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In spite of its tremendous value, metadata is generally sparse and incomplete, thereby hampering

the effectiveness of digital information services. Many of the existing mechanisms for the automated

creation of metadata rely primarily on content analysis which can be costly and inefficient. The

automatic metadata generation system proposed in this article leverages resource relationships

generated from existing metadata as a medium for propagation from metadata-rich to metadata-

poor resources. Because of its independence from content analysis, it can be applied to a wide

variety of resource media types and is shown to be computationally inexpensive. The proposed

method operates through two distinct phases. Occurrence and cooccurrence algorithms first gener-

ate an associative network of repository resources leveraging existing repository metadata. Second,

using the associative network as a substrate, metadata associated with metadata-rich resources is

propagated to metadata-poor resources by means of a discrete-form spreading activation algorithm.

This article discusses the general framework for building associative networks, an algorithm for

disseminating metadata through such networks, and the results of an experiment and validation

of the proposed method using a standard bibliographic dataset.
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1. INTRODUCTION

Resource metadata plays a pivotal role in the functionality and interoperability
of digital information repositories. However, in spite of its value, high-quality
metadata is difficult to come by [Duval et al. 2002]. Ward [2003] demonstrates
that although as many as 15 possible metadata properties can theoretically be
included in the widely used Dublin Core standard,1 few are frequently used in
collections whose metadata are generally created by the authors themselves.2

The problem of poor and incomplete metadata is expected to worsen as repos-
itories are applied to materials collected beyond the traditional, centralized
methods of publication and start to obtain data from Web pages, blogs, per-
sonal multimedia collections, and collaborative tagging environments.

Metadata is a costly resource to create, maintain, and/or recover manually.
There has therefore been significant research on automated metadata genera-
tion (e.g., by extracting metadata from the content of resources). Natural lan-
guage processing [Yang and Lee 2005] and document image analysis techniques
[Giurida and Shek 2000; Sebastiani 2002; Han et al. 2003; Mao et al. 2004]
may extract keywords, subject categories, author, and citations (e.g., CiteSeer3)
from manuscripts. Furthermore, in Greenberg [2004], two metadata genera-
tors are demonstrated that successfully harvest and extract metadata from
existing resource source and content. Such content-based techniques are much
less efficient for multimedia resources, for example, video, music, images, and
datasets. Reliable content analysis for such data is still an active research area
and existing methods generally yield little content-related metadata. In addi-
tion, content-based approaches can be prohibitively expensive in computational
terms [Kuwano et al. 2004].

For the reasons outlined above, methods for the generation of metadata that
do not rely on resource content have generated considerable interest. The re-
cent growth in applications of “folksonomies” (i.e., community-based “tagging”
[Mathes 2004; Golder and Huberman 2006]), has been, to some extent, inspired
by the shortcomings of existing metadata generation methods. Unfortunately,
human tagging works well only in situations where the number of participants
greatly exceeds the number of resources to be tagged and where there is no
requirement for controlled vocabularies or standardized metadata formats.

In this article, we propose a system for automated metadata generation that
starts from a common scenario: a heterogeneous repository contains resources
for which varying degrees of metadata are available. Some resources have been
imbued with rich, vetted metadata, whereas others have not. However, if it can

1The Dublin Core 1.1 specification is available at http://dublincore.org/documents/1999/07/

02/dces/
2The most frequently used are creator, identifier, title, date, and type.
3CiteSeer available at http://citeseer.ist.psu.edu/
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be assumed that resources that are “similar” (e.g., similar in publication venue,
authorship, date, citations) are more likely to have shared metadata, then the
problem of metadata generation can be reformulated as one of extrapolating
metadata from metadata-rich to related, but metadata-poor resources. This
article’s experiment focuses on identifying which aspects of metadata similarity
are best used to extrapolate resource metadata in a bibliographic dataset.

As a case in point, Naaman et al. [2005] describe a method to support the
annotation of personal photograph collections. Once a user has annotated a
photograph its metadata is automatically transferred to photographs taken
at similar times and locations. For example, a user photographs a group of
friends at 3:45 P.M. Another photograph is made at 3:47 P.M. Since the second
photograph was taken only two minutes after the first, it is likely that it depicts
a similar scene. The system therefore transfers metadata from photograph 1 to
photograph 2. Similarly, Prime-Claverie et al. [2005] propose a method of Web
page metadata propagation using cocitation networks. The general idea is that
if two Web pages cite other Web pages in common, then the probability that
they share similar metadata is higher. The user can later correct and augment
any transferred metadata.

The mentioned systems are strongly related to collaborative filtering
[Herlocker et al. 2004]. Collaborative filtering systems are commonly employed
in online retail systems to recommend items of interest to individual users. Us-
ing the principle that similar users are more likely to appreciate similar items,
users are recommended items that are missing from their profiles but occur
in the profiles of similar users. The collaborative filtering process can thus
be regarded as an instance of metadata propagation. If users are considered
resources and their profiles are considered resource metadata, it can be said
that collaborative filtering systems “recommend” metadata from one resource
to another based on resource similarity.

A generalization of the above metadata propagation systems can be made in
terms of the following elements:

(1) A mechanism to generate resource relations, that is, assess their similarity.

(2) The determination of a metadata-rich subset of the repository’s collection
that can serve as a reference set.

(3) A means of propagating metadata from the metadata-rich reference set
to a metadata-poor subset of the collection using the established resource
relations as a substrate.

Such systems for the generation of metadata can be said to operate on a
“Robin Hood” principle; they take from metadata-rich resources and give to
metadata-poor resources, with the exception that metadata is not a zero-sum
resource. This mode of operation has a number of desirable properties. First,
it reduces the need for the costly generation of metadata; metadata is auto-
matically extrapolated from an existing metadata-rich reference collection to a
metadata-poor subset. Second, resource relations can be defined independent
of content and metadata extrapolation can thus be implemented for wide range
of heterogeneous resources, for example, audio, video, and images.
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Fig. 1. System outline.

This article outlines a proposal for a metadata propagation system designed
for scholarly repositories that takes advantage of the multiple means by which
two resources can be related (e.g. cocitation, citation, coauthor, cokeyword, etc.).
Figure 1 presents the outline of the proposed system’s components and process-
ing stages. First, resource metadata is extracted from the collection of a repos-
itory. Second, an associative multirelational network (i.e., a directed labeled
graph) of resource relations is derived from a subset of the available metadata.
Third, a metadata-rich subset of the collection is selected to serve as a reference
data set. Fourth, and finally, metadata is propagated (i.e., extrapolated) from
the metadata-rich reference set to all other metadata-poor resources over the
associative network of resources after which the repository is updated. Human
validation can vet the results of the metadata extrapolation before insertion
into the repository occurs.

It is important to emphasize that this system requires the existence of some
preliminary metadata both for the construction of resource relations and for
metadata propagation. Furthermore, the quality or accuracy of the preliminary
metadata is important in ensuring successful results (i.e., to avoid a “garbage
in, garbage out” scenario). However, the metadata being propagated can be dif-
ferent from the metadata used to generate resource relations. For instance, in
the manuscript domain, the propagation of keyword metadata may be most ef-
ficient along resource relations derived from citation metadata. Therefore, two
aspects affect the efficiency of metadata propagation: the type of resource rela-
tions and the algorithm used to propagate metadata. It is important to note that
no new metadata values are created in the model proposed in this article. While
it is important for resources to maintain metadata, this method only propagates
preexisting metadata values and thus does not increase the discriminatory as-
pects that metadata should and generally does provide. While like resources
should have similar metadata, variations should also exist to make sure that a
resource’s metadata accentuates the unique characteristics of the resource.

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 7, Publication date: February 2009.
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This article will first discuss two algorithms to define sets of resource rela-
tions and represent these relations in terms of associative networks. It will then
formally define a metadata propagation algorithm that can operate on the basis
of the generated resource relations. Finally, the proposed metadata generation
system is validated using a modified version of the KDD Cup 2003 High-Energy
Physics bibliographic dataset (hep-th 2003).4 While it is theoretically possible
for this method to work on other resource types (e.g., video, audio) as it doesn’t
require an analysis of the content of the resources, only their metadata, it is
only speculated that the results of such a method would be viable in these other,
nontested, domains.

2. CONSTRUCTING AN ASSOCIATIVE NETWORK
OF REPOSITORY RESOURCES

An associative network is a network that connects resources according to some
measure of similarity. An associative network is represented by the data struc-
ture G = (N , E, W ) where N is the set of resources, E ⊆ N × N the set of
directed relationships between resources, and W is the set of weight values for
all edges such that |W | = |E|. Any edge ei, j ,μ with corresponding weight wi, j ,μ

expresses that there exists a directed weighted relationship constructed using
properties of type μ from resource ni to resource nj . The explicit representation
of μ is necessary because an associative network can be constructed according
to different properties (i.e., authorship, citations, keywords, etc.). As will be
demonstrated, certain network μ relationships are better (in terms of precision
and recall) at propagating certain property types than others.

The remainder of this section will describe two associative network con-
struction algorithms. One is based on occurrence metadata where a resource is
considered similar to another if there is a direct reference from one resource
to the other (e.g., a direct citation). The other algorithm is based on cooccur-
rence metadata and thus, considers two resources to be similar if they share
similar metadata. That is, two resources are deemed similar if the same meta-
data values occur in both their properties (i.e., same authors, same keywords,
same publication venue, etc.). Depending on how the repository represents its
metdata some property types will be direct reference properties and others will
have to be infered through indirect, cooccurence algorithms.

2.1 Occurrence Associative Networks

An associative network can be constructed if direct references connect one re-
source to another. The World Wide Web, for instance, is an associative net-
work based on occurrence data because a Web page makes a direct reference
to another Web page via a hyperlink (i.e., the href HTML tag). For manuscript
resources, occurrence information usually exists in citations. For instance, if re-
source ni references (i.e., cites) resource nj then their exists an edge ei, j ,cite. One
potential algorithm for determining the edge weight is to first determine how
many other citations resource ni currently maintains. That is, if resource ni also

4hep-th 2003 available at: http://www.cs.cornell.edu/projects/kddcup/datasets.html

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 7, Publication date: February 2009.



7:6 • M. A. Rodriguez et al.

Table I. Keyword Metadata for Resources ni and n j

Resource Keyword-1 Keyword-2 Keyword-3

ni repository metadata particle

n j images repository metadata

cites 50 other resources then resource ni is 1
50

as similar to nj , wi, j ,cite = 1
50

. Sim-
ilarly, if resource ni only cites resource nj , then the strength of tie to resource
nj is greater, wi, j ,cite = 1.0. The general equation is defined by Equation (1)
where the function meta(ni, cite) returns the set of all citations for resource ni.
This equation holds only if resource nj ∈ meta(ni, cite). Equation (1) makes use
of the μ notation in order to generalize the equation for use with any direct
reference property types.

wi, j ,μ = 1∣∣meta(ni, μ)
∣∣ : nj ∈ meta(ni, μ). (1)

The running time of the algorithm to construct an associative network based
on direct, occurrence property types is O(N ) since each resource must be
checked once and only once for direct reference to other resources.

2.2 Cooccurrence Associative Networks

Cooccurrence networks are created when resources share the same metadata
property values. For instance, if two resources share the same keyword, author,
or citation values then there exists some degree of similarity. For a cooccurrence
network the edge weight for any two resources, wi, j ,coμ and wj ,i,coμ, is a function
of the amount of metadata properties of type μ that ni and nj share in common.
A specific example of this could be a cokeyword associative network created
when two resources have similar keywords. For example, suppose the resource
nodes ni and nj have the list of keyword properties presented in Table I.

In Table I, resource ni and nj share two keywords in common, namely
repository and metadata. The edge weight between these two resources is
a function of the amount of keywords they share in common, Equation (2),
and the size of the keyword count of both resources. Therefore, according to
Equation (3), the edges connecting resource ni to nj and nj to ni have a weight
of wni ,nj ,cokey = wnj ,ni ,cokey = 0.5.

co(ni, nj , μ) = meta(ni, μ) ∩ meta(nj , μ), (2)

so that

wi, j ,coμ = wj ,i,coμ = |co(ni, nj , μ)|
[|meta(ni, μ)| + |meta(nj , μ)|] − |co(ni, nj , μ)| . (3)

Notice that the cooccurrence algorithm in Equation (3) returns a coμ repre-
sentation. This means for keyword properties, the returned weight is a cokey-
word similarity weight. Similarly, for authorship metadata, the returned weight
is a coauthorship weight. The running time of the algorithm to construct a
cooccurrence network is O( N2−N

2
) since each resource’s μ-properties must be

checked against every other resource’s μ-properties (N 2), except itself (−N ),
once and only once ( 1

2
).
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3. METADATA PROPAGATION ALGORITHM

Reconstructing the metadata for a metadata-poor collection of resources is de-
pendent not only on the associative network data structure, but also upon the
use of a metadata propagation algorithm. The algorithm chosen is a derivative
of the particle-swarm algorithm [Rodriguez 2007]. Particle-swarm algorithms
are a discrete form of the spreading activation algorithms [Collins and Loftus
1975; Cohen and Kjeldsen 1987; Crestani 1997; Crestani and Lee 2000; Huang
et al. 2004]. Because particles are indivisible entities, it is easy to represent
metadata properties as being encapsulated inside a particle. These metadata
particles are then propagated over the edges of the associative network. Upon
reaching a resource node that is missing a particular property type, the par-
ticle recommends its property value to the visited resource. This section will
formally describe the metadata propagation algorithm before discussing the
results of an experiement using a bibliographic dataset.

Every resource node in an associative network is supplied with a single par-
ticle, pi ∈ P , such that |P | = |N |. The particle pi encapsulates all the metadata
properties of a particular resource ni. Therefore, meta(ni, μ) ≡ meta(pi, μ) for
all μ. Particle pi has a reference to its current node ci ∈ N such that at t = 0,
ci = ni. The particle pi begins its journey (t = 0) at its home node, ni, and
traverses an outgoing edge of ni. Particle edge traversal is a stochastic process
that requires the outgoing edge weights of each node to form a probability dis-
tribution. Therefore, the set of outgoing edge weights of relation type μ for ni,
out(ni, μ), must be normalized as represented in Equation (4) and Equation (5).
Unlike Equation (3), for cooccurrence edges, these equations do not guarantee
that wi, j ,μ = wj ,i,μ.

wi, j ,μ = wi, j ,μ∑
∀k∈ei,k,μ

wi,k,μ

(4)

such that ∑

∀ j∈ei, j ,μ

wi, j ,μ = 1.0. (5)

The function θ (out(ni, μ)) is defined such that it takes a set of outgoing edges
of relation type μ of node ni and returns a single node nj based upon the outgoing
edge weight probability distribution, where ei, j ,μ ∈ out(ni, μ). This is how a
particle traverses an associative network.

The particle pi also has an associated energy value εi ∈ [0, 1]. Each time
an edge is traversed, the particle pi decays its energy content, εi, according
to a global decay value, δ ∈ [0, 1]. Particle energy decay over discrete time t is
represented in Equation (6). The rational for decay is based on the intuition that
the metadata property values of a particular particle become less relevant the
further the particle travels away from its source node (ci at t = 0). Therefore,
the further a particle travels in the network, the more that particle’s energy
value (or recommendation influence), ε, is decayed.

εi(t + 1) = (1 − δ)εi(t). (6)

The energy value of a particle defines how much recommendation influence a
particle’s metadata property values has on a visited metadata-poor node. Each
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Fig. 2. Particles recommending metadata information to a metadata-poor node.

time a particle traverses a node with missing metadata properties, it not only
recommends its metadata property values to that node, but also increments
the appropriate property value with its current energy value εi. In Figure 2,
at t = 0, before the propagation algorithm has been executed, resource n3 has
no keyword values. Therefore, when particle p1 reaches n3 at t = 1, particle
p1 recommends its keyword property values (keyword={swarm, algorithms}) to
node n3 with an influence of ε1 = 0.85. At t = 2, particle p2, with ε2 = 0.723,
recommends its keyword property (keyword={swarm}) to node n3. Notice that
the recommendation of the keyword property value “swarm” is reinforced each
time that property value is presented to n3.

The function of a single particle, pi, at a particular node, nj , is represented in
pseudo-code in Algorithm 1 where rec(nj , μ) returns the set of previous property
values to nj for a property of type μ.

If Algorithm 1 is called recommend Meta(nj , pi), then the full particle
propagation algorithm can be described by the pseudo-code in Algorithm 2.
The process of moving metadata particles through the associative network and
recommending metadata-poor nodes metadata property values continues until
some desired t is reached or all particle energy in the network has decayed to
0.0,

∑
∀i εi ∼= 0.0.

4. AN EXPERIMENT USING THE 2003 HEP-TH BIBLIOGRAPHIC DATASET

This section will present the results of the proposed metadata generation sys-
tem when attempting to reconstruct an artificially atrophied bibliographic
dataset. By artificially reducing the amount of metadata in the full biblio-
graphic dataset, it is possible to simulate a metadata-poor environment and
at the same time still be able to validate the results of the metadata propaga-
tion algorithm. The section is outlined as follows. First, the dataset used for
this experiment is described. Second, a short review of the validation metrics
(precision, recall, and F-score) is presented. Third, the various system param-
eters are discussed. Finally, the results of the experiment are presented as a
validation of the systems use for manuscript-based digital library repositories.
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Algorithm 1. Particle pi recommending metadata properties values to n j

Further research into other domains besides manuscripts will demonstrate the
validity of this method for other resource types.

The dataset used to validate the proposed system is a modified version
of the hep-th 2003 bibliographic dataset for high energy physics and theory
[McGovern et al. 2003].5 A modified version of the hep-th dataset, as used in
de Lin and Chalupsky [2004], is represented as a semantic network contain-
ing manuscripts (29,014), authors (12,755), journals (267), organizations (963),
keywords (40), and publication date in year/season pairs (60). These nodes are
then connected according to the following semantics:

—writes(a,m): author a wrote manuscript m
—date published(m,d ): manuscript m was published on date d
—organization of(a,o): author a works for organization o
—published in(m, j ): manuscript m was published in journal j

5The details of how the hep-th dataset was created can be found in the disseminated README

(http://kdl.cs.umass.edu/data/hepth/hepth-README.txt) of the dataset, and a few specifics are

quoted here: “Object and link properties such as title, authors, journal (if published), and various

dates were extracted from the abstract files with additional date information coming from the

slacdates citation tarball. Because institutions were often not presented in a consistent format,

the email domain of the submitter (if available) was used as a surrogate for institution. Because

many authors had no associated email address, domain information is not available for all authors.

Consolidation was performed on journal names, domains, and author names. A nominal amount of

hand-cleaning to correct spelling or formatting problems was also performed.”

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 7, Publication date: February 2009.
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Algorithm 2. Propagating metadata particles through an associative network of type μ

—cites(mx ,my ): manuscript mx cites manuscript my

—keyword of(m,k): manuscript m has keyword k

For the purposes of this experiment, the semantic network from de Lin and
Chalupsky [2004] was transformed into a list of manuscripts and their asso-
ciated metadata property name/value pairs. These manuscript properites in-
clude: authors, date of publication, citations, keywords, publishing journal, and
organizations. Of the 29,014 manuscript nodes, different occurrence and cooc-
currence algorithms were used to construct the following associative networks:

(1) citation: manuscript mi maintains an edge to manuscript m j if mi cites m j

(27,240 edges)

(2) coauthor: manuscripts maintain an edge if they share authors (724,406
edges)

(3) cocitation: manuscripts maintain an edge if they share citations (23,089,616
edges)

(4) cokeyword: manuscripts maintain an edge if they share keywords
(12,418,172 edges)

(5) coorganization: manuscript maintain an edge if they share organizations
(33,947,083 edges)

Though not explored empirically, it is worth noting that link prediction
algorithms can be employed to resolve issues relating to edge sparsity in the
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network. In particular, the methods proposed in Liben-Nowell and Kleinberg
[2003] and Huang et al. [2005] are such algorithms.

4.1 A Review of Precision, Recall, and F-Score

The results of the metadata generation experiment are evaluated according
to the F-score measure so therefore, it is important to provide a quick re-
view of precision, recall, and F-score within the framework of the notation
presented thus far. For a particular property μ, precision is defined as the
amount of property values of type μ received that were relevant relative to
the total number of property values retrieved overall. This is represented in
Equation (7), where the function rec(ni, μ) returns the set of recommended
property values for resource ni of type μ, while meta(ni, μ) returns the set prop-
erties values of type μ previously existing for resource ni. Since the validation is
against an artificially atrophied resource set, the recommended property values
are checked against the previously existing property values (prior to artificial
atrophy).

Pr(μ) = |meta(ni, μ) ∩ rec(ni, μ)|
|rec(ni, μ)| . (7)

Recall, Equation (8), on the other hand, is defined as the proportion of rele-
vant property values received to the total amount of relevant property values
possible. For example, if resource ni previously (before artificial atrophy) had
the property value keyword={swarm} and is recommended the property value
keyword={swarm}, then there is a 100% recall. On the other hand, if resource
ni previously had the property values keyword={swarm, network} and is rec-
ommended the property value keyword={swarm}, then there is a 50% recall,
whereas its precision is 100% in both cases.

Re(μ) = |meta(ni, μ) ∩ rec(ni, μ)|
|meta(ni, μ)| . (8)

Precision and recall tend to be inversely related, Pr ≈ 1
Re . This inverse re-

lationship is understood best when examining the extreme cases. If every pos-
sible property value was provided to a resource (|rec(ni, μ)| → ∞), and that
resource originally only had one property value (|meta(ni, μ)| = 1), then the
recall would be 100% while the precision would be near 0%. At the opposite
extreme, if a resource previously had every possible property value in its origi-
nal metadata (|meta(ni, μ)| → ∞) and was recommend only one property value
(|rec(ni, μ)| = 1), then the precision would be 100%, but the recall would be near
0%. While, in some systems, precision and recall can be inversely related, it is
the goal of information retrieval systems that are validated according to this
criterion to achieve both high precision and recall values.

Finally, F-score, Equation (9), can be used to combine precision and recall
into a single measure. Note that different associative networks will perform
differently for different property types. For instance, cocitation networks will,
intuitively, preform better at propagating keyword values than coorganization
networks. Therefore, the F-score measure will be represented as F (μx , μ y ) in
order to express the F-score of a network created from metadata properties of

ACM Transactions on Information Systems, Vol. 27, No. 2, Article 7, Publication date: February 2009.



7:12 • M. A. Rodriguez et al.

type μ y propagating property values of type μx . Precision and recall can be
represented in a similar fashion though the results of the experiment to follow
are expressed according to the F-score measure only.

F (μx , μ y ) = 2 · Pr(μx) · Re(μx)

Pr(μx) + Re(μx)
. (9)

4.2 Experiment Parameters

The experiment was set up to determine various F-scores, F (μx , μ y ), where μx ∈
{auth, cite, date, jour, key, org} and μ y ∈ {cite, coauth, cocite, cokey, coorg}.
This means that for every type of associative network generated, an F-score
for each metadata property type was determined. Since the hep-th 2003 bib-
liographic dataset is a metadata-rich dataset, it was necessary to destroy a
percentage of the metadata to test whether or not the metadata generation al-
gorithm could reconstruct the property values for the selected metadata-poor
resources. Therefore, the tunable parameter, density, ∂ ∈ [0.01, 0.9], was cre-
ated. The density of the network metadata ranges from 1% of the network
resources containing metadata to 99% of the resources. Given the percentage
parameter, resources were randomly selected for atrophy before the metadata
propagation algorithm was run.

With the potential for 99% of the network containing metadata, the
propagation of metadata to the lacking 1% would be overwhelming (a high
recall with a low precision). In order to allow nodes to regulate the amount
of metadata property values they accept, a second parameter exists. The
percentile parameter, ρ ∈ [0, 1], determines the energy threshold for property
value recommendations. Since each rec(ni, μ) entry has an associated energy
value (recommendation influence), a range from 0th percentile, meaning all
provided property values are accepted to 100th percentile, meaning only
the top energy property value is accepted, is used. The pseudo-code for the
experimental set-up is presented in Algorithm 3. In Algorithm 3, killMeta(),
acceptMeta(), and calculateF() do not have accompanying pseudo-code.

The general expected trend is that as the density of the network increases,
the recall increases and the precision decreases. With more property values
being propagated, any metadata-poor record, on average, will receive more
recommendations than are needed. For instance, a manuscript only has one
publishing journal, therefore, a recommendation of 100 journals is going to
yield a very low precision (0.01). To balance this effect, a percentile increase
will tend to increase the precision of the algorithm at the expense of recall.
When only the highest energy recommendations are accepted, the probability
of rejecting a useful recommendation increases. In the case of journal prop-
agation, if only the 100th percentile recommendation is accepted, then only
the highest energy recommendation is accepted. If this journal recommenda-
tion is the correct publishing venue, then there is 100% recall and precision. If
not, then there is 0% recall and precision. Depending on the number of values
needed to fill a particular property, different ρ values will be most suitable than
others.
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Algorithm 3. Determining the F-score for the various experimental parameters

4.3 The Results

This section presents the results of the experiment outlined previously in
Algorithm 3. For every associative network type and for every metadata type,
a F-score matrix was determined for every combination of ∂ (density) and ρ

(percentile). These F-score values were calculated as the average over 20 dif-
ferent runs of the experiment. Tables II and III provide the max and mean
F-scores for each network/metadata pair over the entire ∂/ρ set. Note that the
bold faced values are those μx /μ y pairs for which a landscape plot is provided.
The italicized values are experimental anomalies since the same metadata that
was used to generate the associative network is also the same metadata being
propagated. For all other combinations, metadata of a particular μ type exists
to create an associative network and metadata properties of a different μ type
is being propagated over those edges. For instance, a coauthorship network is
used to propagate citation property values.

The following landscape plots expose the relationship between ∂ and ρ. A
short explanation of the intuition behind each plot is also provided.

Intuitively, it makes sense that a coauthorship network would perform well
when propagating citation, journal, keyword, and organization property val-
ues, which are represented in Figure 3(a), Figure 3(b), Figure 4(a), Figure 4(b)
respectively. The performance is a result of the fact that collaborating authors
tend to cite themselves, publish in similar journals, write about similar topics,
and are within similar organizations. Notice the effect that percentile (ρ) has
on Figure 3(a) as opposed to Figure 3(b). Since there tend to exist many citation
property values (manuscripts cite many manuscripts), lower percentile values
(ρ ≈ 0) ensures that there is a high recall. When ρ = 1.0, only the top citation is
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Table II. Max F-Scores

Network/Metadata Author Citation Date Journal Keyword Organization

citation 0.1829 0.1757 0.0606 0.2438 0.3913 0.2782
coauthor 0.6218 0.1300 0.0717 0.2630 0.2795 0.6457
cocitation 0.0770 0.1821 0.0780 0.2081 0.2213 0.1350

cokeyword 0.0073 0.0248 0.0472 0.1904 0.8689 0.0420

coorganization 0.0709 0.0236 0.0508 0.1918 0.1180 0.5000

Table III. Mean F-Scores

Network/Metadata Author Citation Date Journal Keyword Organization

citation 0.1367 0.1327 0.0441 0.2133 0.3246 0.2218
coauthor 0.2848 0.0780 0.0548 0.2004 0.1958 0.3935
cocitation 0.0338 0.0697 0.0539 0.1554 0.1509 0.0768

cokeyword 0.0032 0.0160 0.0385 0.1468 0.3240 0.0330

coorganization 0.0312 0.0145 0.0392 0.1410 0.0909 0.1554

Fig. 3. Coauthorship network propagating (a) citation F (cite, coauth) and (b) journal F(jour,

coauth) metadata.

accepted and therefore the F-score drops (very poor recall). On the other other
hand, in Figure 4, when ρ = 0.0, there are many journal recommendations.
This is not desirable since a journal property only has one value (a manuscript
is published in only one venue). Therefore, at ρ = 1.0, only one journal value is
accepted into the resource’s journal property. In situations where few property
values are expected, the F-score is best with a high ρ.

A cocitation network, Figure 5, performs best with journal and keyword prop-
erties. This means that manuscripts are likely to cite other manuscripts with
similar journal venues and since citation tends to be within the same subject
domain, the probability of similar keyword metadata increases. Again, notice
the effect of ρ on journal metadata propagation. The shape of the Figure 5(a)
graph nearly mimics the shape of Figure 3(b). Likewise, for Figure 5(b) and
Figure 4(a). Again, the expected property value number is a major factor in
determining the system’s ρ parameter.
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Fig. 4. Coauthorship network propagating (a) keyword F (key, coauth) and (b) organization

F (org, coauth) properties.

Fig. 5. Cocitation network propagating (a) journal F (jour, cocite) and (b) keyword F (key, cocite)

properties.

A citation network, like a cocitation network, performs well for author, jour-
nal, keyword, and organizational properties (Figure 6 and Figure 7). It is inter-
esting to note how much better a citation network works for ρ ≈ 0.0. Since a
citation network isn’t symmetric, there is a chance that a particle will reach a
dead end. When a particle reaches a dead end, it no longer recommends property
values. Furthermore, citations are in a hierarchy with more recent publications
being at the top of the hierarchy (manuscripts can not cite forward in time).
Particles therefore trickle down the hierarchy via a single, non-recurrent path
from top to bottom. This “plinko ball” effect is represented in Figure 8. The
lack of recurrence in citation networks tends to produce a high precision with
a lower recall. High precision and low recall is exactly what a low ρ produces.
Therefore, since the topology of the citation network yields the same effect, the
effect of ρ as ρ → 0.0 isn’t as pronounced.
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Fig. 6. Citation network propagating (a) author F (auth, cite) and (b) journal F (jour, cite)

properties.

Fig. 7. Citation network propagating (a) keyword F (key, cite) and (b) organization F (org, cite)

properties.

Fig. 8. Citation networks are non-recurrent networks.
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Fig. 9. Cokeyword and coorganization networks propagating (a) journal F (jour, cokey) and

(b) F (jour, coorg) properties, respectively.

As can be noticed from Table II, Table III, and Figure 7(a), the keyword prop-
erty performs best in a citation network. A direct reference from one document
to another is a validation of the similarity between documents with respect
to subject domain. Therefore, the tendency for citing documents to contains
similar keyword values is high. For instance, refer to the citations of this ar-
ticle (references in this manuscript’s bibliography). Every cited manuscript is
either about automatic metadata generation, bibliographic networks, or net-
work analysis.

A cokeyword network does not perform well for most property types except
the journal property, Figure 9(a). This makes sense since manuscripts on similar
topics are likely to be published in similar journals.

5. FUTURE WORK

This article has provided a preliminary exploration of metadata generation
in terms of metadata property propagation within an associative network of
repository resources. Further research in this area may prove useful for other
network types such as those generated from other metadata properties. For
instance, it may be of interest to study the effect of this algorithm on usage
networks [Bollen et al. 2005]. Usage metadata, unlike citation and journal
metadata, is applicable to every accessible resource. It would be interesting
to see what cousage means for a particular genera of resources by determining
which metadata properties these networks are best at propagating.

A variety of propagation algorithms may also be explored. It is assumed
that a particle will take only edges of a particular μ type for the duration of
their life span. Different path types might be an important aspect of increasing
the precision and recall performance of this method. For instance, keyword
metadata that first propagates over coauthorship edges and then over cocitation
edges might provide better results. Methods to implement such propagation
algorithms have been presented in Rodriguez [2007, 2008]. Also, different edge
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types can be merged such that all co-keyword and co-authorship edges are
collapsed to form a single edge.

What has been presented in this study is the results of this algorithm with-
out the intervention of any human components (besides the initial creation
of metadata through the hep-th dataset creation process). Future work that
studies this method with the inclusion of humans that help to validate and
“clean” the recommended metadata would be telling of how much this method
is able to speed up the process of generating accurate and reliable metadata for
metadata-poor resources. Such an analysis is left to future research.

Finally, multiplicative effects due to particle interaction may effect the re-
sults of the algorithm. For instance, if two particles, pi and pj , meet at a par-
ticular node, nk , and pi and pj have similar metadata then the footprint they
leave at nk should be more noticeable. Because two different metadata sources
are supplying the same property values, there is an increased probability of
that recommended metadata value being correct. Currently, only a summation
is being provided. It may be interesting to multiply this summation by the
number of unique particles that provided energy for a particular recommended
metadata value. The variations of this preliminary framework will be explored
in future work.

6. CONCLUSION

Automatic metadata generation is becoming an increasingly important field of
research as digital library repositories become more prevalent and move into
the arena of less strongly controlled, decentralized collections (e.g., arXiv and
CiteSeer). The creation and maintenance of high-quality, detailed metadata is
hampered on numerous levels. Manual metadata creation methods are costly.
Recent efforts to leverage the collective power of social tagging (i.e., “folk-
sonomies”) may address some of the shortcomings of the manual creation of
metadata and result in viable models for online resources that do not require
strongly controlled vocabularies and metadata ontologies. However, it is doubt-
ful that “folksonomies” can be generalized to situations that require vetted,
well-standardized metadata. The automated creation of metadata on the ba-
sis of content-analysis is a promising alternative to the manual creation of
metadata. It is conceivably more efficient in situations where textual data is
available and allows for more formal control of the type and nature of meta-
data that is extracted. However, it can be unreliable for nontext resources, yield
low-quality metadata and can be computationally expensive.

This article proposed another possible component of the metadata gener-
ation toolkit which may complement and support the above mentioned ap-
proaches. Instead of creating new metadata, metadata is propagated from a
metadata-rich subset of the collection to similar, but metadata-poor subsets.
The substrate for this extrapolation is an associative network of resource rela-
tions created from other available metadata. Metadata propagation may pro-
vide a computationally feasible means of generating large amounts of meta-
data for heterogeneous resources which can later be fine-tuned by manual
intervention or cross-validation with content-based methods. The article finally
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provided experimental results using the High-Energy Physics bibliographic
data set (hep-th 2003). Human intervention may play an important role in fine-
tuning the metadata propagation algorithm. The results of this experiment are
promising and there still exists a range of potential modifications to this basic
framework that may lead to even better results.
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