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Non Standard Interactions and Current Bounds

@ Vacuum, Standard Interactions and Best-Fit Values




Vacuum Osc

Vacuum, Standard Interactions and Best-Fit Values
Non Standard Interactions and Current Bounds

o Mass basis:|vk (1)) = e Bxl|yy)  with k€ {1,2,3}
o Flavor basis: |v,) = Z

k|Vk

with o€ {e,u,7}
o The PMNS parameterization (ignoring Majorana phases
irrelevant for oscillations)

1 0 0 C13 0 s13e"5°P
U=[0 o3 5 0
0 —s23

1
Co3

cz2 S22 0
‘ 0 —Si2 C2 O
—S136’6c" 0 C13 0
with ¢; = cos 6 and s;; = sin6;;
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Vacuum, Standard Interactions and Best-Fit Values
Non Standard Interactions and Current Bounds

Charged current matter potential Vgc:
Ve e”

Vee = V2GENe = 7.6 x 10 Yep
GF = the Fermi constant
W Ng = the electron number
Y. = the electron fraction
p = the density

e Ve
This only effects ve.
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Vacuum, Standard Interactions and Best-Fit Values
Non Standard Interactions and Current Bounds

Schrédinger’s Equation for Neutrino wave-functions in the
presence of matter:

d Ve 1 O O 0 Ve
i\ =1 3gY(0 amg, 0 | U +H| (v
X vy 0 0 Am§1 vy
with:
100
Hi=Vee [0 0 O & Amjg=m; —m?
000
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Three flavor oscilla

Mixing and mass bounds:

Best Fit 10
sin? (612) 0.30299'%
sin? (6p3) | 0.4137%937 & 0.594+0:021
sin? (643) 0.0227+9.9023
am3, 7.507018 x 10-%eVv?
AmZ (N) | +2.47379970 x 10-3eV?
Amgy(l) | —2.427700%2 x 10-3eV?

From a Global fit by Gonzalez-Garcia, Maltoni, Salvado and
Schwetz (Dec 2012).

Vacuum, Standard Interactions and Best-Fit Values
Non Standard Interactions and Current Bounds
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Why consider Non Standard Interactions?

There are many ways to go about motivating the study of NSls:

@ We expect physics beyond the SM to exist.

@ The neutrino sector is the least precisely tested part of the
SM and is likely to connect with new physics since neutrino
masses and mixings already point to new physics.

@ There are many theoretical models that can be built that
extend the SM to incorporate neutrino masses and
mixings. Many of these models lead to NSI.

@ Effective theory implications.

Warren Wright Atmospheric NSI in Deep Core 9/52



Vacuum, Standard Interactions and Best-Fit Values
Non Standard Interactions and Current Bounds

o Dim 5: The Weinberg operator which gives a Majorana
neutrino mass.

o Dim 6: Lots of operators, including the Four-Fermi
operator:

Lnsi = —2v2GF (Da7,v8) EéfLJ?L’}/pJFL + ff;fRfRfoR + h.c.
B B

This Lagrangian parameterizes NSI.

PENNSTATE

From Friedland, Lunardini and Maltoni (arxiv/0408264).
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Introduction to Neutrino Oscillations

NSI Analysis Vacuum, Standard Interactions and Best-Fit Values
The reduced €,,~ system and including €~ Non Standard Interactions and Current Bounds
Summary

Phenomenological approach

@ Neutrino-matter interactions are one of the least precisely
tested parts of the Standard Model. Thus new interactions
are a good place to look for new physical phenomena.

@ Adding non standard interactions to the standard
oscillation framework might help explain sub-leading
oscillation phenomena.

@ We can presume that the non standard interactions are
small but we should rather be guided by experiment not by
presumption.

Knowing the theory that generates NSl is not necessary in
order to study NSI. All you need is a way to parameterize them.

PENNSTATE
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Vacuum, Standard Interactions and Best-Fit Values
Non Standard Interactions and Current Bounds

Schrédinger’s Equation for Neutrino wave-functions in the
presence of matter and NSI:

d Ve 1 O O 0 Ve
i\ =1 3gY(0 amg, 0 | U +H| (v
Vr 0 0 Am§1 vy
with:
1 + Ge’e |Eeﬂ|eiéep‘ |€e7-|el:69‘r
H/ = VCC |€eu|e_1.6e/” GMM ) |€N7-|el§#7'
|eer|@ 100 |€pur] e our €rr
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propagation NSI:

NSI can occur in production, detection and propagation. For

Cap= ) it
f.P

af Ne

e {Z () +

uu P
36a B
P

1/2
2 ddpP\?
"+ ()]
From Biggio, Blennow & Fernandez-Martinez (arxiv/0907.0097).
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Sources of bounds:

Vacuum, Standard Interactions and Best-Fit Values
Non Standard Interactions and Current Bounds

o Assume a model (eg see-saw), compute decay widths,
compare to experimental constraints from lepton flavor
violations and rare decays.

o Assume a two-flavor hybrid oscillation model and compare

with atmospheric/reactor/accelerator neutrino experiments.

From Ohlsson (arxiv/1209.2710) and Biggio, Blennow & Fernandez-Martinez
(arxiv/0907.0097).
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Introduction to Neutrino Oscillations

NSI Analysis Vacuum, Standard Interactions and Best-Fit Values
The reduced €,,~ system and including €~ Non Standard Interactions and Current Bounds
Summary

Sources of bounds: Model independent

Start with the effective theory:

o compute changes to neutrino cross section, compare with
LSND, CHARM and NuTeV neutrino scattering tests.

o compute changes to muon, beta and Kaon decay rates.
These effect G which is well known.

@ compute changes to pion decay rates and compare to
experimental data.

o compute changes to production and detection
zero-distance oscillations, compare to KARMEN and
NOMAD.

From Ohlsson (arxiv/1209.2710) and Biggio, Blennow & Fernandez-Martinez
(arxiv/0907.0097).

PENNSTATE
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|€ee| S 42

Model independent bounds for neutral Earth-like matter with an
equal number of neutrons and protons:

leou| < 0.33  |eer| < 3.0
|l < 0.068 || < 0.33

lerr| < 21
From Biggio, Blennow & Fernandez-Martinez (arxiv/0907.0097).
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Where in the (E, L, p) parameter space
should we look for evidence of NSI?

DeepCore, an extension to the
IceCube Neutrino Observatory
based near the South Pole, de-
tects Cherenkov light emitted by
charged particles emitted from neu-
trino interactions in the ice.

O Triggers on atmospheric
neutrinos at energies between
about 10 GeV and 1 TeV.

O Can detect neutrinos at any
zenith angle.

@ Neutrino-induced muons are
the most prolific candidates.

RN Ge




o Energy Range: 10 - 100 GeV
o Probability: P, ,,
o Detectable particle: Muons (u)

o Propagation Length: 15 - 13000km (any Earth Traversal)
o Density: Earth
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Experimental Guidelines, PREM and sPREM
Oscillation probability

Number Of Muons, Flux and Cross Section

For propagation through Earth, V.. is determined by the PREM
(Preliminary Reference Earth Model):

14 0.6
- =
10 3
§ s 50.4
z 6 = 0.3
— \
é 4 £ 0.2
=) : =0.1
. =
0O
Y0 1000 2000 3000 4000 5000 6000 0 1000 2000 3000 4000 5000 6000
Radius (km) Radius (km)
Or > ErE» E
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Experimental Guidelines, PREM and sPREM
Oscillation probability
Number Of Muons, Flux and Cross Section

PREM approxi

o Using the full PREM model makes analytic solutions very

intractable.

o A helpful approximation is to calculate the average density
as a function of angle.

o Treat each Zenith angle trajectory as traversing a single
constant density layer.

2 H
16 18 20 22 24 26 28 30
Zenith
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NSI Effects (Full num

P, with €, = 2.5
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Atmospheric NSI in Deep Core
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Number Of Muons, Flux and Cross Section
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NSI Effects (Full numeric

P, with €,; = -04
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Experimental Guidelines, PREM and sPREM
Oscillation probability

Number Of Muons, Flux and Cross Section
NSI Effects (Full numer
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Experimental Guidelines, PREM and sPREM
Oscillation probability

Number Of Muons, Flux and Cross Section

Number

Standard Case:

N, (AE,, AG,) =

onotVNa | dE de, dE e (v Ey)
TpHYINA / / / aE 9E,
8¢V (Q’E) a()bl/e 07 El/
(“hegr P 80+ 25 Puves, ()

Core Mantle Crust
cos (#) Range:|(—1, — 0.837)|(—0.837, — 0.446)|(—0.446,0)
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Experimental Guidelines, PREM and sPREM
Oscillation probability
Number Of Muons, Flux and Cross Section
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Experimental Guidelines, PREM and sPREM
Oscillation probability

Number Of Muons, Flux and Cross Section

@ Flux from Agraval, Gaisser, Lipari and Stanev.
@ Cross sections from Gandhi, Quigg, Reno and Sarcevic.

b, P, (E,0)
00 E, dE,
80
pb
S 60 09 10 2 30 40 50
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L 03 4 o E=20
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Experimental Guidelines, PREM and sPREM
Oscillation probability
Number Of Muons, Flux and Cross Section

Number Of Muons:
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Experimental Guidelines, PREM and sPREM
Oscillation probability
Number Of Muons, Flux and Cross Section

Number Of Muon
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Experimental Guidelines, PREM and sPREM
Oscillation probability
Number Of Muons, Flux and Cross Section

Number Of Muons:
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Derivation of the reduced €, ~ system
Comparisons to Full Numerics
The inclusion of e~

In order to analytically analyze the ¢,, asymmetry the following
assumptions are made:

Vee = V2GEN, = constant

Am§1 =010 =013 = 50p =0and Oo3 = 71'/4
€ee = Cep = €er = €y = €77 = 0
S =0
Schrédinger’s Equation:

A2
G () [ 30 o
i (v ()] = 0 0 2
v (L) 0 amd

ve (L)
TEZl + Vcceur Vp gt;
vr
TT + Vcc€;ur 0
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Solution to Schrédinger’'s Equation:
ve (L)
vu (L) ] =
vr (L)

with A = 52 4 Veee,.r. Thus:

0
0

Am;
P, = cos® <L (4—5

31

2
—%iL(4Vcc—A_l':_"3l>
e 17

2

0
cos (LA)
—isin(LA)

+ Vccf;n> )

e
—isin(LA) | {7k
c0s Lny ) \vr(0)
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A useful measure of the sign symmetry is:

APy = Py (EMT)

Pup (—€pr)

. Amg
Thus max|A.P,,| when:

Amg,
2L 4E,

™
=(2n+1) >
2LVCC€,MT = (2[7’7 + 1)

2
Where m,ne Zand mn >0

™
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Max sign

Derivation of the reduced €, ~ system
Comparisons to Full Numerics
The inclusion of e~

The equations that specify the location of maximum or sign

asymmetry (with m, n€ Z and m, n > 0):

_(2m+1\ AmE,
Yoo\ 2n+1

4VCC€}L7‘
. @Cm+1)rw
o 4Viceyr
also L = (2n+;)ﬁ v
Amg,
Where:

L = 2Rgsin <9 _ f)

2

[m]

=
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Earth Travers

Derivation of the reduced €, - system
Comparisons to Full Numerics
The inclusion of e~

APpmerc with €, = 0.05

08
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50 60 70 80 90 100
E, (GeV)
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Derivation of the reduced €, - system
Comparisons to Full Numerics
The inclusion of e~

AP with €, = 0.2

08

04

-04

10 20 30 40
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Derivation of the reduced €, - system
Comparisons to Full Numerics
The inclusion of e~

Oscillation Prob
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P
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Muon Count

Derivation of the reduced €, - system
Comparisons to Full Numerics
The inclusion of e~

ICDC N, through Core (1yr)
15<E,(GeV)<20
0.10 ,(GeV)

ICDC N, through Core (1yr)
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Introduction to Neutrino Oscillations

NSI Analysis
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Summary

Summary

@ NSI parameters can have a significant effect on oscillation
probability and muon count, for even small values.

@ In the energy region analyzed, the effect of ¢, is sign
asymmetric. This is contrasted with the other NSI
parameters being mostly sign symmetric.

@ A reduced analytic solution describing the ¢,,’s behavior
has been found and can predict points of maximal
asymmetry in the (6, E,) plane.

@ There seem to be interesting regions in the (e,-,€--)
parameter space that need to be confirmed and quantified.

PENNSTATE
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Thank you for your time.
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Introduction to Neutrino Oscillations
NSI Analysis

The reduced €,,~ system and including €~
Summary

Measuring Symmetry

o A particularly striking feature is the sign symmetry or

asymmetry of the NSI parameters.
o A useful measure of the sign symmetry is:

APy = Puy (€) = Pun (—¢)

o This measure also would give an indication of the NSI
parameter’s first order sensitivity.

o Using the single layer Earth density averaging, the
following integral can be evaluated to see the energy
dependence of the symmetry:

O=m

86 Pp,u (EV7 6) = / AE Pﬂﬂde PENNSTATE
0=m/2 &
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SePpae™ with € = 0.01

EV (GeV)
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High Ene

SPaYi with € = 0.05

20 40 60

80
E, (GeV)

[m]
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100
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High Ene

SPYI with € = 0.1
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High Ene

SPYE with € = 0.2

20 40 60
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Compare the oscillation probabilities of the reduced system
using single layer averaging of the Earth’s density profile:

Preduced_ prumeric with ¢, = —0.05

Preduced_ prumeric with ¢, = 0

Preduced_ prumeric with €, = 0.05

10 20 30 4050 70 100 10 20 30 40 50 70 100 10 20
E,(GeV) E,(GeV)

30 40 50 70 100

E,(GeV)
=01 0 0.1

02 || -005 005 015 025 ||

=015 -0.05 0.05 0.15 025 J

PENNSTATE

& =

DA

a

Core



	Introduction to Neutrino Oscillations
	Vacuum, Standard Interactions and Best-Fit Values
	Non Standard Interactions and Current Bounds

	NSI Analysis
	Experimental Guidelines, PREM and sPREM
	Oscillation probability
	Number Of Muons, Flux and Cross Section

	The reduced EpsilonMuTau system and including EpsilonTauTau
	Derivation of the reduced EpsilonMuTau system
	Comparisons to Full Numerics
	The inclusion of EpsilonTauTau

	Summary

