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ABSTRACT 

Change detection in hyperspectral imagery is the process of comparing 
two spectral images of the same scene acquired at different times, and 
finding a small set of pixels that has the largest apparent spectral change.  
We present an approach that operates in a two-dimensional space rather 
than in the original high-dimensional space of the images, which can be 
greater than 100 spectral channels. The coordinates in the 2-D space are 
related to Mahalanobis distances for the combined (“stacked”) data and 
the individual hyperspectral scenes. Several previously developed change 
detection algorithms can be represented as straight lines in this space, 
including the hyperbolic anomalous change detector, based on Gaussian 
scene clutter, and the EC-uncorrelated detector based on heavy-tailed 
(elliptically contoured) clutter.  We show that adaptive machine learning 
methods can produce new change detectors with good performance that 
can avoid problems associated with the curse of dimensionality. We 
investigate, in particular, the utility of the support vector machine for 
learning boundaries in this 2-D space, using two classes of data to 
represent pervasive and simulated changes.  

 



1.0 Introduction  

Hyperspectral Imaging (HSI) has wide utility for both military and civilian purposes.  Change 

detection is an application of hyperspectral sensors that is important for finding possible new 

features of interest in a cluttered scene, either a target of interest or activity such as disturbed 

earth or new structures.  Acquiring datasets at two different times, and possibly even with two 

different sensors, a comparison can reveal the appearance or disappearance of objects with 

distinct spectra.1  Unlike target detection, however, the goal in change detection is to detect an 

entity using no prior information on its spectrum.  A common feature of existing change detection 

algorithms for spectral data is to reduce the multi-dimensional spectral vector (corresponding to 

one scene pixel) to a scalar quantity, whose magnitude indicates the likelihood of that pixel 

representing a substantial change. 2  In this paper, we introduce a scheme in which two of these 

scalar quantities are produced, and a change detection decision boundary is “learned” from the 

data in this 2D space.  Two classes of data can be generated to facilitate this process: one class 

consists of pixels with only minor changes (e.g. environmental changes, illumination changes, 

instrumental noise, etc.), and a second class consisting of major changes whose detection is 

desired (e.g. grassy vegetation changing to vehicle or structure).  Classification algorithms can 

then be used to discriminate between the minor and major changes.  The Support Vector Machine 

(SVM) can be useful in this regard, and it can be implemented not in the original high-

dimensional space of the HSI data but rather in a lower dimensional space derived from the 

original data.  We apply this concept to two examples of HSI data in different spectral regions, 

the long-wavelength infrared (LWIR) and the visible/near-infrared (VNIR). 

 
 

2.0 Framework for Anomalous Change Detection 

We would like to compare two hyperspectral images, the x-image and the y-image, and find a 

small set of pixels for which the x-to-y change is unusual compared to the changes exhibited by 

the rest of the pixels.  We recognize at the outset that all of the pixels exhibit some degree of 

change, as a result of environmental or instrumental factors or both. 

Let  denote the observed radiance spectrum observed at one pixel in the x-image, and xdx R

ydRy  be the corresponding pixel in the y-image.  We assume that the images are registered, 

i.e. that corresponding pixels x and y correspond to the same location in the scene, but we 

acknowledge that this registration is not always precise.3  The number of spectral channels in the 
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two images are denoted by xd dand , respectively.  y

In the machine learning framework introduced in Ref. 4, the full set of data is modeled as random 

samples from a probability distribution  ,P x y .  The simplest form of change detection would 

be straight anomaly detection for this distribution: find the pixels for which  ,P x y is small, i.e.  

where the pair ,x y is on the “tail” of the distribution.  But that would identify pixels where x and 

y are individually unusual (e.g. low or high radiance), whereas we would really like to find where 

the relationship between x and y is unusual.  If we write  P x  as the distribution just of the 

pixels in the x-image, then this will be the marginal distribution of P x  ,P x y .  We can 

similarly write P y  as the distribution of pixels in the y-image.  Then the product    P Px y   

describes a distribution of x and y values that are independent of each other.  When    P Px y is 

small, that means that either x or y (or both) are individually unusual.  When the ratio 
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 ,x is small, it signifies that P y is small compared to    P Px y , which enables us to isolate 

the notion of anomalous change from that of straight anomaly. 

( ,x y)In seeking a function   which quantifies the “anomalousness” of the change that has 

occurred at this pixel location, we can take a function of this ratio 
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where f is a monotonically decreasing function of its argument.  When the ratio is small, the 

anomalousness is large. 

2.1. Gaussian clutter 

The ratio in Eq.(1) takes a simple form when the distribution is modeled as a multivariate 

Gaussian, a distribution determined completely by the mean spectral vector and a covariance 

matrix: 
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where the angle brackets signify a mean over the distribution (in practice, computed from data), 

and the superscript T denotes a matrix transpose.  The density of the distribution at a point 

is given by:dz  5 
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For the change detection problem, we construct “stacked” vectors z from the pixel pair x,y as: 
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The mean vector for the “stacked” data is:  
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The covariance of z is given by: 
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As shown in Ref. 6, we can combine Eq. (4) with analogous expressions for    ,P Px y to 

express the ratio in Eq. (1): 
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Here, we denote squared Mahalanobis distances for the individual and “stacked” data sets as: 

  (10) 
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The “prefactor” in Eq. (9) does not depend on the individual pixel spectra ,x y , so a simple 

expression for anomalousness is obtained by taking the log, yielding: 
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This has been referred to as the “hyperbolic anomalous change detector”, HACD, due to the 

hyperbolic decision boundaries. 7  The quantities ,x y  are related to anomalousness in each dataset 

taken separately, using the RX definition of anomaly.8  The quantity z can be interpreted as 

measuring anomalousness in a collective sense: pixel pairs with large z have some unusual 

nature in x, y, or both. 

The Chronochrome change detector has been derived using Wiener filtering.  It can be expressed 

in similar notation, however.  Two forms exist, depending on whether one attempts to predict x 

from y, or the reverse, predict y from x.  They are: 

 or
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The relationship to HACD is that the sum x y   is replaced by the individual anomalousness in 

either x or y.  Finally, if one disregards both and , then the measure of change detection is 

the RX anomaly for the stacked data, which we can label RX-ACD: 


x


y

 ( , ) zx y  (13) 

2.2. Heavy-tailed clutter 

For HSI data, it has been reported that heavy-tailed distributions are often more appropriate than 
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Gaussian.5,9,10 An example of a heavy-tailed distribution that is elliptically contoured (EC) and 

that seems to work well is the multivariate t-distribution: 
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The parameter determines the extent to which the tail is heavier than Gaussian, and as   , 

the distribution becomes Gaussian.  Ref. 7 showed that this leads to an anomalousness measure 

given by: 
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This was shown to perform well on simulated and experimental data in the vis-SWIR spectral 

region in Ref. 7.   Ref. 6 further showed that one can approximate the ratio in Eq. (1) for the case 

of EC data by replacing the denominator,    P Px y , with a distribution  ,uP x y  that treats x 

and y as uncorrelated instead of independent.  The covariances X and Y from Eq. (8) are kept, but 

the cross-covariance C is set to zero.  This leads to the “EC uncorrelated” change detector: 
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In the fat-tailed limit 2  , this is simply: 
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Equations 11, 16, and 17 comprise three expressions for anomalous change detection that depend 

on the individual anomalousness only through the sum x y  .  In HACD, we take the 

difference between the “stacked” image anomalousness z  and this sum, whereas in the EC-

uncorrelated fat-tailed limit, we take the ratio.  In the more general EC-uncorrelated detector of 

Eq. 14, we use a modified ratio. 
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3.0 A 2D Visualization 

The simple dependence of these three detectors on z  and the sum x y   allows us to display 

them in the two-dimensional space consisting of z  vs x y  .  The data can be displayed as a 

scatter plot, where the image pair appears as a cloud of points.  By simulating changes on this 

image pair, a second cloud of points can be produced, as shown in Fig. 6 of Ref. 6.  A similar plot 

is shown here in Fig. 1.  The cloud of red points was produced by randomly swapping pixel 

positions in the second image, and computing the Mahalanobis distances as if the covariances had 

not changed.  For the HACD algorithm in Eq. (11), a contour of constant anomalousness in this 

2D space is a line with the equation: 

 const xz y     (18) 

 

Figure 1.  Scatter plot of image-pair data.  The blue points correspond to the two input images.  The red 
points correspond to the simulated changes resulting from scrambled pixel positions in the second image.  
Decision boundaries for three change detection algorithms are plotted as lines, for the same false alarm rate 
indicated.  The two images are synthetic EC data using  = 3. 

The constant represents the intercept in the plot, which increases with increasing detection 

threshold.  The line shown in the plot is then a decision boundary for change detection: points 

above are classified as having significant change, and points below are regarded as having 

negligible change, possibly arising from pervasive differences between the images such as 
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illumination or mis-registration.  Similar lines are obtained for the EC-uncorrelated detector (Eq. 

(14)) and its fat-tailed limit Eq. (15).  Note also that a horizontal line on the plot, constz  , 

corresponds to an RX anomaly detection performed only on the stacked image z. 

The distribution of red points in Fig. 1 is worth noting.  Most of the data are located near the 

center portion of the plot, but they are distributed upwards with a rapidly declining density.  A 

histogram of z values is shown in Fig. 2a.  This plot is associated not with simulated data, but 

experimental hyperspectral data described in the next section.  The peak in the histogram is at the 

lowest value plotted, and the points form a very long tail out to high values.  If one first takes the 

log of the data and then compiles the histogram, a very different shape is obtained, Fig. 2b.  The 

peak in the histogram is closer to the “middle” of the span of values, and the tail at high values is 

less pronounced.  Scatter plots for the same HSI data are shown in Fig. 2c, 2d. 

 

 

Figure 2.  (a,b) Histograms of collective anomalousness, z . Computed from the ground-based LWIR 

image pair. (a)  On a linear scale. The histogram is sharply peaked near zero.  (b)  Histogram of the log of 

z .  The distribution has a more regular shape: the peak value is closer to the middle.  (c,d)  2D scatter 
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plots on linear scale (c) and log scale (d). 

3.1. Experimental Hyperspectral Data 

We acquired long-wave infrared (LWIR) hyperspectral data in experiments at Los Alamos 

National Laboratory.11  An imaging sensor examined a cluttered scene repeatedly over the course 

of several days, two examples of which are shown in Fig. 3.  A scene is comprised of 300X128 

spatial pixels, and a spectrum from 742 to 1333 cm-1 with 128 spectral channels is acquired at 

each pixel.  The scenes in Fig. 3 are from one selected spectral channel (near 900 cm-1), obtained 

at two different times about 25 minutes apart.  During this time, thermal changes occur in the 

scene from a variety of effects, mostly solar heating as the sun rises in the sky.  Restricted access 

to the site helped to prevent major changes in the scene from motion of large objects like 

vehicles.  The changes occurring over the course of 25 minutes are largely “natural”, i.e. objects 

heat up in the sun or cool down in the breeze, and tree branches sway in the wind.  These are the 

kinds of unavoidable effects that might occur while a facility is under surveillance and important 

changes (like movement of large vehicles, opening of facility doors, disturbance of ground, etc.) 

are occurring.  We would like to detect these “important” changes amidst “natural” changes.  The 

images were found to be well registered to each other, to about a tenth of a pixel, by examining 

simple difference images such as shown in the Figure.  There were some small artifacts arising 

from bad pixels on the detector array.  These were ameliorated by first finding the bad pixels, 

which are manifested as repeated noisy pixels on the same row in the image,12 and then by 

replacing the spectral data at those pixels using a data imputation approach.13  This process has 

negligible effects on change detector performance, however, and won’t be discussed further. 

The two-dimensional scatter plot for the experimental LWIR data is shown in Fig. 5.  Straight 

lines indicate decision boundaries for HACD, the EC-uncorrelated detector, and the fat-tailed 

limit as in Fig. 1.  The plot motivates a different way of delineating changed pixels in the image 

pair via a curved boundary, which should have more flexibility to divide the two sets of points 

with higher accuracy than a straight line.  An example curve is shown in the figure. 
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Figure 3.  LWIR image pair.  Single-band images from a hyperspectral dataset. The top image shows a 
scene with natural and man-made clutter, acquired at 900 cm-1 at LANL.  The second image was acquired 
25 minutes later.  The bottom image is a simple difference between the top two images, exhibiting mostly 
thermal changes. 
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Figure 4.  Images from change detection algorithms.  For RX-ACD (top), the collective anomalies are 
highlighted as dark spots.  They appear mostly at metal objects in the scene.  For HACD (middle), 
individual anomalies appear as dark spots (large negative values), and anomalous changes appear in white 
(large positive values).  For EC-uncorrelated (bottom), anomalous changes appear as dark spots.  Note that 
HACD and EC-uncorrelated detect a cloud in the sky near the upper right image. 
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Figure 5.  Scatter plot for LWIR image pair.  The smooth curve is a decision boundary from an SVM 
calculation, using a rbf kernel with gamma = 10.  Decision boundaries for the other detectors are shown at 
the same false alarm rate, Pfa=2.1X10-4.  For clarity, only a few points randomly selected  from the data are 
shown. 

4.0 Classification in   space 

One can envision many ways to construct a curved boundary in this reduced-dimensional space of 

the hyperspectral data.  The problem is really a binary classification problem, where two classes 

are being used to describe levels of change between the scenes.  The blue crosses in the lower 

region of the plot are associated with “natural” changes that occur with most pixels in the scene, 

while the red points refer to more dramatic changes associated with object movements.  (We 

simulate these changes by creating a large number of pixel location swaps, which amounts to a 

resampling of the data, as described in Ref. 14.)   

Consider first the lower set of points in blue on the plot. Since this is LWIR data, these changes 

are caused by heating of objects by solar radiation during the 25-minute interval between 

datasets.  Such heating, though, is differential: rock outcroppings warm up more quickly than tree 

branches, for example, because of differences in solar absorption, heat capacity, and exposure to 

wind, which cools the objects.  In the vis-SWIR spectral region, there can be similar widespread 

differences due to changing solar illumination and differential shadowing of objects, or due to 

scene-wide changes in atmospheric interference.  Such changes are pervasive in nature, in the 

sense that they affect virtually all pixels but in varying amounts.  Instrumental effects (noise, 
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misregistration, calibration drift, etc.) are another possible source of pervasive differences. 

For the second class of data, the red points in the higher region of the plot, the pervasive 

differences are supplemented by much more substantial changes that accompany, for example, 

the substitution of pavement for grass, or a vehicle for a patch of dirt.  Note that the plots in Figs. 

2 and 4 show only the low- z  region of the 2-D space.  Many points are distributed up to very 

large z  values that correspond to changes with high spectral contrast.  The large z  points are 

mostly irrelevant to the classification problem, because the region of overlap is restricted to low 

z  values.  The significant amount of overlap presents a challenge to classification algorithms 

potentially useful for the problem, and also to the HACD and other algorithms. 

A convenient tool for obtaining a curved decision boundary is the Support Vector Machine.  

SVM produces boundaries for arbitrary distributions of labeled data, in contrast to HACD (which 

assumes Gaussian) and EC-uncorrelated (which assumes EC data).  SVM optimizes a surrogate 

loss function that approximates classification error, but is convex.15  A variety of kernels may be 

used in the algorithm, but here we use just the Gaussian radial basis function (rbf) kernel.  

Working in the 2-D space has several advantages:  the SVM converges quickly, and the decision 

boundary can be visualized.  One can directly compare decision boundaries for the algorithms. 

The black curve plotted in Fig. 4 is from an SVM, computed using the libSVM software.16  We 

found that implementing SVM in a logarithmic version of the 2-D space, i.e. 

 log  vs. logz x y    was preferable, because of the better-behaved density of points as 

indicated in Fig. 2.  The boundary is re-plotted in linear coordinates in the figure. At large z , it 

becomes close to linear, but in the most important region of overlap between classes, it is 

decidedly curved. 

The curved boundary has performance advantages, as shown in Fig. 4.  Receiver operating 

characteristic (ROC) curves were computed for multiple runs of SVM and the other algorithms by 

splitting the data randomly into half for training, and half for testing.  Splitting the sample helps 

to insure that the SVM classifier performs well outside of the idiosyncrasies of the training set on 

which it is based, and helps evaluate performance variability and reliability.  The results here 

were obtained by keeping the two SVM parameters fixed: C = 5 and  = 10. (Here, C controls the 

amount of regularization, and  specifies the width of the Gaussian in the rbf kernel).  One SVM 

run produces a decision boundary with some resultant false alarm rate that cannot be set ahead of 
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time.  By varying the weights of the two classes in the computation, we can obtain a series of 

decision boundaries at different false alarm rates, and trace out the ROC curve shown in the 

figure.  Using different SVM kernel parameters, we might also produce decision boundaries that 

curl closely around individual data points in the plot, but we expect those classifiers to perform 

poorly on the test set – they are overfitted to the training set.  One can see in the figure that 

multiple training/testing splits of the data give consistent performance. 

 

Figure 6.  Performance curves for the four different detection algorithms.  The LWIR image-pair data were 
split into testing and training halves.  The results from multiple splits are plotted to show the variability of 
performance from run to run. 

Note also that the various test/train splits result in highly variable performance of HACD, EC-

uncorrelated, and fat-tailed limit.  In Fig. 5, we show only the mean performance curves of these 

algorithms for clarity.  EC-uncorrelated and fat-tailed limit are almost identical, and each 

outperforms HACD by a substantial margin.  Although there is considerable variability in the 

SVM performance, it consistently beats the mean performance of the detectors that have linear 

boundaries in the 2-D space. 
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Figure 7.  Same results as Fig. 6, except that the mean performance curves are shown for the three linear 
detectors.  A smooth curve is drawn through the SVM points as a guide. 

 

4.1. Performance on VNIR data 

Hyperspectral imaging in the VNIR spectral region (400 – 900 nm) is of interest for many remote 

sensing applications, but is influenced by a different set of physical phenomena and provides 

another useful regime for comparison with the LWIR.  In the VNIR, temperature across the scene 

does not affect the observation, but changing solar illumination characteristics (e.g. angle, 

cloudiness, shadowing) have a much more direct influence and can be the main source of 

pervasive difference.  A useful dataset for evaluation of change detection algorithms has been 

published previously by Eismann et al.17  We selected one HSI dataset acquired in August, and a 

second in October as the image pair for analysis.  Distinct seasonal changes occurred naturally 

from the first to the second scene.  The 2-D scatter plot for this image pair is shown in Fig. 7.  

The images are 800 X 1024 pixels, and were originally acquired with 140 spectral channels.  As 

described in Ref. 7, we used Canonical Correlation Analysis (CCA)18 to reduce the dimension of 

the data, so the values in Fig. 7 were obtained from the resultant 10-dimensional data.  Additional 
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instrumental details and results of change detection algorithms are discussed in Refs. 3, 7, 17. 

 

Figure 8.  Scatter plot for VNIR image pair.  Change detector boundaries are plotted as lines and a curve. 

The SVM algorithm used on the VNIR data was identical to that used for the LWIR data.  

Regularization and kernel parameters were C = 5 and  = 10.  (The number of samples was 

somewhat larger, so a randomly selected subset was used for computational speedup.)  We 

believe that the insensitivity of performance to parameter values is a consequence of working in 

the reduced 2-D space.  It indicates that parameter selection is not expected to be a burdensome 

task.  Class weights were adjusted incrementally to yield a series of SVM decision boundaries 

with increasing false alarm rate.  Performance of the various algorithms, based on simulated 

scene changes, is shown in Fig. 8.  Overall, the results are similar to the LWIR example.  SVM, 

carried out in the logarithmic version of the 2-D space, outperforms the other three algorithms.  

One caveat is that there is some variability in performance as different train/test splits of the data 

are used.  On occasion, the SVM will perform about the same as the next leading algorithm (fat-

tailed limit, in this case).  But by using repeated splits of the data, improved performance is seen 

in an average sense. 
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Figure 9.  Performance curves for VNIR data of Ref. 17. 

5.0 Summary 

The approach to change detection that we propose in this paper contains two important 

conceptual elements: a novel dimension reduction of the HSI data, and a machine learning step 

that shapes the decision boundary to the data of interest.  Dimension reduction is not new in HSI 

exploitation: PCA and CCA are commonly used in pursuit of various goals.  The particular 

dimension reduction that we employ, however, uses coordinates that are themselves associated 

with change detection quantities.  Implementing the SVM in 2-D space is convenient because the 

optimization is efficient and the results can be directly visualized.  The latter is helpful in 

checking for artifacts of various types and in preventing overfitting of the data, which can result 

from inappropriate SVM parameters.  We have shown that the same SVM parameters give good 

results for HSI data in two different regimes (VNIR and LWIR).  The proposed algorithm 

outperforms others by reasonable margins.  This two-step approach to this important problem in 

HSI exploitation is similar in spirit to one proposed for target detection, where the spectral 

signature of interest is known ahead of time and it is being sought in a single datacube.19 
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