )(xf )(xg

)()( xgxf

 

Proof: Let , then since operations are always commutative in a field we can write wvu km σσ +=
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       (2.6) 
0

)()()()(

)()()()()()(

=
+=

+=

wgfvfg

wgfvgfugf
km

km

σσσσσσ

σσσσσσσσ

Thus 0)()( =ugf σσ  and u  satisfies  by Proposition 1.  )()( xgxf

 

DEFINITION 4. A polynomial  is called irreducible if its only divisor is itself and the unit 

polynomial . 

)(xf

1)( =xg

 

DEFINITION 5. An irreducible polynomial  of degree  over the finite field )(xf m F  of  

elements is called primitive if the period of the sequence it generates is equal to . The 

resulting sequence is known as an m-sequence. 

q

1−mq

 

PROPOSITION 3. Suppose  v  and  are non-zero linear recursive sequences with periods w M  and 

, respectively. If the polynomials of the recursions of these sequences are relatively prime, then 

 has a period equal to the least common multiple of 

N

wvu +≡ M and . (A proof of this 

proposition is found in [11].) 

N

 

LEMMA 1: Let v  and  be non-zero linear recursive sequences and let the polynomials of the 

recursions of these sequences be different and primitive. Then 

w

wvu +≡  has a period equal to the 

least common multiple of  and , where  and  are the degrees of the polynomials of 1−mq 1−nq m n

v  and , respectively. w

 

Proof: This is a direct result of Definition 5 and Proposition 3. 

 

THEOREM 1. For the finite field F  of  elements let  and  be linear recursive sequences 

satisfying the different primitive polynomials  and  of degrees  and . Then, for any 

time shift , the sequence  is periodic with a period equal to the least common multiple 

of  and . 

q v w

)(xf )(xg m n

k wvu kσ+≡

1−mq 1−nq
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Proof: If  is a non-zero linear recursive sequence that satisfies a polynomial that is primitive, then 

the sequence  satisfies the same polynomial. Therefore, as a direct result of Lemma 1, 

 has a period equal to the least common multiple of  and  for any 

integer . 

w

wkσ

wvu kσ+≡ 1−mq 1−nq

k

 

THEOREM 2. For the finite field F  of  elements let  and  be non-zero linear recursive 

sequences satisfying the different primitive polynomials  and  of degrees  and  

where   and . Let 

q v w

)(xf )(xg 1m 2m

11 >m 12 >m M  be the period of v  and  be the period of  and let N w M  and 

 be relatively prime. Consider the two sequences  and , where 

. Then , where 

N wvu k1)1( σ+≡ wvu k2)2( σ+≡

NMkk <<−≤ ||1 21 )2()1( uu pσ= Mp ≥ . 

 

Proof: According to Proposition 2, the sequences  and  both satisfy , which is of 

degree . Let 

)1(u )2(u )()( xgxf

21 mmm +=

          (2.7) ∑
=

−−=
m

i

im
i

m xcxxgxf
1

)()(

Then 

          (2.8) ∑
=

−++ =
m

i
imnimn ucu

1
)1()1(

and 

          (2.9) ∑
=

−++ =
m

i
imnimn ucu

1
)2()2(

It is clear from the summations that all of the subsequent elements of a sequence can be determined 

by any m  consecutive elements the sequence. If there exists even one value of  such that 

 for all , 

n

pimni− =mn uu +−++ )1()2( i mi ≤≤1  then 

         (2.10) ∑
=

+−++ =
m

i
pimnimn ucu

1
)1()2(

i.e.  is the sequence  shifted by )2(u )1(u p . Both  and  are of length )1(u )2(u ( )( )11 21 −− mm qq . If 

none of the m-length subsequences in  and  are the same then there exist at least )1(u )2(u
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( )( )112 21 −− mm qq  unique m-length subsequences. But only   unique m-length subsequences 

exist. Since 

1−mq

( )( ) 1112 21 −>−− mmm qqq  then at least one of the m-length subsequences of  is 

identical to a subsequence in  so that a value of 

)1(u

)2(u p  exists such that . This means 

. From this we infer that  and  and therefore 

conclude 

)2()1( uu pσ=

wvwv kppk 21 ++=+ σσσ vv pσ= ww kpk 21 += σσ

           (2.11) 0mod =Mp

(We use  to denote “  modulo b ”, i.e. the remainder resulting from the integer division of 

 by b .) It also means 

ba mod a

a Nk2 . Thus since 21 kk ≠  then pNk mod)(mod1 +=

            (2.12) 0≠p

From (2.11) and (2.12) we conclude that Mp ≥ . Therefore  and  will be the same 

sequence shifted by an amount greater than or equal to 

)1(u )2(u

M . 

     Another way to view these concepts is to consider wv +  to be a sequence with period . This 

represents a concatenation of  different subsequences of length 

MN

N M .  Then all the different 

sequences of the form  correspond to these different subsequenceswvu kσ+= . 

     The next theorem will later be used to demonstrate that the concatenation of random bits to form 

numbers distributed over ranges equal to a power of two represents a special case of a more 

generalized approach in which the range can be any positive integer. 

 

THEOREM 3. For every integer 1>K  there exists a set of prime numbers , unique except 

for order, where , such that if  is uniformly distributed over the set of integers 

 for all , , then the sum  

Mqq ,...,1

1...21 += Kqqq M ir

}1,...,0{ −iq i Mi ≤≤1

     121213121 ...... −++++= MM qqqrqqrqrrρ    (2.13) 

is uniformly distributed over the set of integers . (A proof of this theorem is found in [12].) },...0{ K

3 GENERATING SEQUENCES DISTRIBUTED OVER A PRIME RANGE 

     Using the methodology of the proof to Theorem 2 we can show that one of the propagating 

sequences of the counter-propagation method, as shown in Fig. 2, can be replaced by a non-

propagating sequence with negligible effect on the guaranteed time shift between output sequences. 

This cuts in half the number of flipflops required. 
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     When both sequences propagate, moving from one output sequence to another results in a 

positive time shift of one input sequence and a negative time shift of the other. Let wvu +≡)1(  and 

 represent two output sequences separated by . The signs of the shift operator 

reflect that the input sequences are counter-propagating. Without loss of generality, let 

, where 

wvu kk σσ +≡ −)2( k

NMk <<< 20 M  and  are the periods of N v  and , respectively. Since 

 then by Theorem 2,  where . This means 

 where . Therefore  and  will be the same sequence shifted 

by an amount greater than or equal to 

w

wvu kk 2)2( σσ += )1()2( uu pk σσ = Mp ≥||

)1()2( uu kp−=σ kMkp −≥− || )1(u )2(u

kM − . 

 

1−Z 1−Z

1−Z1−Z1−Z

+ )1(u + )2(u+

1−Z
w

v

 

Fig. 2. The counter-propagation of two input sequences creates output sequences that are identical to each other but shifted 

substantially in time. 

 

    Our system for generating random sequences uniformly distributed over a prime-number range 

using only half the number of flipflops (excluding fanout considerations) is depicted in Fig. 3. This 

is the second of L  circuits needing random sequences, as shown in Fig. 4. A non-propagating 

sequence R  is generated with characteristic polynomial  and period )(xf R M . A second, 

propagating sequence  is generated with characteristic polynomial  and period . The 

polynomials are different and primitive. The designer assumes an upper bound  on the total 

number of random sequences that the system may need, taking into account any additional circuits 

that may be added in the future. Then the characteristic polynomials are selected so that 

.  Good randomness properties dictate that, even for very large systems, 

S )(xf S N

maxN

maxNMN >> M  and  

will generally be orders of magnitude larger than  and, as will be shown, the circuit area per 

random number generator increases at a rate of only 

N

maxN

)(log)(log NOMO + . 
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1−Z

+ + )( 21 ∆+∆b+

R

1−Z1−Z

)1( 1 +∆b )2( 1 +∆b

21 ∆+∆bydelayedS1∆bydelayedS  

Fig. 3. Each client circuit generates as many random sequences as it needs from the propagating and non-propagating 

input sequences and passes the propagating input sequence to the next circuit. 

 

R

S

1∆bydelayedS

121 ... −∆++∆+∆ LbydelayedS

21 ∆+∆bydelayedS

 

Fig. 4. Sequences generated by two LFSRs are used to drive a daisy chain of client circuits, each internally generating its 

own random sequences from the two inputs. 

 

Each circuit delays the propagating sequence  by one clock cycle for every random sequence 

 that it needs, where  identifies the particular sequence. It generates these sequences by 

the modulo-  addition (an XOR gate for 

S

{ nmb )( } m

q 2=q ) of  and , where the latter is delayed by one 

clock cycle from where it was used to generate the previous sequence. 

nR mnS −

     The system is therefore characterized by two pseudo-random sequence generators that supply a 

daisy chain of client circuits. Circuits can be added to the system by inserting them anywhere in the 

daisy chain. Moreover, an individual circuit can be modified in a way that demands a greater 

number of random sequences without having to modify the system architecture. 

4 GENERATING SEQUENCES OVER AN ARBITRARY RANGE 

         Linear feedback shift registers used to generate random bits are commonly known. A more 

general LFSR for any prime range is shown in Fig. 5. 
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1−Z 1−Z 1−Z 1−Z

+

a b

 

Fig. 5. A linear feedback shift register (LFSR) with two taps can be used to generate pseudo-random sequences uniformly 

distributed over a range [0,q-1], where q is any prime number. 

 

Each signal denotes a sufficient number of bits to represent the sequence’s maximum value 1−q . 

Both the output and the input to the shift register result from the mod-  addition q

           (4.1) rbrar L λσσ −− ⊕=

where  is the length of the shift register and L λ  is a fixed tap such that L<≤ λ1 . The coefficients 

 and b  are determined by a primitive polynomial. More than two taps can also be used. As was 

the case for random bit generation, a list of appropriate polynomials is widely available and found, 

for example, in [13]and [14]. For 

a

2=q  the tap coefficients are 1== ba . Otherwise qba <≤ ,1  

according to the selected polynomial. Moreover,  and b  are not necessarily the same as the 

polynomial coefficients. A procedure for computing the tap coefficients from the characteristic 

polynomial when  is described in [12]. 

a

2>q

     Relying on Theorem 3, we create a random sequence ρ  that is uniformly distributed over 

, where ],0[ K K  is any integer greater than one, by factoring 1+K  into its unique primes 

. We then generate MqqK ...1 1=+ M  independent, random sequences  uniformly distributed over 

, , and concatenate them by relation (2.13). Two LFSR circuits for each unique 

value of  are needed for the entire system, each having a different random sequence length. They 

generate the two input sequences shown in Fig. 4. 

ir

ii qr <≤0 Mi ≤≤1

iq

    The input sequences are not used directly. Instead a new random sequence is generated by their 

modulo-  addition, where one input sequence is delayed by 1 clock cycle from where it was last 

used. The sequence  thus refers to an independent sequence uniformly distributed over 

iq

ir ]1,0[ −iq  

that is used at only one location in the circuit. 
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    The desired sequence ρ  is generated by (2.13). One can observe that multiplication by  occurs 

in 

1q

1−M  terms, whereas multiplication by  never occurs. Since a multiplication by a power of 

two can be efficiently implemented in VLSI, we choose to order the prime factors such that 

. If 

Mq

Mqqq ≤≤≤ ...21 1+K  is equal to a power of two, then 2...1 === Mqq  and equation (2.13) 

reduces to 

          (4.2) ∑
=

−=
M

i

i
ir

1

1)2(ρ

where each  is an independent random bit sequence. Note that if the periods of the bit sequences  

are identical then 

ir ir

ρ  has this same period. The summation is achieved without logic by simply 

ordering the random bits from the least significant to the most significant. Thus the well-known 

technique of concatenating random bits to form random numbers is a special case of the more 

generalized method used here. The summation can also be performed without additional logic if 

( ) M
M qK 121 −=+ , where . In this case equation (4.2) remains unchanged. If, on the other 

hand, 

2>Mq

( ) MM
M qqK 1

221 −
−=+ , where MM qq ≤< −12 , then 

    
    (4.3)

 1
2

1

1

1 )2()2( −
−

−

=

− += ∑ M
M

M

M

i

i
i qrrρ

The multiplication by , fortunately a constant value, requires additional logic. Obviously if 

many of the prime number factors are not equal to 2, then significant additional circuitry may be 

required. 

1−Mq

     As an illustrative example, Fig. 6 shows a gaming system comprised of multiple circuits, each 

selecting playing cards at random from a deck of 52 cards. Every clock cycle each circuit selects a 

new card (pseudo-) independently of the cards it selected previously and independently of its 

neighboring circuits. Since , there are only two unique primes: 2 and 13. )13)(2)(2(52 =

 12



}12,...,2,1,0{)1( =R

}1,0{)2( =R

}12,...,2,1,0{)1( =S

}1,0{)2( =S

cardapick cardapick

cardapick

 

Fig. 6. A system of pseudo-independent circuits, each randomly selecting one of 52 cards, is constructed using only 4 

LFSRs. 

 

Thus only 4 LFSRs are required for the entire system, two that generate the random number 

sequences  and , each uniformly distributed over the range , and two that generate 

the random bit sequences  and . Fig. 7 shows how an individual circuit creates the desired 

output sequence uniformly distributed over  

)1(R )1(S ]12,0[

)2(R )2(S

]51,0[ .

From the input sequences it generates two shifted bit sequences and one shifted sequence 

distributed over the range . These sequences are concatenated according to equation (2.13), 

where . Because only the largest prime 

]12,0[

221 == qq 133 =q  is not equal to two, the concatenation for 

this case is trivial and requires no circuit logic. It merely assigns the random bits to the least 

significant bits of the result and assigns the bits of the sequence distributed over  to the most 

significant bits of the result. 

]12,0[
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1−Z)1(S

1−Z1−Z

+

+

+

)2(S

)2(R )1(R

4

4

44
bitstsignificanmost

bitleastnext

bittsignificanleast

Pick-a-card circuit
 

Fig. 7. A number uniformly distributed over the range [0,51] is constructed from the concatenation of a random number 

distributed over [0,12] and two random bits. The “next least bit” refers to the bit next to the least significant bit. 

 

5 CIRCUIT SIZE 

    In stochastic computing applications the number of logic gates consumed by random number 

generation can easily exceed the number of gates used in arithmetic operations. It is important, 

therefore, to be able to quantify the size of random number generation at the circuit level. 

     The number of logic gates needed to create a random sequence varies depending on the range of 

the sequence. The least number of logic gates are required when as many of the prime factors as 

possible are equal to 2. To generate a sequence over , for example, requires only eight XOR 

gates and eight flipflops. This compares to eight XOR gates and 16 flipflops for Cauwenberghs’ 

technique and 24 XOR gates but zero flipflops for Alspector’s. (While we include Alspector’s 

technique here for size comparison, it has significant additional routing and implementation 

constraints, as noted in Section 1.) More generally, to create an independent pseudo-random 

sequence that is uniformly distributed over , where 

]255,0[

],0[ K MqqK ...1 1=+ , requires a modulo-  

adder for each  . The total number of flipflops needed is 

iq

,i Mi ≤≤1

          (5.1) ⎡∑
=

M

i
iq

1
2 )(log ⎤

This compares to the same number of adders but twice the number of flipflops for Cauwenberghs’ 

method [2], triple the number of adders but zero flipflops for Alspector’s [1]. 
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     For sequences uniformly distributed over ranges that are not a power of two, additional logic 

elements for multiplication are required if , for any 2>iq Mi < . For example, if 31 =−Mq  and 

 then we need to compute the product  where 5=Mq Mr3 }4,...,1,0{=Mr . Since the coefficient  is 

a fixed value, this multiplication would require only a lookup table with a 3-bit input to represent 

 and a 4-bit output to represent the product. These additional logic elements would also be 

needed to extend the Cauwenberghs and Alspector techniques to the generation of random integers 

over ranges that are not powers of two. 

3

Mr

    In addition to the circuit elements required for each independent random sequence, a pair of linear 

feedback shift registers is needed for each prime factor that is unique to the overall system. In 

contrast, Alspector’s technique requires only one LFSR per prime factor. For large systems, 

however, the number of logic gates used for these shift registers becomes insignificant compared to 

the total used to generate each independent random sequence. 

An n-bit modulo m addition for ⎡ ⎤mn 2log=  can be viewed as a modulo m operation performed 

after the addition is done. Thus the modulo m addition follows: 

⎩
⎨
⎧

−+
+

=+=
,

,
mod)(

21

21
21 mxx

xx
mxxy  

mxxif
mxxif

≥+
<+

21

21   (5.2) 

Generally, two methods can be used to complete the above computation: 1) Compute the results of 

both  and , then select the correct result of modulo m addition from them. 2) Use 

a correction table to correct the addition 

21 xx + mxx −+ 21

21 xx +  to the result mxx mod)( 21 + . 

In the first method, two n-bit adders are used; the first adder computes , while the 

second adder computes . The carry bit generated from the second adder indicates whether or 

not  is greater than m (Fig. 8). A multiplexer, controlled by the carry, selects the correct 

output. 

mxx −+ 21

21 xx +

21 xx +

ADD

ADD

MUX

carry

n
n

n n

nn

n

n

 

Fig. 8. A modulo adder can be constructed from two adders and a multiplexer. 
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In the second method, a lookup table is used to replace the first n-bit adder and the multiplexer in 

the first method (Fig. 9). When the lookup table in the ROM is small, i.e. when the modulus m is 

small, the second method can have better performance than the first method for fast table lookup. 

 

ADD ROM

n

n n1+n

12...11...210 −+− mmmmAddress

1...101...210 −− mmData  

Fig. 9. A lookup table can be used when the modulus is small. 

 

However, for an n-bit modulo addition the second method requires a 2n-entry ROM with n bits for 

each entry. The hardware consumption for the lookup table is thus much greater than the first 

method when the size of the modulus is large. When this is the case the first method is the preferred 

implementation. 

     The ultimate circuit size achieved in practice will also depend on fanout considerations that affect 

the non-propagating sequence. As with any circuit affected by fanout, the traditional solution is to 

divide the circuit into smaller subcircuits and connect them together. If, for example, a non-

propagating bit sequence needs to be divided into two subsequences because of fanout limitations, 

then two additional flipflops would be connected to the output of the non-propagating sequence’s 

LFSR. Their outputs would separately drive the two subcircuits. 

     In a cellular automaton (CA) the next value of a cell is determined by its current value and the 

current values of its neighbors. If the output of every cell is used then the number of flipflops 

needed is the same as for our propagating LFSR technique. Often, however, CA sites are skipped to 

improve statistical performance, increasing the number of flipflops required. For a CA rule 90 cell 

the next value is the modulo-2 sum of two of its neighbors, which requires the same number of 

adders as for the propagating LFSR. A system made solely of rule 90 cells has poor statistical 

properties, however [7]. A rule 30 cell requires an additional OR gate and a rule 150 cell requires an 

additional modulo-2 adder. (Rules 30, 90, and 150 are explained in Section 6.) By their nature 

circuits based on cellular automata do not suffer from fanout constraints. 
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6 ASSESSING THE RANDOMNESS OF THE BITS 

For an ideal ensemble of random bit generators in a circuit, every bit should be independent, both 

of the bits that came before it and of the bits produced by the other generators. While it is impossible 

to exhaustively identify whether sequences are truly random (indeed, we know that they are not), 

statistical tests have been developed to assess the relative irregularity of sequences of numbers or 

bits [15][16][17]. We have performed statistical tests to show that the bit generators proposed here 

are approximately random and to provide some comparisons with alternative random bit generators, 

including cellular automata [7] and counter-propagating LFSR sequences [2]. Our aim is not so 

much to tease out the most subtle correlations which are inevitably present with small generators, as 

it is to demonstrate that it is practical to obtain many simultaneous bitstreams, each of which is 

(approximately) random and all of which are (approximately) independent each other.   

6.1 Statistical tests of randomness 
 

In what follows, let  denote the bit sequence from the mth generator, with  the nth bit 

in that sequence. Many of the tests involve blocks of M×N bits. The block at time t is the set of bits 

 where  and 

)(mb nmb )(

nmb )( 10 −≤≤ Mm 1−+≤≤ Ntnt . In general we do not use overlapping blocks 

in these tests. If the blocks are independent, the statistics are more straightforward.   

Equidistribution: The simplest requirement for a random bit generator is that the same number of 

0’s and 1’s are generated, on average.  The Eq-M×N test computes a histogram of the number of 1’s 

observed in a sequence of M×N blocks, and performs a chi-squared test comparing that histogram to 

what is expected [17].   

Correlation: A basic requirement for most applications is that random bit sequences p and q be 

uncorrelated: that is, the correlation ∑
=

−−=
T

n
nn qp

T
qpC

1
2
1

2
1 ]][[41},{  should be statistically 

indistinguishable from zero.  For truly uncorrelated sequences, C  is distributed with mean zero and 

variance . We will test for three kinds of correlations: Corr-1×N is based on the autocorrelation 

from a single bit generator; that is,  and  for

T/1

)0(b )0(btσ 11 −≤≤ Nt . Corr-M×1 corresponds to 

“spatial correlation” between the sequences  and  for )0(b )(mb 11 −≤≤ Mm , and Corr-M×N is 

the “spatio-temporal” correlation between sequences  and  for )0(b )(mbtσ 10 −≤≤ Nt  and 

 but not . 10 −≤≤ Mm 0== mt

Approximate Entropy: An important measure of randomness is the predictability of a bit, given the 

bits that preceded it. The ApEn-M×N statistic provides a measure of that predictability by 
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estimating the entropy difference between a block of M×N bits and an augmented block of M×N+1 

bits. The extra bit is spatially in the center of the block and temporally just after it.  If that extra bit is 

truly random, then the entropy of the augmented block should be log(2) larger than the entropy of 

the m bits. For a block of M×N bits, there are  patterns. If  MN2 iπ  indicates the frequency of 

occurrence for the ith pattern, then is the negative entropy associated with 

that block, and 

∑
−

=

=Φ
12

0

log)(
MN

i
iim ππ

[ 2log)1()( ]−+Φ−Φ mmn  is a statistic which indicates whether the last bit is 

random with respect to the previous m bits [17][18]. 

Runs: A “run” of bits is a subsequence in which all the bits have the same value. In the sequence 

000110111, for example, there are four runs: 000, 11, 0, and 111.  The runs statistic compares the 

number of runs in a long sequence with the expected number [17]. We apply the statistic to M 

simultaneous sequences (M odd) by combining the sequences to a single bit sequence. Runs-M 

refers to the same test applied to a bit sequence obtained by adding the M sequences b(0), …, b(M-

1), where M is odd, and taking a 0 if the sum is less than M/2 and 1 if the sum is greater than M/2. 

Rank: The rank test is based on the rank of a square matrix produced from the bits of the 

generator. The rank is equal to the number of linearly independent columns in the matrix, where the 

linear operators are defined in the modulo 2 algebra.   For example the 3x3 matrix 

   
⎥
⎥
⎥

⎦

⎤

⎢
⎢
⎢

⎣

⎡

000
011
101

has rank two, because the first two columns are linearly independent, but the third column is the sum 

of the first two.  Rank-M×N arranges the MN bits in the M×N block into a square k×k matrix where 

MNk = .  In each case the number of matrices with rank k, k-1, and less than k-1, are tabulated 

and used in a statistic [17]. 

6.2 Pseudorandom bit generators 
 

We will use the above tests to investigate the randomness of a few variants of our proposed random 

number generation scheme, as well as several random bit generators that have been proposed 

previously.  We will in particular compare our generation method to four of the most successful CA 

based generators [7] and to the counter-propagating LFSR [2].  We did not consider the generators 

given by Alspector et al. [1] since each generator has to be hand-designed and large arrays of 
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simultaneous bitstreams are thus impractical. In general, we used small generators – both the CA-

based and the LFSR-based random generators improve if larger variants are used.   

In our proposed scheme, each generated bitstream is an XOR combination of two different LFSR 

generators. For our LFSR-prop we used two base generators associated with the primitive 

polynomials  and , so that , 

, and the bitstream b(m) is given by . Here R is the nonpropagating 

and S is the propagating generator. The counter-propagating LFSR-counterprop method that was 

introduced by Cawerberghs [2] differs from LFSR-prop in that the mth bitstream is given by 

. 

1)( 115 ++= xxxf 1)( 317 ++= xxxf RRR 11515 +−− ⊕= σσ

SSS 31717 +−− ⊕= σσ SR mσ+

SRmb mm σσ += −)(

Cellular automata methods have been investigated by Hortensius et al. [7]. Here the next bit of a 

bitstream  is given by a function of the three current bits 1)( +tmb tmb )1( − , , and tmb )( tmb )1( + . 

CA-30 is a 30-bit wide CA based on CA rule 30, given by 

( tttt mbmbmbmb )1()()1()( 1 )+∪⊕−=+ . To alleviate the local correlations, a “site spacing” 

scheme was introduced in Hortensius et al. [7]. Here, some numberγ  of sites are skipped for each 

output bitstream. For the 4=γ variant of CA-30, which only has 30 sites to begin with, this leaves 

only six output bitstreams. In a hybrid CA, different bitstreams m employ different rules. The hybrid 

CA’s generally produce better random bits than the pure CA’s, but they require much more careful 

design. The CA-hybrid we investigate is the preferred hybrid in [7]. It uses rule 90, given by 

, and rule 150, given by ttt mbmbmb )1()1()( 1 +⊕−=+ tttt mbmbmbmb )1()()1()( 1 +⊕⊕−=+ .  

In a hybrid CA, the pattern of alternation between the two rules must be determined in advance.  For 

a CA with 28 bits, it turns out that the optimal pattern is simple alternation. We also consider CA-

hybrid-B29, which is the same alternating rule but with 29 bits. Simple alternation is not the best 

pattern for a 29 bit wide CA, and we find that this bit generator fails many of the tests. We also 

consider a 1=γ version of the hybrid CA. 

In all cases, we generated sequences of two million time-steps, but only kept the last million bits 

for testing. This represents the performance of bit generators after they have had a chance to “warm 

up.” We used three different random number seeds, and based on those seeds employed the minimal 

standard random number generator of Park and Miller [19] to initialize the various bit generators.  

Since our aim was to identify specific flaws in the generators, we considered a generator to fail a test 

only if failed two out of three runs. In practice we found that most of the time a generator would 

either pass all runs or fail all runs. Occasionally there would be one failure for a given test; which 
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could be due to a subtle weakness in the generator or because of an inevitable random fluctuation 

that will happen when so many different tests are applied. 

Table 1 shows that none of the random bit generators passed all of the tests, and in particular the 

rank tests were most stringent. In short runs, without a “warm up” period, the CA-30 generator 

actually did better, but after a long transient time a trajectory was reached in which the statistical 

properties of the bits was poor. Experiments with larger CA-30 generators also showed better 

performance (results not shown).   

We see that the CA generators, in general, have trouble with the ApEn tests and the Runs tests, 

although the 1=γ  variant of the hybrid CA did pass the Runs tests. The sensitivity of the hybrid 

CA to the details of its design is evident in the performance of the CA-hybrid-B29 generators, which 

was terrible. Adding another cell to an existing hybrid CA generator generally requires the 

reconstruction of the rule sequence for the entire system [7]. The propagating LFSR and non-hybrid 

CA generators have no such restriction, making them more suitable for systems that are designed as 

independent modules or that are frequently modified. 

The LFSR tests were more robust to the ApEn and Runs tests, though the counter-propagating 

LFSR failed the ApEn-3x3 test. 
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Eq-1x1         

Eq-1x25 F F    F*   

Eq-25x1 F --  -- F* --   

Eq-5x5  F   F F   

Corr-1x100 F F   F* F   

Corr-100x1 -- -- -- -- -- --   

Corr-10x10 F --   F F   

ApEn-1x5 F F   F F   

ApEn-5x1 F F F  F F   

ApEn-3x3 F F F F F F F  

ApEn-5x2 F F F F F F F  

Rank-1x25 F F   F F   

Rank-25x1 F --  -- F --  F* 

Rank-3x3 F F F F F F F F 

Rank-5x5 F F F F F F F F 

Runs-1 F F   F F   

Runs-3 F F F  F F   

Runs-7 F -- F  F F   

Table 1. Results of the application of a suite of statistical tests applied to a variety of random bit generators. The 
tests and the generators are described in the text.  An ‘F’ indicates that the generator failed all three instances of 
the test, an ‘F*’ indicates failure in two out of three instances. The dash ‘—’ indicates that for the particular 
generator there are an insufficient number of bitstreams to perform the test. 

 

7 CONCLUSIONS 

     In this paper we described a methodology for the generation of multiple random bit sequences 

that simplifies and generalizes Cauwenberghs’ counter-propagation algorithm [2]. We demonstrated 
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that the propagation of both sequences can be replaced by one propagating and one non-propagating 

sequence, thereby cutting the number of flipflops in half. Like counter-propagation, the proposed 

method reduces the routing requirements to only two 1-bit signals. It preserves the ability for new 

client circuits to be added to the system without additional calculations – there is no need to keep 

track of random starting values, tap combinations, or time shifts. The methodology was also 

extended to random number sequences uniformly distributed over the range of integers , 

where 

],0[ K

1+K  need not be either prime or a power of two. 

8 REFERENCES 

[1] J. Alspector, J. Gannett, S. Haber, M. Parker, and R. Chu, “Generating Multiple Analog Noise 

Sources from a Single Linear Feedback Shift Register with Neural Network Applications,” in 

Proc. IEEE Int. Symp. on Circuits and Systems, 1990, vol. 2, pp. 1058-1061. 

[2] G. Cauwenberghs, “An Analog VLSI Recurrent Neural Network Learning a Continous-Time 

Trajectory,” IEEE Trans. on Neural Networks, vol. 7, no. 2, pp. 346-361, Mar. 1996. 

[3] J. Ortega, C. Janer, J. Quero, L. Franquelo, J. Pinilla, and J. Serrano, “Analog to Digital and 

Digital to Analog Conversion Based on Stochastic Logic,” in Proc. IEEE Int. Conf. on 

Industrial Electronics, Control, and Instrumentation, 1995, vol. 2, pp. 995-999. 

[4] J. Quero, S. Toral, J. Ortega, and L. Franquelo, “Continuous Time Filter Using Stochastic 

Logic,” in Proc. Midwest Symp. on Circuits and Systems, 2000, vol. 1, pp. 113-116. 

[5] B. Gaines, “Stochastic Computing Systems,” Advances in Information Systems Science, J. Tou, 

ed., vol. 2, New York: Plenum Press, 1969, pp. 37-172. 

[6] R. Kuehnel, “Binomial Logic: Extending Stochastic Computing to High-Bandwidth Signals,” in 

Proc. Asilomar Conf. on Signals, Systems, and Computers, 2002, vol. 2, pp. 1089-1093. 

[7] P. Hortensius, R. McLeod, and H. Card, “Parallel Random Number Generation for VLSI 

Systems Using Cellular Automata,” IEEE Trans. on Computers, vol. 38, no. 10, pp. 1466-1473, 

Oct. 1989. 

[8] J. P. R. Toothill, W. D. Robinson, and A. G. Adams, “The Runs Up-and-Down Performance of 

Tausworthe Pseudo-Random Number Generators,” Journal of the ACM, 1971, vol. 18, pp. 381-

399. 

[9]  S. Tezuka and P. L’Ecuyer, “Efficient and Portable Combined Tausworthe Random Number 

Generators,” ACM Trans. On Modeling and Computer Simulation, 1991, vol. 1, pp. 99-112. 

 22



[10] J. Saarinen, J. Tomberg, L. Vehmanen, K. Kaski, “VLSI Implementation of Tausworthe 

Random Number Generator for Parallel Processing Environment,” IEE Proceedings-E, 1991, 

vol. 138, no. 3, pp. 138-146. 

[11] J. Fillmore and M. Marx, “Linear Recursive Sequences,” SIAM Review, 1968, vol. 10, no. 3, pp. 

342-353. 

[12] R. Kuehnel and Y. Wang, “A Method of Generating Uniformly Distributed Sequences over 

[0,K], where K+1 is not a Power of Two,” Proc. IEEE Int. Conf. On Acoustics, Speech, and 

Signal Processing, 2003, vol. 2, pp. 801-804.  

[13]  http://fchabaud.free.fr/English 

[14]  V. Yarmolik and S. Demidenko, Generation and Application of Pseudorandom Sequences for 

Random Testing, New York: John Wiley and Sons, 1988. 

[15] G. Marsaglia, “Diehard Battery Tests of Randomness,” http://stat.fsu.edu/pub/diehard. 

[16]  P. L’Ecuyer, “Testing Random Number Generators,” Proc. 1992 Winter Simulation 

Conference, pp. 305-313. 

[17]  A. Rukhin, J. Soto, J. Nechvatal, M. Smid, E. Barker, S. Leigh, M. Levenson, M. Vangel, D. 

Banks, A. Heckert, J. Dray, S. Vo, “A Statistical Test Suite for Random and Pseudorandom 

Number Generators for Cryptographic Applications,” NIST Special Publication 800-22. 

http://csrc.nist.gov/rng/. 

[18] A. L. Rukhin, “Approximate Entropy for Testing Randomness,” Journal of  Applied 

Probability, 2000, vol. 37, pp. 88-100. 

[19] S. Park and K. Miller, “Random Number Generators: Good Ones are Hard to Find,” 

Communications of the ACM, 1988, vol. 31, pp. 1192-1201. 

 23



Reviewers' and Associate Editor's Comments 
========================================== 
 
 
Recommendation 
-------------- 
 
Resubmit after Minor Revision for Review as a Regular Paper 
 
Comments to the Author 
---------------------- 
 
This paper will be rejected if the authors do not revise their manuscript 
according to reviewer's comment carefully, especially compare their result 
with those of published papers. 
 
 
Review Number 1. 
***************** 
 
Does the revision adequately address the concerns expressed in the 
original review? 
 
Yes. 
 
Comments to the Author 
---------------------- 
 
On page 12 of the revised paper, line 4 from above, states that if K+1 is 
equal to a power of two, then equation (4.3) reduces to equation (4.4). 
However, the authors have removed equation (4.3) and refer back to 
equation (2.13) in the revised paper. Therefore, "equation (4.3)" should 
be replaced by "equation (2.13)". Moreover, since (4.2) and (4.3) have 
been removed, (4.4) and (4.5) should be renumbered to (4.2) and (4.3). 
 

Oops! We thank the reviewer for catching these errors. We have made 
these changes and carefully reviewed the equation numbering in all 
of the sections. 

 
Review Number 2. 
***************** 
 
Does the revision adequately address the concerns expressed in the 
original review? 
 
No. 
 
Comments to the Author 
---------------------- 
 
Please make comparisons with other works, otherwise I cannot see the 
significance of this work. 
 

We have completely rewritten Section 6 to include statistical 
comparisons of our approach to several CA-based generators, as well 
as to the counter-propagating LFSR.  The new section includes a 
suite of statistical tests (previously we only considered pairwise 
correlation), and a table showing how each generator fared with each 
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test.  The tests were sufficiently rigorous that no generator passed 
all of them. 
 
Although our original aim was just to show that our generator did 
not have any glaring correlations, we think that the more careful 
comparative study does improve the paper, and we thank the reviewer 
for suggesting the comparisons. 
 

 
Review Number 3. 
***************** 
 
Comments to the Author 
---------------------- 
 
 
This paper presents a design methodology for the efficient generation of 
multiple pseudo-random number sequences that are statistically 
uncorrelated. The contribution is to propose the simple methodology of 
generating a uniform random number between the range [0,K] for any integer 
number K. Theorem2 can be the generalization of the counter-propagation 
method illustrated in Fig.2. However, based on theorem2, a random number 
over a prime-number range is also proposed as Fig.3. It allows replacing 
one propagation-input by a non-propatation input in Cauwenberghs' 
algorithm. But according to the definition of the two sequences u(1) and 
u(2) in page 7, it is not intuitive to apply theorem 2 to Fig.2 directly. 
Therefore, this paper is little difficult to read. 
 

The reviewer's point is well-taken. We were a little loose in our 
application of Theorem 2 (which, as stated, really only applies to 
the system in Fig 3) to the counterpropagating system in Fig. 2. We 
have reworked the explanation at the beginning of Section 3 so that 
Theorem 2 is applied more appropriately. The result is the same, but 
we hope this clarifies the argument and makes this part of the paper 
a little easier to read. 

 
Correction: 
a) There is no equation (4.3) in the description on page12. Besides, 
equations (4.2) and (4.3) seem to be missing in section 4. 
 

Thanks – our numbering was incorrect and we have fixed it. 
  
b) In Fig.7, does the term "next least bit" refer to the bit next to the 
least significant bit? (If the 6 bits correspond to the card selected) 
 

The reviewer is correct and to make this clearer in the paper we 
have added this explanation to the text that describes the figure. 
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