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Abstract—This paper addresses two issues related to
the detection of hyperspectral anomalies. The first issue
is the evaluation of anomaly detector performance even
when labeled data is not available. The second issue is
the estimation of the covariance structure of the data in
local detection methods, such as the RX detector, when
the number of available training pixels n is not much
larger than (and may even be smaller than) the data
dimensionality p.

Our first contribution is to formulate and employ a
mean-log-volume approach for evaluating local anomaly
detectors. Traditionally, the evaluation of a detector’s
accuracy has been problematic. Anomalies are loosely
defined as pixels that are unusual with respect to the other
pixels in a local or global context. This loose definition
makes it easy to develop anomaly detection algorithms
– and many have been proposed – but more difficult to
evaluate or compare them. Our mean-log-volume approach
allows for an effective evaluation of a detector’s accuracy
without requiring labeled testing data or an overly-specific
definition of an anomaly.

The second contribution is to investigate the use of
the Sparse Matrix Transform (SMT) to model the local
covariance structure of hyperspectral images. The SMT
has been previously shown to provide full rank estimates
of large covariance matrices even in then < p scenario.
Traditionally, the number of training pixels needed for
good estimates of the covariance needs to be at least as
large as the data dimensionality (and preferably it should
be several times larger). Therefore, when one deploys the
RX detector in a sliding window, the choices to select
small window sizes are limited because of then > p

restriction associated to the covariance estimation. Our
results suggest that RX-style detectors using the SMT
covariance estimates perform favorably compared to other
methods even (indeed, especially) in the regime of very
small window sizes.

I. I NTRODUCTION

Anomaly detection promises the impossible: it is tar-
get detection without knowing anything about the target.
In the context of hyperspectral imagery, the anomalous
pixels are those that are unusual with respect to the other

pixels in a local or global context. A number of anomaly
detectors have been developed for hyperspectral datasets,
many of which are surveyed by Steinet. al.[1], and more
recently by Matteoliet. al. [2]

Local detectors form an important class of algorithms.
They work using a statistical model of the background
pixels in the local neighborhood of the pixel under test.
In general, only the pixels within a sliding window are
used to estimate properties of the local context. To the
extent that the background statistical properties are non-
stationary across the image, this local statistical char-
acterization has the potential to improve the detection
accuracy. One problem with these local methods is that
the number of training samples (pixels),n, needed for a
good estimate of the covariance must be at least as large
as the data dimensionality (number of spectral bands),p,
and preferably should be several times larger thanp. [3],
[4] This n ≫ p requirement rules out small window
sizes. The potential increase in detection accuracy due to
the local characterization of the background (in a small
window) is compromised by the lack of adequate training
samples needed to estimate the covariance.

Another way to address the covariance estimation
problem is to use the Sparse Matrix Transform (SMT).
The SMT provides full rank estimates of large covariance
matrices even when the number of training samplesn
is smaller than the data dimensionalityp. [5] We have
recently shown that the SMT improves the accuracy of
“global” anomaly detectors. [6] In this paper, we sug-
gest that RX-style detectors using the SMT covariance
estimates perform favorably compared to other methods,
even in the regime of very small window sizes.

The rest of this paper is organized as follows: Sec-
tion II formulates the anomaly detection task and reviews
the most commonly used covariance estimation methods
used in anomaly detection; Section III describes the SMT
covariance estimation and how the SMT estimates yield



highly accurate detectors even when small window sizes
are used; Section IV introduces the mean-log-volume
as a measure of detection accuracy and show how it
can be used to select the window size that maximizes
the detection accuracy; Section V presents our main
experimental results. Finally, Section VI presents the
main conclusions.

II. H YPERSPECTRALANOMALY DETECTION

Hyperspectral anomaly detection consists in finding
pixel regions (objects) in the hyperspectral image with
pixels that differ substantially from the background,i.e.,
the pixels in the regions surrounding these objects.

In general, there is no precise definition of what con-
stitutes an anomaly. A common way of defining anoma-
lies is to say thatanomalies are not concentrated. [7]
Here we assume that anomalous samples are drawn from
a broad, uniform distribution with a much larger support
than the distribution of typical (i.e., not anomalous)
samples. This assumption allows us to describe anomaly
detection in terms of a binary classification problem.

A. Anomaly Detection as Binary Classification

Let x be ap-dimensional random vector. We want to
classify x as typical if it is drawn from a multivariate
Gaussian distributionN (µ,R), or asanomalousif it is
drawn from a uniform distributionU(x) = c, wherec
is some constant. Formally, we have the following hy-
potheses:

H0 : x ∼ N (µ,R)
H1 : x ∼ U ,

(1)

whereH0 andH1 are referred as thenull and alterna-
tive hypotheses respectively. According to theNeyman-
Pearsonlemma [8], optimal classifier has the form of a
log-likelihood ratio test

l(x) = log

{

p(x;H1)

p(x;H0)

}

≷ l0, (2)

that maximizes the probability of detection,p(H1;H1)
for a fixed probability of false alarm,p(H1;H0), which
is controlled by the thresholdl0.

The log-likelihood ratio test in (2) can be written as

l(x) = log

{

p(x;H1)

p(x;H0)

}

= log c− log p(x;H0)

= log c+
p

2
log 2π +

1

2
log |R|

+
1

2
(x− µ)tR−1(x− µ) ≷ l0 (3)

We can incorporate the constant terms in (3) together
with l0 into a new threshold,η, such that the significance
test in (3) is equivalent to the test

DR(x) =
√

(x− µ)tR−1(x− µ) ≷ η. (4)

The statisticDR(x) is interpreted as the Mahalanobis
distance between the samplex and the meanµ of the
background distribution. If such distance exceeds the
thresholdη, we labelx as ananomaly.

In practice, one does not know the true parameters
µ andR of the background pixel distributionN (µ,R).
In order to compute the statisticDR(x) in (4) , the
practitioner needs first to compute good estimatesµ̂ and
R̂ of µ and R respectively, from the samples (pixels)
available.

B. Sliding Window-based Detection

The RX detection algorithm [9], [10] uses a sliding
window centered at the pixelx, as illustrated in Fig. 1.
The window pixels are used to compute the covariance
estimateR̂ of the background. As argued in [2] the
pixels closest tox within the Guard windoware left out
of the estimation to avoid contaminating the estimate
with potentially anomalous pixels. The dimension of
the guard window is chosen according to the expected
maximum size of an anomalous object. An interesting
variation of the RX detector (not investigated here)
uses a third window aroundx, larger than the guard
window but smaller than the outer window, to estimate
the meanµ. [2] The motivation is that a good estimate
of the mean requires fewer pixels than a good estimate
of the covariance.

The pixels within the outer window are used as the
training pixels in the estimation of the covariance ma-
trix R. The choice of the window size is a compromise
between two factors: (i) The window should be small
enough that it covers a homogeneous region of the
background, therefore, being accurately modeled by the
multivariate GaussianN (µ,R); (ii) The window should
be large enough that the number of pixels within the
outer window is enough to produce reliable estimates of
the covarianceR. At leastp+ 1 pixels are required for
non-singular sample covariance estimates.

C. Covariance Estimation Methods

In this section, we discuss some of the methods used
to estimate the covariance matrixR.

1) Sample Covariance:Let X = [x1, · · · , xn] be the
set of n i.i.d. p-dimensional Gaussian random vectors
drawn fromN (0, R). The sample covarianceS is given
by

S =
1

n
XXt.
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Outer window

Guard window

Pixel x

Fig. 1. Square sliding window used in the RX detection algorithm.
The pixels in the outer window are used to compute the covariance
estimateR̂ of the background surrounding the pixelx. The pixels
within the inner window (referred as theguard windoware not used
in the covariance computation to avoid that potential anomalous pixels
contaminate the estimatêR.

which is the unconstrained maximum likelihood estimate
of R. [8]

When n < p, the sample covarianceS is singular,
with rankn andoverfitsthe data. As argued in [3], [2],
in the case of hyperspectral data, it is usually desirable
to haven ≥ 10p so thatS is a reliable estimate ofR.
But even whenn is small andS is by itself unreliable,
the sample covariance is still useful as a starting point
for the regularized shrinkage estimates reviewed below
as well as the SMT introduced in Section III.

2) Diagonal: Because it is the inverse ofR that is
used in (4) , it is important that the estimate ofR be
full-rank. A simple way to obtain a full-rank estimate
of R with a small number of samplesn (especially when
n < p) is to treat all thep dimensions as uncorrelated
and simply estimate the variances for each of thep
coordinates. This results in the estimator

D = diag(S),

which is generally of full-rank and can be well estimated
even with smalln. However,D tends tounderfit the
the data since the assumptions that the coordinates are
uncorrelated is typically unrealistic.

3) Shrinkage:The shrinkage estimation is a very pop-
ular method of regularizing estimates of large covariance
matrices. [11], [12], [13] It is based on the combination
of the sample covariance matrixS that overfitsthe data
with another estimatorT (called the shrinkage target)
that underfitsthe data:

R̂ = (1− α)S + αT, (5)

where α ∈ [0, 1]. The choice of the valueα that
maximizes the likelihood of the estimatêR is typically
done through a cross-validation procedure.

The most common variation of the shrinkage
method [11], [12] usesσ2I as the shrinkage target, where
σ2 is the average variance across all thep dimensions
and I is the p × p identity matrix. The covariance
estimator is given by

R̂ = (1− α)S + ασ2I. (6)

A variation of (5) proposed by Hoffbeck and Land-
grebe [13] usesD = diag(S) as the shrinkage target,
resulting in the following shrinkage estimator

R̂ = (1− α)S + αD. (7)

The authors in [13] also propose a computationally
efficient leave-one-out cross-validation (LOOC) scheme
to estimateα in (7) .

4) Quasilocal Covariance:This method proposed by
Caefer et. al. [14] considers the eigen-decomposition
of the covariance matrixR = EΛEt, and makes the
observation that the eigenvalues in the matrixΛ are more
likely to change across different image locations while
the eigenvectors inE remain mostly pointed to the same
directions across the entire image.

The observation above suggests that one can obtain
a global estimate of the eigenvector matrixE using
all the pixels in the image, and then can adjust the
eigenvalues inΛ locally by computing the variances
independently in each direction using only pixels that are
within the sliding window. Since the number of pixels
in the entire image, we typically haven ≫ p, and so
the sample covarianceS will provide a full-rank global
estimate and its eigenvectors,Êglobal can be used as the
estimates ofE across all positions of the sliding window.
Finally, the estimate of the matrixΛ is computed locally
at each position of the sliding window, by computing
variances in each of the global eigenvector directions.
This approach results in thequasilocal estimator of
covariance:

R̂ = ÊglobalΛ̂localÊ
t
global.

III. T HE SPARSEMATRIX TRANSFORM (SMT)

The Sparse Matrix Transform (SMT) [5], [6] can be
used to provide full-rank estimates of the covariance
matrix R used in the detection framework in Section II.
The method decomposes the true covarianceR into
the productR = EΛEt, whereE is the orthonormal
matrix containing the eigenvectors ofR and Λ is a
diagonal matrix containing the eigenvalues ofR. The
SMT then provides the estimateŝE and Λ̂ with the
diagonal elements of̂Λ being strictly positive.
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A. SMT Covariance Estimation

Given a training set withn independentp-dimensional
i.i.d random vectors drawn from the multivariate Gaus-
sianN (0, R), and organized into the data matrixX =
[x1, · · · , xn]. The Gaussian likelihood of observing the
dataX is given by

l(X;R) =
|R|−n/2

(2π)np/2
exp

{

−
1

2
trace(R−1S)

}

, (8)

whereS = 1

nXXt is the sample covariance, a sufficient
statistic for the likelihood of the dataX. The joint
maximization of (8) with respect toE andΛ results in
the maximum likelihood (ML) estimates

Ê = arg min
E∈ΩK

{
∣

∣diag(EtSE)
∣

∣

}

(9)

Λ̂ = diag(ÊtSÊ) , (10)

whereΩK is the set of allowed orthonormal transforms.
If n > p, and the setΩK includes all orthonormal

transforms, then the solution to (9) and (10) is given
by the sample covariance;i.e, ÊΛ̂Êt = S. However,
as discussed in Section II, whenn < p, the sample
covariance,S overfits the data and is a poor estimate
of the true covarianceR.

In order to regularize the covariance estimate, we
impose the constraint thatΩK be the set of sparse matrix
transforms (SMT) or orderK. More specifically, we will
assume that the eigen-transformation has the form

EK =

K
∏

k=1

Gk = G1 · · ·GK ∈ ΩK , (11)

for a model orderK. EachGk is a Givens rotation[5]
over some(ik, jk) coordinate pair by an angleθk,

Gk = I +Θ(ik, jk, θk),

where

[Θ]ij =















cos(θk)− 1 if i = j = ik or i = j = jk
sin(θk) if i = ik and j = jk
− sin(θk) if i = jk and j = ik
0 otherwise

,

(12)
andK is the model order parameter.

The optimization of (9) is non-convex, so we use
a greedy optimization approach to design each rota-
tion, Gk, in sequence to minimize the cost [5]: Let
Sk−1 = Gt

k−1
Sk−2Gk−1. At the kth step of the greedy

optimization, we select the pair of coordinates(ik, jk)
such that

(ik, jk) = argi,j max

(

(Sk−1)
2
ij

(Sk−1)ii(Sk−1)jj

)

,

i.e, the most correlated pair of coordinates, and choose
the angle

θk =
1

2
tan−1

(

−2(Sk−1)ikjk
(Sk−1)ikik − (Sk−1)jkjk

)

that completely decorrelates theik and jk dimensions.
This greedy optimization procedure can be done fast if
a graphical constraint can be imposed to the data. [15]

Finally, for an SMT of orderK, we have the estimates

ÊK = G1 · · ·GK (13)

Λ̂K = diag(Êt
KSÊK) , (14)

with the covariance estimate given by

R̂SMT = ÊKΛ̂KÊt
K . (15)

B. SMT Model Order

The model order parameterK can be estimated using
cross-validation [5], [15], a Wishart Criterion [6], or the
minimum description length (MDL) approach derived
in [6]. We used the MDL criterion for the experiments in
this paper. According to the MDL criterion, we select the
smallest value ofK such that the following inequality
is satisfied:

max
ij

(

[SK ]2ij
[SK ]ii[SK ]jj

)

≤ 1−exp

(

− log n− 5 log p

n

)

,

whereSK = Êt
KSÊK .

It is often useful to express the order of the SMT as
K = rp, wherer is the average number of rotations per
coordinate, being typically very small (r < 5) for several
previously studied datasets. [5]

C. Shrinkage SMT

The SMT covariance estimate in (15) can be used
as a shrinkage target, alternative to the ones described in
Section II-C3, resulting in the following Shrinkage-SMT
estimate:

R̂ = (1− α)S + αR̂SMT .

IV. ELLIPSOID MEAN LOG-VOLUME

In this section, we develop theEllipsoid Mean Log-
Volume, a novel metric to evaluate the accuracy of
anomaly detection algorithms that make detection de-
cisions based on a Mahalanobis statistic such asDR

in (4) . Different versions of these detectors use dif-
ferent techniques to estimate the covariance yielding
different detection accuracies depending on how well the
covariance estimatêR approximates the true background
covarianceR.
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Traditionally, receiver operating characteristics (ROC)
curves have been widely used to evaluate anomaly detec-
tors. The ROC approach requires both samples labeled
as typical and samples labeled asanomalousin order to
estimate the both theprobability of detectionand the
probability of false alarmused in the ROC analysis.
Unfortunately, anomalies are rare events and it is often
difficult to have enough data labeled asanomalousin
order to estimate the probability of detection required in
the ROC analysis.

The approach developed here seeks to characterize
how well the estimates of the background model (i.e., µ̂
and R̂) fit the training (typical) pixel data, overcoming
the limitation of the ROC analysis described above.
More specifically, we evaluate the volume of the hyper-
ellipsoid within the region

(x− µ̂)tR̂−1(x− µ̂) ≤ η2, (16)

where η controls the probability of false alarm, as
described previously. Such a volume is evaluated by the
following expression:

V (R, η) =
πp/2

√

|R|

Γ(1 + p/2)
ηp. (17)

Smaller values ofV (R, η) indicate smaller probabilities
that an anomalous data point would fall within the hyper-
ellipsoid region of (16) . Based on this observation, the
core idea in our approach is to use the value ofV (R, η)
as a proxy for the probability of missed detection. There-
fore, for a fixed probability of false alarm, smaller values
of V (R, η) indicate more accurate detection. Because the
direct computation ofV (R, η) tends to be numerically
unstable, often leading to numerical overflow for large
values ofp, in practice we work withlog V (R, η) as our
measure of detection accuracy.

This approach has been used before in global anomaly
detection [6], [16], [17], but we are extending it here
to local sliding window-based anomaly detection. These
detectors produce a different local estimate of the back-
ground covariance at each location of the sliding window
across the image. We suggest measuring detection accu-
racy in terms of the expected log-volume of the hyper-
ellipsoid,E[log V (R̂, η)] across the whole hyperspectral
image, where each different estimateR̂ is computed for
each position of the sliding window using local training
data pixels.

V. EXPERIMENTS

All experiments in this section were performed using
theBlindrad hyperspectral dataset [18], a HyMap image
of Cook City, MT of 800 × 280 pixels, each with 126

hyperspectral bands. Fig. 2 displays a RGB rendering
of this dataset.

In all experiments, a sliding window like the one
described in Fig. 1 moves across the image and, at each
position it estimates the covarianceR from the samples
of the outer window using several covariance estimation
methods previously discussed. Such covariance is used
to computeDR in (4) for each pixel within the guard
window. The radiusη is adjusted globally so that a
fraction of the points corresponding to a fixed probability
of false alarm is left out of the ellipsoid region. Finally
we compute the expected valueE[log V (R̂, η)] over
all window positions and take that as the measure of
anomaly detection performance.

Fig. 3 shows thecoverage plotswith the expected log-
volume of ellipsoidvs. the probability of false alarm for
different window sizes. The hyperspectral bands of the
dataset were rotated to theQuasilocalcoordinate system
by the matrixÊt

global (see Sec. II-C4). These “ROC-like”
curves suggest that the regularized methods are more
accurate, especially when small window sizes are used.
When large window sizes are used, the unregularized
sample covariance has its performance similar to the
regularized methods.

Fig. 4 compares the performance of several detectors
in both the original and the quasilocal coordinate systems
at two different fixed false alarm rates. The diagonal
covariance estimate performs poorly in the original co-
ordinates (Figs. 4(a) and 4(b)), but remains a compet-
itive method in the quasilocal coordinates (Figs. 4(c)
and 4(d)); in fact, the diagonal estimator in quasilocal
coordinates is just the quasilocal covariance estimator
suggested by Caeferet. al.[14] The Shrinkage-SMT esti-
mates are among the best methods in both spaces, though
in the quasilocal space, Shrinkage-Diagonal detectors
perform just as well. When the window size used to
estimate the covariance matrix grows large, we observe
the increase in the expected ellipsoid log-volume;i.e.,
the degradation of the detection accuracy for all the
methods. This degradation is due to the distribution of
the background pixels being non-stationary across the
image. Therefore, the estimate of the covariance using
large windows tends to yield poor estimates. When small
window sizes are used, the training pixels are more
likely to come from a homogeneous region with Gaus-
sian distribution. Nevertheless, this is a regime where
poor estimates of the covariance are due to the limited
number of training samples, as observed in the curves
for detectors using the sample covariance. On the other
hand, the results suggest that the regularized methods
perform best with smaller window sizes. Finally, the
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Fig. 2. RGB rendering of the800× 280 pixel Blindrad hyperspectral dataset, captured using a HyMap sensor with126 channels.

10-4 10-3 10-2 10-1 100

Prob False Alarm

250

300

350

400

450

500

550

600

650

Lo
g

 M
e

a
n

 V
o

lu
m

e

Blindrad Quasilocal (13x13 outer window)

Diagonal

Sample

Shrk-D

Shrk-I

SMT

Shrk-SMT

10-4 10-3 10-2 10-1 100

Prob False Alarm

250

300

350

400

450

500

550

600

650
Lo

g
 M

e
a

n
 V

o
lu

m
e

Blindrad Quasilocal (15x15 outer window)

Diagonal

Sample

Shrk-D

Shrk-I

SMT

Shrk-SMT

10-4 10-3 10-2 10-1 100

Prob False Alarm

250

300

350

400

450

500

550

600

650

Lo
g

 M
e

a
n

 V
o

lu
m

e

Blindrad Quasilocal (21x21 outer window)

Diagonal

Sample

Shrk-D

Shrk-I

SMT

Shrk-SMT

10-4 10-3 10-2 10-1 100

Prob False Alarm

250

300

350

400

450

500

550

600

650

Lo
g

 M
e

a
n

 V
o

lu
m

e

Blindrad Quasilocal (31x31 outer window)

Diagonal

Sample

Shrk-D

Shrk-I

SMT

Shrk-SMT

Fig. 3. Coverage plots with the expected ellipsoid log-volume vs. probability of false alarm for various outer window sizes.
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Fig. 4. Expected ellipsoid log-volumevs. the dimension of the sliding window fixed probabilities of false alarm in both the original, (a) and
(b), and the quasilocal, (c) and (d), coordinate systems.

practitioner can use the curves in Fig. 4 as a criterion to
select the window size that produces the most accurate
detector for a chosen covariance estimation method.

VI. CONCLUSIONS

In this paper we have shown how to use the ex-
pected log-volume of ellipsoid to measure local detector
accuracy. This measure was used to compare different
detectors as well as a to provide a criterion for selecting
the optimal size of the sliding window. We have also
shown how to use the SMT to produce regularized
covariance estimates to be used in detection. While
Shrinkage-SMT often produces good results, our results
show that Shrinkage-Diagonal performs just as well
when combined with the quasilocal method proposed
in [14]. In the future, we plan to address how to push the

covariance methods to work with even smaller window
sizes.
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