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In graph theory, a geodesic is the shortest path between two vertices in a connected network. The
geodesic is the kernel of various network metrics including radius, diameter, eccentricity, closeness,
and betweenness. These metrics are the foundation of much social network research and thus have
been studied extensively in the domain of single-relational, or unlabeled, networks (both in their
directed and undirected forms). However, geodesics for unlabeled networks do not translate directly
to multi-relational, or semantic networks, where vertices are connected to one another by any number
of edge labels. Here, a more sophisticated method for calculating a geodesic is necessary. This article
presents a grammar-based technique for calculating geodesics in semantic networks. A grammar is
a user-defined abstract representation of a semantic path that respects the ontological classes of a
particular semantic network. A discrete “walker” utilizes the grammar to determine which paths
to include in its geodesic calculation. The grammar-based model forms a general framework for
studying geodesic metrics in semantic networks.

I. INTRODUCTION

The study of networks (i.e. graph theory) is the study
of the relationship between vertices (i.e. nodes) as de-
fined by the edges (i.e. arcs) connecting them. In path
analysis algorithms, a path metric function maps an or-
dered vertex pair into a real number, where that real
number is the length of the path connecting to the two
vertices. Metrics that utilize the shortest path between
two vertices in their calculation are called geodesic met-
rics. The geodesic metrics that will be reviewed in this
article are shortest path, eccentricity [15], radius, diame-
ter, betweenness centrality [14], and closeness centrality
[3].

If G1 is a single-relational network, then G1 = (V,E),
where V = {i, . . . , j}, is the set of vertices and E ⊆ V ×V
is a subset of the product of V . In a single-relational
network, the edges have a single meaning, or semantic.
While a single-relational network supports the represen-
tation of a homogeneous set of relationships, a semantic
network supports the representation of a heterogeneous
set of relationships. For instance, in a single-relational
network it is possible to represent humans connected to
one another by friendship edges; in a semantic network,
it is possible to represent humans connected to one an-
other by friendship, kinship, collaboration, communica-
tion, etc. relationships.

A semantic network denoted Gn can be defined as a
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set of single-relational networks such that Gn = (V,E),
where E = {E0, E1, . . . , En} and for any En ∈ E, En ⊆
V × V [8]. The meaning, or semantic, of a relationship
in Gn is determined by its set En ∈ E. Perhaps a more
convenient semantic network representation and the one
to be used throughout the remainder of this article is
that of the triple list where Gn ⊆ (V × Ω× V ) and Ω is
a set of edge labels. A single edge in this representation
is denoted by a triple τ = 〈i, ω, j〉, where vertex i is
connected to vertex j by the semantic ω.

In some cases, it is possible to isolate sub-networks of
a semantic network and represent the isolated network
in an unlabeled form. Unlabeled geodesic metrics can
be used to compute on the isolated component. How-
ever, in many cases, the complexity of the path descrip-
tion does not support an unlabeled representation. These
scenarios require “semantically aware” geodesic metrics
that respect a semantic network’s ontology (i.e. the ver-
tex classes and edge types) [5, 23].

The semantic network is not simply a directed la-
beled network; it is a high-level representation of com-
plex objects and their relationship to one another ac-
cording to defined ontological constraints. Thus, to de-
termine a semantic path between vertex i and j such
that it passes through some k for which k is a male
student that has worked with an old colleague of i, no
such algorithm currently exists. While there exist var-
ious algorithms to study semantically typed paths in a
network [1, 2, 18, 26, 28], each algorithm assumes only a
path between two vertices and does not investigate other
features of the intervening vertices. The benefit of the
grammar-based geodesic model presented in this article
is that complex paths can be represented that include
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path “bookkeeping” which investigates intervening ver-
tices even though they may not be included in the fi-
nal path solution. For example, it may be important to
determine a set of “friendship” paths between two hu-
man vertices, but in doing so, every intervening human
must work for some particular organization and further-
more, must have a particular position in that organiza-
tion. While a set of friendship paths is the result of the
function, the path detours to determine employer and
position are not. The technique for doing this is the pri-
mary contribution of this article.

A secondary contribution is the unification of the
grammar-based model proposed here with the grammar-
based model proposed in [22] for calculating stationary
probability distributions in a subset of the full seman-
tic network (e.g. eigenvector centrality [6] and PageRank
[10]). With the grammar-based model, a single frame-
work exists that ports many of the popular unlabeled
network analysis algorithms into the semantic network
domain.

The third contribution of this article is the presenta-
tion of these ideas within the context of the large-scale
semantic network data model called the Resource De-
scription Framework (RDF). There is an increasing need
to represent multi-relational data and furthermore, to an-
alyze it. By presenting the concepts of this article from
this technological standpoint, it is hoped that social net-
work researchers will get a fundamental understanding of
the benefit of this modeling domain that can support on
the order of 109 edge semantic networks.

The first half of this article will define a popular set of
geodesic metrics for unlabeled single-relational networks.
It will become apparent from these definitions, that the
more advanced metrics rely on the shortest path metric.
The second half of the article will present the grammar-
based model for calculating a semantically meaningful
shortest path in a semantic network. The other geodesics
follow from this definition.

II. GEODESICS IN SINGLE RELATIONAL
NETWORKS

This section will review a collection of popular geodesic
metrics used to characterize a vertex-to-vertex relation-
ship, a vertex, and a network. The following list enumer-
ates these metrics and identifies whether they are path,
vertex, or network metrics:

• in- and out-degree: vertex metric
• shortest path: path metric
• eccentricity: vertex metric
• radius: network metric
• diameter: network metric
• closeness: vertex metric
• betweenness: vertex metric.

It is worth noting that besides in- and out-degree, all
the metrics mentioned utilize a path function ρ : V ×V →

Q to determine the set of paths between any two vertices
in V . The premise of this article is that once a path
function is defined for a semantic network, then all of
the other metrics are directly derived from it. In the se-
mantic network path function, ρ : V ×V ×Ψ → Q returns
the number of paths between two vertices according to a
grammar Ψ.

Before discussing the grammar-based geodesic model
for semantic networks, this section will review the
geodesic metrics in the domain of single-relational net-
works.

A. In- and Out-Degree

The simplest structural metric for a vertex is the ver-
tex’s degree. While this is not a geodesic metric per se,
it is presented as the concept will become necessary in
the later section regarding semantic networks.

For directed networks, any vertex i ∈ V has both an
in-degree and an out-degree. The set of edges in E that
have i as either its in- or out-edge is denoted Γ− : V → E
and Γ+ : V → E, respectively. If

Γ−(i) = {(x, y) | (x, y) ∈ E ∧ y = i}

and

Γ+(i) = {(x, y) | (x, y) ∈ E ∧ x = i}

then, Γ−(i) is the subset of edges in E incoming to i
and Γ+(i) is the subset of edges outgoing from i. The
cardinality of the sets is the in- and out-degree of the
vertex, denoted |Γ−(i)| and |Γ+(i)|, respectively.

B. Shortest Path

The shortest path metric is the foundation for all other
geodesic metrics. This metric is defined for any two ver-
tices i, j ∈ V such that the sink vertex j is reachable
from the source vertex i in G1 [13]. If j is unreachable
from i, the shortest path between i and j is undefined.
The shortest path between any two vertices i and j in an
unweighted network is the smallest of the set of all paths
between i and j. If ρ : V × V → Q is a function that
takes two vertices and returns a set of paths Q where for
any q ∈ Q, q = (i, . . . , j), then the shortest path between
i and j is the min(

⋃
q∈Q |q| − 1), where min returns the

smallest value of its domain. The shortest path function
is denoted s : V × V → N with the function rule

s(i, j) = min

 ⋃
q∈ρ(i,j)

|q| − 1

 .

It is important to subtract 1 from the path length since
a path is defined as the set of edges traversed, not the set
of vertices traversed. Thus, for the path q = (a, b, c, d),
the |q| is 4, but the path length is 3.
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Note that p returns the set of all paths between i and
j. Of course, with the potential for loops, this function
could potentially return a |Q| = ∞. Therefore, in many
cases, it is important to not consider all paths, but just
those paths that have the same cardinality as the shortest
path currently found and thus are shortest paths them-
selves. It is noted that all the remaining geodesic metrics
require only the shortest path between i and j.

C. Eccentricity, Radius, and Diameter

The radius and diameter of a network require the de-
termination of the eccentricity of every vertex in V . The
eccentricity metric requires the calculation of |V | − 1
shortest path calculations of a particular vertex [15]. The
eccentricity of a vertex i is the largest shortest path be-
tween i and all other vertices in V such that the eccen-
tricity function e : V → N has the rule

e(i) = max

⋃
j∈V

s(i, j)

 ,

where max returns the largest value of its domain.
The radius of the network is the minimum eccentricity

of all vertices in V [27]. The function r : G→ N has the
rule

r(G1) = min

(⋃
i∈V

e(i)

)
.

Finally, the diameter of a network is the maximum
eccentricity of the vertices in V [27]. The function d :
G→ N has the rule

d(G1) = max

(⋃
i∈V

e(i)

)
.

D. Closeness and Betweenness Centrality

Closeness and betweenness centrality are popular net-
work metrics for determining the “centralness” of a ver-
tex. Closeness centrality is defined as the mean shortest
path between some vertex i and all the other vertices
in V [3, 16, 25]. The function c : V → R denotes the
closeness function and has the rule

c(i) =

∑
j∈V s(i, j)
|V |

.

Betweenness centrality is defined for a vertex in V [7,
14, 20]. The betweenness of i ∈ V is the number of
shortest paths that exist between all vertices j ∈ V and
k ∈ V that have i in their path divided by the total
number of shortest paths between j and k, where i 6=
j 6= k. If σ : V × V → Q is a function that returns the

set of shortest paths between any two vertices j and k
such that

σ(j, k) =
⋃

q∈p(j,k)

q : |q| − 1 = s(j, k)

and σ̂ : V × V × V → Q is the set of shortest paths
between two vertices j and k that have i in the path,
where

σ̂(j, k, i) =
⋃

q∈p(j,k)

q : (|q| − 1 = s(j, k) ∧ i ∈ q),

then the betweenness function b : V → R has the rule

b(i) =
∑

i 6=j 6=k∈V

σ̂(j, k, i)
σ(j, k)

It is worth noting that in [20], the author articulates
the point that the shortest paths between two vertices
is not necessarily the only mechanism of interaction be-
tween two vertices. Thus, the author develops a variation
of the betweenness metric that favors shortest paths, but
does not utilize only shortest paths in its betweenness
calculation.

III. SEMANTIC NETWORK GRAMMARS

A semantic network is a directed labeled graph. How-
ever, a semantic network is perhaps best interpreted in an
object-oriented fashion where complex objects (i.e. multi-
vertex elements) are connected to one another according
to various relationship types. While a particular human
is represented by a vertex, metadata associated with that
individual is represented in the vertices adjacent to the
human vertex (e.g. the human’s name, address, age, etc.).
In many instances, particular metadata vertices are sinks
(i.e. no outgoing edges). In other cases, the metadata of
an individual is another complex object such as the friend
of that human or the human’s employer.

The topological features of a semantic network are
represented by a data type abstraction called an ontol-
ogy (i.e. a semantic network schema). A popular se-
mantic network representation is the Resource Descrip-
tion Framework (RDF) [19]. RDF Schema (RDFS) is
a schema language for developing RDF ontologies in
RDF [9]. This article will present all of its concepts
from the perspective of RDF and RDFS primarily due
to the fact that these are standard data models with a
large application-base. However, these ideas can be gen-
eralized to any semantic network representation. The
first subsection will briefly introduce the concept of RDF
and RDFS before describing an ontology for designing
geodesic grammars.

A. Introduction to RDF/RDFS

The RDF data model represents a semantic network
as a triple list where the vertices and edges (both called
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resources) are Uniform Resource Identifiers (URI) [11],
blank nodes, or literals. If the set of all URIs is denoted
U , the set of all blank nodes is denoted B, and the set
of all literals is denoted L, then an RDF network is the
triple list Gn such that

Gn ⊆ ((U ∪B)× U × (U ∪B ∪ L)).

The first resource of a triple is called the subject, the
second is called the predicate, and the third is called the
object. A single triple τ ∈ Gn is denoted as τ = 〈s, p, o〉.

All URIs are namespaced such that the URI
http://www.lanl.gov#marko has a namespace of
http://www.lanl.gov# and a fragment of marko. In
many cases, for document and diagram clarity, a names-
pace is prefixed in such a way that the previous URI is
represented as lanl:marko. In this article, the names-
paces for RDF and RDFS will be prefixed as rdf and
rdfs, respectively.

Blank nodes are “anonymous” vertices and are not dis-
cussed in this article as they will not pertain to any of
the concepts presented. Literals are any resource that
denotes a string, integer, floating point, date, etc. The
full taxonomy of literal types is presented in [4].

In RDFS, every vertex is tied to some platonic cat-
egory representing its rdfs:Class using the rdf:type
property. Moreover, every edge label has domain/range
restrictions that determine the vertex types that the edge
labels can be used in conjunction with. Because the in-
stance of an ontology obeys the defined constraints of the
ontology, the modeler has an abstract representation of
the topological features of the semantic network instance
in terms of classes (vertices) and properties (edge labels).
For example,

〈lanl:hasFriend, rdfs:domain, lanl:Human〉
〈lanl:hasFriend, rdfs:range, lanl:Human〉

states that any resource of type lanl:Human can have a
friend that is only of type lanl:Human. Therefore, the
following three triples are legal according to the simple
ontology above:

〈lanl:marko, rdf:type, lanl:Human〉
〈lanl:jen, rdf:type, lanl:Human〉
〈lanl:marko, lanl:hasFriend, lanl:jen〉.

However, the three statements

〈lanl:marko, rdf:type, lanl:Human〉
〈lanl:fluffy, rdf:type, lanl:Dog〉
〈lanl:marko, lanl:hasFriend, lanl:fluffy〉

are not legal according to the ontology because
lanl:fluffy is a lanl:Dog and a lanl:Human cannot
befriend anything that is not a lanl:Human.

The ontology and legal instance of the previous exam-
ple are diagrammed in Figure 1. However, for the sake
of brevity and clarity of the diagram, the domain and

range properties of a class can be abbreviated as in Fig-
ure 2. The abbreviated ontological diagram will be used
throughout the remainder of this article. It is important
to note that both the RDFS ontology and RDF instance
network are represented in RDF and thus both instances
and ontology are contained within a single semantic net-
work.

lanl:marko lanl:jenlanl:hasFriend

lanl:Human lanl:hasFriend
rdfs:domain

rdfs:range

rdf:type rdf:type ontology
instance

FIG. 1: The full representation of all triples in the ontology
and instance layers of the semantic network example.

lanl:marko lanl:jenlanl:hasFriend

lanl:Human

lanl:hasFriend

rdf:type rdf:type ontology
instance

FIG. 2: The abbreviated representation of the ontology and
instance layers of the semantic network example.

Finally, an important concept in RDFS is rdfs:Class
and rdf:Property subsumption as denoted by the
rdfs:subClassOf and rdfs:subPropertyOf predi-
cates, respectively. With the rdfs:subClassOf and
rdfs:subPropertyOf predicates, it is possible to gener-
ate concept hierarchies. For the purposes of this article,
it is only necessary to understand that subsumption is
transitive such that if

〈lanl:fluffy, rdf:type, lanl:Dog〉
〈lanl:Dog, rdfs:subClassOf, lanl:Mammal〉
〈lanl:Mammal, rdfs:subClassOf, lanl:Animal〉,

then it can be inferred that because lanl:fluffy is
a lanl:Dog, lanl:fluffy is also both a lanl:Mammal
and a lanl:Animal. Transitivity exists for the
rdfs:subPropertyOf predicate as well.

B. Defining a Grammar

This subsection will define the RDFS ontology for cre-
ating a grammar. Any user-defined grammar must obey
this ontology. The grammar constructed from this on-
tology determines the meaning of the value returned by
a “semantically aware” geodesic function. Any grammar
instance is denoted Ψ ⊆ ((U ×B)× U × (U ×B × L)).
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The instance of a grammar is represented in RDF and
the ontology of the grammar is represented in RDFS.
Figure 3 diagrams the ontology of the geodesic gram-
mar, where edges represent properties whose tail is the
domain of the property and whose head is the range of
the property. Furthermore, the dashed edges denote the
RDFS property rdfs:subClassOf.

rwr:Context

rwr:hasAttributes rwr:hasRules

rwr:Attributes

rwr:hasAttribute

rdf:Bag

rwr:Rules

rwr:Not

rdfs:Container
Membership
Property

rwr:Rule

rwr:Path
Count

rwr:Traverse

rwr:Edge

rwr:hasEdge

rwr:Context

rwr:steps

rwr:forResource

rdfs:Resource

rwr:hasObject

rwr:Is

rdfs:Literal

rwr:steps

rwr:Attribute

rwr:Context

rwr:hasSubject
rwr:hasPredicate

rwr:InEdge rwr:OutEdge

rdf:Property

rwr:Exit
Context

rdf:Bag rdf:Seq

rwr:Entry
Context

rwr:NotEver

rdfs:Literal

rwr:steps

FIG. 3: The ontology for a geodesic path grammar.

The remainder of this section will present an informal
review of the major components of the grammar ontol-
ogy. The next section will formalize all aspects of the
resources diagrammed in Figure 3.

Grammar-based geodesics rely on a discrete walker.
The walker utilizes a Ψ grammar to constrain its path
through Gn. The combination of a walker and a Ψ is a
breadth-first search through a particular sub-network of
Gn. That sub-network is abstractly represented by Ψ,
but not fully realized until after the execution of Ψ on
Gn.

Any Ψ is a collection of rwr:Context resources con-
nected to one another by rwr:Traverse resources. Each
rwr:Context is an abstract representation of a legal step
along a path that a walker can traverse on its way from
source vertex i to sink vertex j. An rwr:Context has
an associated rwr:forResource property. The object of
that property determines the set of legal vertices that
that the rwr:Context can resolve to. Only when a
walker utilizes a grammar do the rwr:Contexts have a
resolution to a particular vertex in Gn. rwr:Context

resolution is further constrained by the rwr:Rules and
rwr:Attributes of the rwr:Context in Ψ.

Two important data structures that are used in a
grammar are the rdf:Bag and rdf:Seq. An rdf:Bag
is an unordered set of elements where each element of
the rdf:Bag is the object of a triple with predicate
rdf:li. An rdf:Seq is an ordered set of elements
where each element of the rdf:Seq is the object of a
triple with a predicate that is an rdfs:subPropertyOf
rdfs:ContainerMembershipProperty (i.e. rdf: 1,
rdf: 2, rdf: 3, etc.).

There exist two rwr:Rules (an rdfs:subClassOf
rdf:Seq): rwr:PathCount and rwr:Traverse. The
rwr:PathCount rule instructs the walker to record the
vertex, edge, and directionality in the ordered path
set that is ultimately returned by the grammar-based
geodesic algorithm. The rwr:Traverse rule instructs
the walker to select some outgoing or incoming edge of
its current vertex as defined by the set of rwr:Edges as-
sociated with the rwr:Traverse rule. If more than one
choice should exist for the walker, the walker chooses
both by cloning itself and having each clone take a unique
branch of the path.

There exist three rwr:Attributes (an
rdfs:subClassOf rdf:Bag): rwr:NotEver, rwr:Is,
and rwr:Not. In some instances, when traversing to
a new vertex, the walker must respect the fact that it
has already seen a particular vertex. The rwr:NotEver
attribute ensures that the resolution of the rwr:Context
is not a previously seen vertex, thus preventing infinite
loops. The rwr:Is attribute allows the walker to explore
an area around a particular vertex (i.e. other paths
not directly associated with the return path) while still
ensuring that the walker returns to the original vertex.
Finally, the rwr:Not attribute ensures that the walker
does not return to a particular previously seen vertex.

If vertex i is the head of the path (i.e. source), then
it is defined in an rwr:EntryContext. If vertex j is
the tail of the path (i.e. sink), then it is defined in an
rwr:ExitContext. The purpose of the walker is to move
from source to sink in Gn by respecting the rwr:Rules
and rwr:Attributes of the rwr:Contexts that it tra-
verses in Ψ. Figure 4 diagrams the relationship between
a walker, its grammar Ψ, and its network instance Gn.
The grammar acts as a user-defined “program” that the
walker executes, where the language of that program is
defined by the grammar ontology.

The next section will formalize the grammar.

IV. FORMALIZING THE GRAMMAR-BASED
MODEL

Once a grammar has been defined according to the
constraints of the ontology diagrammed in Figure 3, the
path function ρ : V × V ×Ψ → Q can be executed. The
function ρ returns the set of all paths between any two
vertices i, j ∈ V . This section will define the rules by
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Semantic
Newtork

Grammar
traversestraverses

Grammar
Ontology

Network
Ontology

rdf:type rdf:type

Gn
Ψ

p

FIG. 4: A walker p walks both Ψ and Gn.

which ρ interprets its domain parameters and ultimately
derives a path set.

The grammar-based model requires the walker to
query Gn such that it can determine the set of legal
vertices and edges that it can traverse. Moreover, the
walker must be able to query Ψ in order to know which
rwr:Rules and rwr:Attributes to respect. The mecha-
nism by which the walker queries Gn and Ψ is called the
symbol binding model. For example, the following query

X ={?x | 〈?x, lanl:hasFriend, lanl:jhw〉 ∈ Gn

∧ 〈?x, lanl:worksFor, lanl:LANL〉 ∈ Gn}

would fill the unordered set X with all people that have
lanl:jhw as their friend and who work for lanl:LANL.
A more advanced query example is

X ={?x, ?y | 〈?x, lanl:hasFriend, ?y〉 ∈ Gn

∧ 〈?y, lanl:worksFor, lanl:LANL〉 ∈ Gn

∧ 〈?x, lanl:worksFor, lanl:PNNL〉 ∈ Gn}.

In the above query, the set X is an unordered set of
ordered pairs of friends where one of the friends works at
lanl:LANL and the other works at lanl:PNNL.

A. Initializing a Walker p

The path function ρ is supplied with a start vertex i,
an end vertex j, and a grammar Ψ. Upon the execution
of ρ, a single walker, denoted p, is created and added to
the set of walkers P , where at n = 0, |P | = 1, and n ∈ N
is in discrete time. The set P may increase in size over
the course of the algorithm as clone particles are created
where multiple legal options exist for traversal.

Every walker has two ordered multi-sets associated
with it: gp and qp. The multi-set gp is an ordered set of
vertices, edges, and edge directions traversed by p, where
gp

n is the vertex location of p at time step n. The element
gp

n′ denotes the predicate (i.e. edge label) used by p to tra-
verse to gp

n and the element gp
n′′ denotes the directionality

of the predicate used in that traversal. For example, sup-
pose gp = (lanl:marko, lanl:hasFriend, +, lanl:jhw,
lanl:hasFriend, +, lanl:norman). In the presented
path, gp

0 = lanl:marko, gp
1′ = lanl:hasFriend, gp

1′′ =
+, gp

1 = lanl:jhw, gp
2′ = lanl:hasFriend, gp

2′′ = +, and

gp
2 = lanl:norman. Note that gp

0′ = ∅ and gp
0′′ = ∅. The

example path is diagrammed in Figure 5.

lanl:marko lanl:jenlanl:hasFriend lanl:hasFriend lanl:norman

FIG. 5: An example of a gp path.

The multi-set qp is an ordered set of vertices, edges,
and directionalities that are recorded by p along its path
through Gn. The set qp maintains the same indexing
schema of ′ and ′′ as gp. The main distinction between
gp and qp is that qp is the returned path, not the actual
path of p. If p reaches its destination rwr:ExitContext
in Ψ and thus vertex j ∈ V , then the set qp is one of
the elements in the return set Q of the path function ρ.
Thus, for the grammar-based geodesic model,

Q =
⋃
p∈P

qp : (qp
0 = i ∧ qp

|qp|−1
3

= j).

The |qp|−1
3 is necessary to transform the length of qp into

an index in n time (due to the ′ and ′′ notation conven-
tion) because the set qp includes edge labels and edge
directionality as well as vertices.

B. Entering Gn and Ψ

The initial walker p starts its journey at the
rwr:EntryContext in Ψ and the vertex i in V . Thus,
gp
0 = i. As in Figure 3, the rwr:EntryContext

must be the domain of the predicate rwr:forResource
whose range is i. An rwr:EntryContext must have no
rwr:Attributes and must have the rule rwr:PathCount
such that qp

0 = i.
From i ∈ V and the rwr:EntryContext in Ψ, p will

move to some new k ∈ V and some new rwr:Context in
Ψ. Before discussing the rwr:Traverse rule, it is neces-
sary to discuss the attributes that determine the set of
legal edges that can be traversed by p.

C. The rwr:NotEver Attribute

The rwr:NotEver attribute is useful for ensuring that
path loops do not occur and thus cause the path algo-
rithm to run indefinitely. If p is trying to traverse to a
new rwr:Context at n+1 and that rwr:Context has the
rwr:NotEver attribute, then

X(p)n+1 =
⋃

m≤n

gp
m.

The set X(p)n+1 is the set of vertices to which p can
legally resolve the n + 1 rwr:Context. Note that the
definition of X(p) does not include edge labels or edge
directionality, only vertices. This is due to the fact that
the time index (n) of gp are not superscripted with ′ or
′′.
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D. The rwr:Is Attribute

The rwr:Is attribute guarantees that the vertex re-
solved to by a particular rwr:Context is a vertex seen
on a previous step of the walker’s gp. For instance, sup-
pose that a walker must check that a particular individ-
ual works for the Los Alamos National Laboratory before
traversing a different edge label of lanl:jhw. This prob-
lem is diagrammed in Figure 6.

lanl:jhw lanl:marko

lanl:LANL

lanl:worksFor lanl:worksFor

1 3

2

FIG. 6: rwr:Is can be used to ensure that a walker back-
tracks.

In Figure 6, the walker is at lanl:jhw at time step
n = 1. At time step n = 2, the walker must check to
see if lanl:jhw lanl:worksFor lanl:LANL. To do so,
the walker will traverse lanl:worksFor edge. Upon val-
idating the lanl:LANL, the walker must return back to
lanl:jhw. Therefore, the walker will take the inverse of
the lanl:worksFor edge (i.e. oppose the directionality of
the edge). However, despite the existence of an inverse
lanl:worksFor edge to lanl:marko, the walker should
not clone itself. Therefore, in order to specify that the
walker must return to lanl:jhw, it is important to use
the rwr:Is attribute such that only a single walker p
returns to lanl:jhw at n = 3 and P is unchanged.

The set of all legal vertices that an rwr:Context can
resolve to is defined by the set O, where if ψ is the
rwr:Context at n+1 that maintains an rwr:Is attribute,
then

M ={?m | 〈ψ, rwr:hasAttributes, ?x〉 ∈ Ψ
〈?x, rwr:hasAttribute, ?y〉 ∈ Ψ
〈?y, rdf:type, rwr:Is〉 ∈ Ψ
〈?y, rwr:step, ?m〉 ∈ Ψ}

and

O(p)n+1 =
⋃

m∈M

gp
n−m.

The set O(p) ⊆ V is the set of legal vertex resources that
the n + 1 rwr:Context ψ can resolve to and is used in
the calculation of an rwr:Traverse at n.

E. The rwr:Not Attribute

The rwr:Not attribute determines the set of vertices
that the n + 1 rwr:Context cannot resolve to. This is

similar to the X(p) set, except that it is for some n,
not for all n in the past. For example, suppose that
the walker must only consider an article co-authorship
network. This problem is diagrammed in Figure 7.

lanl:johan lanl:marko

doi:10.1007/
s11192-006-0176-z

lanl:authored lanl:authored

1 3

2

FIG. 7: rwr:Not can be used to ensure that a walker does not
backtrack.

In Figure 7, the walker must determine if the arti-
cle doi:10.1007/s11192-006-0176-z has at least 2 co-
authors. In order to do so, the walker must not return
to lanl:jbollen at n = 3. If

M ={?m | 〈ψ, rwr:hasAttributes, ?x〉 ∈ Ψ
〈?x, rwr:hasAttribute, ?y〉 ∈ Ψ
〈?y, rdf:type, rwr:Not〉 ∈ Ψ
〈?y, rwr:step, ?m〉 ∈ Ψ}

and

X(p)n+1 =
⋃

m∈M

gp
n−m,

then X(p) ⊆ V is the set of vertices that the n + 1
rwr:Context ψ must not resolve to and is used in the
calculation of an rwr:Traverse at n.

F. The rwr:Traverse Rule

The rwr:Traverse rule is perhaps the most impor-
tant aspect of the grammar. An rwr:Traverse rule of
an rwr:Context determines the next rwr:Context that
p should traverse to in Ψ as well as the next k ∈ V . It
utilizes the previously defined attribute sets X(p), O(p),
and X(p) in its calculation. An rwr:Traverse rule is
composed of a set of rwr:Edges that can be either incom-
ing or outgoing. Thus, unlike in directed networks, the
path of a p is not constrained by the directionality of the
edges. The Γ functions are defined as Γ : V ×P → G and
t is the rwr:Traverse rule of the current rwr:Context
ψ. Therefore, if

Yout ={?y | 〈t, rwr:hasEdge, ?y〉 ∈ Ψ
〈?y, rdf:type, rwr:OutEdge〉 ∈ Ψ},

Yin ={?y | 〈t, rwr:hasEdge, ?y〉 ∈ Ψ
〈?y, rdf:type, rwr:InEdge〉 ∈ Ψ},
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Γ+(a, p) =
⋃

y∈Yout

{〈a, ?ω, ?b〉 | 〈a, ?ω, ?b〉 ∈ Gn

∧ 〈y, rwr:hasPredicate, ?w〉 ∈ Ψ
∧ (〈?ω, rdfs:subPropertyOf, ?w〉 ∈ Gn

∨ ?ω =?w)
∧ 〈y, rwr:hasObject, ?x〉 ∈ Ψ
∧ 〈?x, rwr:forResource, ?z〉 ∈ Ψ
∧ (〈?b, rdf:type, ?z〉 ∈ Gn ∨ ?b =?z)
∧ (O(p)n+1 = ∅ ∨ ?b ∈ O(p)n+1)

∧ ?b /∈ X(p)n+1 ∧ ?b /∈ X(p)n+1},

and

Γ−(a, p) =
⋃

y∈Yin

{〈?b, ?ω, a〉 | 〈?b, ?ω, a〉 ∈ Gn

∧ 〈y, rwr:hasPredicate, ?w〉 ∈ Ψ
∧ (〈?ω, rdfs:subPropertyOf, ?w〉 ∈ Gn

∨ ?ω =?w)
∧ 〈y, rwr:hasSubject, ?x〉 ∈ Ψ
∧ 〈?x, rwr:forResource, ?z〉 ∈ Ψ
∧ (〈?b, rdf:type, ?z〉 ∈ Gn ∨ ?b =?z)
∧ (O(p)n+1 = ∅ ∨ ?b ∈ O(p)n+1)

∧ ?b /∈ X(p)n+1 ∧ ?b /∈ X(p)n+1},

then

Γ(a, p) = Γ+(a, p) ∪ Γ−(a, p),

where Γ(a, p) is the set of legal edges that p can tra-
verse given its current V location of a and Ψ location ψ.
Note that the set Γ(a, p) has a unique set of elements. If
Γ(a, p) = ∅, then p halts.

Unlike the grammar-based eigenvector model of [22],
the geodesic requires the searching of all legal paths. In
line with a breadth-first search, all network branches are
checked. Thus, for every triple τ ∈ Γ(a, p), a clone walker
is created and added to P . This idea will be made more
salient in the example to follow.

G. The rwr:PathCount Rule

The rwr:PathCount rule is the mechanism by which
values in gp get appended to qp, where qp is the path
returned by p at the end of the algorithm’s execution.
The rule instructs p to append a path segment in gp to
the ordered multi-set qp. If a particular rwr:Context ψ
has the rwr:PathCount rule with the rwr:step x such
that x ∈ N, then p will append gp

n−x′ , g
p
n−x′′ , and gp

n−x

to qp such that none of the elements copied from gp = ∅
and they are added in their respective order.

The next section will present the aforementioned rules
and attributes within the framework of a particular so-
cial network ontology in order to demonstrate a practical
application.

V. GEODESICS IN A SEMANTIC SOCIAL
NETWORK

This section will present two examples of the previ-
ously presented ideas to the problem of calculating se-
mantically meaningful geodesic functions within a se-
mantic social network. Figure 8 presents an RDFS net-
work ontology that will be used throughout the remain-
der of this section. Note that the domain and range of
the properties are denoted by the tail and head of the
edge, respectively.

lanl:Human

lanl:Organizationlanl:Position

lanl:hasPosition

lanl:hasFriend

lanl:worksFor

lanl:contacted

FIG. 8: An example semantic social network ontology.

Figure 9 diagrams an example instance that respects
the ontological constraints diagrammed in Figure 8.

lanl:marko

lanl:johan lanl:jhw lanl:norman

lanl:LANL lanl:REFR

lanl:Researcher

lanl:Consultant

lanl:worksFor

lanl:worksFor

lanl:worksFor lanl:worksFor

lanl:hasFriend lanl:hasFriend

lanl:hasFriend lanl:hasFriend

lanl:hasFriend

lanl:hasFriend

lanl:hasFriend

lanl:hasPosition

lanl:hasPosition

lanl:hasPosition

lanl:hasPosition

Gn

lanl:contacted

FIG. 9: An example semantic social network instance.

The first example will demonstrate how to deter-
mine all the non-recurrent paths between the vertex
lanl:johan and lanl:norman such that only friendship
paths are taken, but those intervening friend vertices
must have a lanl:Researcher position. The second ex-
ample will present a grammar that simulates an unla-
beled network path calculation by ignoring vertex types
and edge labels.

Note that the two examples presented are for locating
all paths between a source and a sink vertex. This is for
demonstration purposes only. If one required only the
shortest path, once a path between the source and sink
has been found, the algorithm can halt. In unweighted
networks, using a breadth-first search algorithm, the first
path discovered is always the shortest path [12].
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A. A Non-Recurrent Paths Grammar

Figure 10 presents a geodesic grammar that determines
the set of all non-recurrent paths between lanl:johan
and lanl:norman according to lanl:hasFriend relation-
ships where every friend along the walker’s path must be
a lanl:Researcher.

lanl:johan_0

rwr:PathCount_0

rwr:Traverse_0

lanl:Human_1lanl:hasFriend

rwr:Is_3

rwr:Traverse_1

lanl:hasPosition lanl:Researcher_2

rwr:Traverse_2

lanl:hasPosition

lanl:Human_3

"1"

rwr:PathCount_3

rwr:Traverse_3

lanl:hasFriend

lanl:norman_4

lanl:hasFriend

rwr:NotEver_1

+

-

+

+

+

lanl:hasFriend

+
"2"

rwr:PathCount_4

"0"

"0"

Ψ

FIG. 10: A grammar to determine all non-recurrent
lanl:hasFriend paths from lanl:jbollen to lanl:norman.

Note the diagrammatic conventions used to repre-
sent a grammar. Every rwr:Context, rwr:Rule, and
rwr:Attribute has a # after its type. This is to de-
note that each representation of the same rwr:Context,
rwr:Rule, or rwr:Attribute is, in fact, a distinct ver-
tex in Ψ. The label of the rwr:Context is the object
of the rwr:forResource property minus the #. Fur-
thermore, the dashed contexts are rwr:EntryContexts
and the dotted contexts are rwr:ExitContexts. Thus,
lanl:johan 0 is the source context and lanl:norman 4
is the sink context in Ψ, and where lanl:johan is the
source vertex and lanl:norman is the sink vertex in Gn.

The rwr:Rules of an rwr:Context are represented
in their order of execution from bottom to top. The
rwr:Attributes are associated, in no particular order,
with their respective rwr:Context. If a rule or attribute
requires a literal rwr:step specification, that literal is
appended to its respective rule or attribute. The + or
- symbol on the head of an edge denotes whether the
rwr:Traverse edge is an rwr:OutEdge or rwr:InEdge,
respectively.

At n = 0, gp0
0 = lanl:johan and P = {p0}. The

first rule to be executed is the rwr:PathCount 0
rule in which p0 will register gp0

0 in qp such that
qp0
0 = gp0

0 . After adding lanl:johan to qp0 , the
walker will execute the rwr:Traverse 0 rule. The
rwr:Traverse 0 rule yields a Γ(lanl:johan, p0) =
{〈lanl:johan, lanl:hasFriend, lanl:marko〉}. If
lanl:norman was a friend of lanl:johan, then that
edge would have been represented in Γ(lanl:johan, p0)
as well. Because lanl:marko /∈ gp0 , the rwr:NotEver 1
attribute of the Human 1 context has an X(p0)1 = ∅.

At n = 1, the current path of p0 is gp0 =
(lanl:johan, lanl:hasFriend,+, lanl:marko) and the
current return path qp0 = (lanl:johan). There exists
only one rule at rwr:Human 1. The rwr:Traverse 1 rule
dictates that p0 take an outgoing edge from lanl:marko
to a lanl:Researcher position. Given that there is only
one edge that can be traversed, Γ(lanl:marko, p0) =
{〈lanl:marko, lanl:hasPosition, lanl:Researcher〉}.

At n = 2, the current path of p0 is gp0 = (lanl:johan,
lanl:hasFriend, +, lanl:marko, lanl:hasPosition,
+, lanl:Researcher) and the current return
path qp0 = (lanl:johan). The only rule of the
lanl:Researcher 2 context is to return the hu-
man that was last encountered as specified by
the rwr:Is 3 attribute of the next lanl:Human 3
context. Thus, Γ(lanl:Researcher, p0) =
{〈lanl:marko, lanl:hasPosition, lanl:Researcher〉}.

At n = 3, the current path of p0 is gp0 = (lanl:johan,
lanl:hasFriend, +, lanl:marko, lanl:hasPosition,
+, lanl:Researcher, lanl:hasPosition, –,
lanl:marko). Given the rwr:PathCount 3 rule with a
rwr:step of 2, qp0 = (lanl:johan, lanl:hasFriend,
+, lanl:marko). The rwr:Traverse 3 rule
provides a Γ(lanl:marko, p0) with two edges
such that Γ(lanl:marko, p0) = (〈lanl:marko,
lanl:hasFriend, lanl:jhw〉, 〈lanl:marko,
lanl:hasFriend, lanl:norman〉). Note that the
edge 〈lanl:marko, lanl:hasFriend, lanl:johan〉
does not exist in Γ(lanl:marko, p0) because of the
rwr:NotEver 1 attribute at the lanl:Human 1 context
(i.e. X(p0)4 = {lanl:johan, lanl:marko}). Because
two edges exist in Γ(lanl:marko, p0), p0 is cloned such
that P = {p0, p1}, gp0 = gp1 , and qp0 = qp1 . The walker
p0 will take one edge and p1 will take the other edge.

At n = 4, p1 will be at lanl:norman in Gn and
thus at an rwr:ExitContext in Ψ. However, be-
fore p1 halts, rwr:PathCount 4 is executed such that
Q = {qp1} = {(lanl:johan, lanl:hasFriend, +,
lanl:marko, hasFriend, +, lanl:norman)}. At the
completion of rwr:PathCount 4 there are no other rules
to execute and thus p1 halts. The walker p0, on the other
hand, will be at lanl:jhw at n = 4. It is not until n = 7
that p0 arrives at lanl:norman.

At n = 7, qp0 = (lanl:johan, lanl:hasFriend,
+, lanl:marko, lanl:hasFriend, +, lanl:jwh,
lanl:hasFriend, +, lanl:norman). At n = 7, the gram-
mar is complete and |Q| = 2.

The shortest path of Q is defined as the function s :
V × V ×Ψ → N, where

s(i, j,Ψ) = min

 ⋃
q∈ρ(i,j,Ψ)

|q| − 1
3

 .

The 1 must be subtracted from |q| in order to not include
source vertex i as a step and then must be divided by 3 so
as to avoid the inclusion of the edge label and direction-
ality of the edge in the path length calculation. In the
example presented, the shortest “researcher-constrained
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friendship” path is 2. From s, it is possible to generate
all other geodesic functions as defined in Section II.

B. A Grammar to Simulate Unlabeled Geodesics

This section presents another example of the grammar-
based geodesic algorithm. In this example, the grammar
presented is equivalent to removing the edge labels and
directionality from the semantic network and calculating
a traditional geodesic metric on it. Figure 11 presents the
grammar where, in RDFS, rdfs:Resource is the base
type of all resources (vertices and edge labels). Thus, all
rwr:Contexts and rwr:Edges can legally resolve to any
vertex and edge label, respectively.

lanl:johan_0

rwr:PathCount_0

rwr:Traverse_0

rdfs:Resource_1rdfs:Resource

rwr:Traverse_1

rdfs:Resource

lanl:norman_2

rwr:NotEver_1

+

- +
rdfs:Resource

+

rwr:PathCount_2

"0"

"0"
-

-

rwr:PathCount_1 "0"

rdfs:Resource

+
-Ψ

FIG. 11: An unconstrained grammar to determine all non-
recurrent paths from lanl:jbollen to lanl:norman.

The grammar in Figure 11 will determine the set
of all non-recurrent paths between lanl:johan and
lanl:norman such that any edge type can be traversed
to any vertex type. The central rwr:Context is the
rdfs:Resource 1 context. A walker will loop over
rwr:Resource 1 until it can find an edge to make the
final traversal to lanl:norman. Note the use of both
rwr:OutEdges (+) and rwr:InEdges (-). With both
edges accessible, the walker can walk in any direction on
the network. Thus, this grammar is equivalent to execut-
ing a geodesic on an undirected and unlabeled version of
the semantic network. Finally, the grammar will produce
no recurrent paths because of the rwr:NotEver 1 rule.

Given this Ψ and the original social network instance
Gn diagrammed in Figure 9, the shortest path be-
tween lanl:johan and lanl:norman is (lanl:johan,
lanl:contacted, –, lanl:norman) with a path length
of 1. To contrast, in the first example when the
walker’s path was constrained to researcher friendship re-
lationships, the shortest path between lanl:johan and
lanl:norman was 2.

VI. ANALYSIS

The semantic network is an unweighted network.
Thus, determining the shortest path between any two

vertices is best solved by a breadth-first algorithm. The
grammar-based walker, through cloning, is analogous to
a breadth-first search through the network. However,
not all edges are considered by the walker and thus, the
running time of the algorithm is less than or equal to
O(|V | + |Gn|). The determination of the running time
of the algorithm is grammar dependent. In order to cal-
culate the running time of a particular grammar, it is
important to calculate the number of vertices and edges
of the grammar-specified types in Gn. In the worst case
situation, the walker population P will have traversed all
vertices and edges from the source to ultimately locate
the sink. However, because the network is unweighted,
once the sink has been found by a single p ∈ P , the
shortest path has been determined so the algorithm is
complete.

VII. CONCLUSION

The digital footprint left by individuals as they go
about their lives interacting with each other and worldly
and conceptual artifacts has created a prevalence of large-
scale multi-relational data sets. This article has pre-
sented an introduction to the standards used to represent
such data sets in the computer, library, and biological
sciences (e.g. RDF) [5, 21, 24], as well as a technique to
port some of the most fundamental network analysis al-
gorithms into this large-scale and multi-relational realm.

There currently exist many technologies to support
large-scale semantic network models represented accord-
ing to the RDF specification. High-end modern-day
triple stores support on the order of 109 triples [17].
While many centrality algorithms are costly on large net-
works, by restricting the search to semantically meaning-
ful subsets of the full semantic network, as defined by a
grammar, geodesic metrics can be reasonably executed
on even the most immense and complex of data sets.

With the grammar-based technique presented in this
article, the complete range of geodesic metrics are made
available for semantic network analysis. It is the hope
that with RDF technology, the technique presented in
this article, and the technique for calculating the pri-
mary eigenvector of a network as presented in [22], social
network researchers will be able to confidently move into
the compute intensive arena of billion edge semantic net-
works.
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