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Search for Supersymmetry in pp Collisions at 7 TeV in
Events with Jets and Missing Transverse Energy

The CMS Collaboration™

Abstract

A search for supersymmetry with R-parity conservation in proton-proton collisions
at a centre-of-mass energy of 7 TeV is presented. The data correspond to an integrated
luminosity of 35 pb~! collected by the CMS experiment at the LHC. The search is
performed in events with jets and significant missing transverse energy, charac-
teristic of the decays of heavy, pair-produced squarks and gluinos. The primary
background, from standard model multijet production, is reduced by several orders
of magnitude to a negligible level by the application of a set of robust kinematic
requirements. With this selection, the data are consistent with the standard model
backgrounds, namely ti, W + jet and Z + jet production, which are estimated from
data control samples. Limits are set on the parameters of the constrained minimal
supersymmetric extension of the standard model. These limits extend those set
previously by experiments at the Tevatron and LEP colliders.
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Figure 5: Measured (red line) and expected (dashed blue line) 95% CL exclusion contour at
NLO in the CMSSM (mg, my,2) plane for tan§ = 3, Ap = 0 and sign(y) > 0. The measured
LO exclusion contour is shown as well (dot-dashed green line). The area below the curves is
excluded by this measurement. Exclusion limits obtained from previous experiments are pre-
sented as filled areas in the plot. Grey lines correspond to constant squark and gluino masses.
The plot also shows the two benchmark points LM0 and LM1 for comparison.
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CMS Experiment at LHC, CERN







SUSY: Prospects for direct detection
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SUSY and positron flux

Bayesian posterior probability maps BF=1
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Dark Matter Results from 100 Live Days of XENON100 Data

E. Aprile,! K. Arisaka.? F. Arneodo,® A. Askin,? L. Baudis.* A. Behrens.* K. Bokeloh.” E. Brown.® T. Bruch,!
G. Bruno.® J. M. R. Cardoso,® W.-T. Chen.” B. Choi,! D. Cline.? E. Duchovni.® S. Fattori.? A. D. Ferella,*
F. Gao.'” K.-L. Giboni,! E. Gross,® A. Kish.* C. W. Lam.? J. Lamblin.” R. F. Lang.)** C. Levy.? K. E. Lim.!
Q. Lin.'® 8. Lindemann,'* M. Lindner,’* J. A. M. Lopes.® K. Lung.? T. Marrodin Undagoitia.® Y. Mei,'%#
A. J. Melgarejo Fernandez,? K. Ni,'? U. Oberlack.!?:? S. E. A. Orrigo.% E. Pantic,? R. Persiani,’3 G. Plante,}
A. C. C. Ribeiro.% R. Santorelli,* J. M. F. dos Santos.® G. Sartorelli,’ M. Schumann.* ' M. Selvi,’® P. Shagin.'?
H. Simgen,'’ A. Teymourian.? D. Thers.” Q. Vitells,* H. Wang,? M. Weber.'! and C. Weinheimer®
(The XENON100 Collaboration)

! Physies Department, Columbia University, New York, NY 10027, USA
2 Physics & Astronomy Department, University of California, Los Angeles, USA
SINFN, Laboratori Nazionali del Gran Sasso, Assergi, 67100, Italy

4 Physics Institute, University of Zirich, Winterthurerstr. 190, CH-8057. Switzerland

®Institut fir Kernphysik, Wilkelms-Universitat Minster, {8149 Miinster, Germany
® Department of Physics, University of Coimbra, R. Larga, 3004-516, Coimbra, Portugal

"SUBATECH, Ecole des Mines de Nantes, CNRS/In2p3, Université de Nantes, 44307 Nantes, France
 Department of Particle Physics and Astrophysics, Weizmann Institute of Science, 76100 Rehovot, Israel

Institut fir Physik, Johannes Gutenbery Universitit Mainz, 55099 Mainz, Germany

"0 Department of Physics, Shanghai Jiso Tong University, Shanghai, 200240, China

! Maz-Planck-Institut fir Kernphysik, Saupfercheckweg 1, 69117 Heidelbery, Germany

2 Department of Physics, Rice University, Houston, TX 77005 - 1892, USA
% University of Bologna and INFN-Bologna, Bologna, Italy

We present results from the direct search for dark matter with the XENONI100 detector, installed
underground at the Laboratori Nazionali del Gran Sasso of INFN, Italy. XENONI100 is a two-phase
time projection chamber with a 62 kg liquid xenon target. Interaction vertex reconstruction in
three dimensions with millimeter precision allows to select only the innermost 48 kg as ultra-low
background fiducial target. In 100.9 live days of data, acquired between January and June 2010,
no evidence for dark matter is found. Three candidate events were observed in a pre-defined signal
region with an expected background of (1.8 = 0.6) events. This leads to the most stringent limit
on dark matter interactions today, excluding spin-independent elastic WIMP-nucleon scattering
cross-sections above 7.0 x 107%® em? for a WIMP mass of 50 GeV/c? at 90% confidence level.

PACS numbers: 95.35.=d, 14.80.Ly, 29.40.-n,
Keywords: Dark Matter, Direct Detection, Xenon
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Figure 6: TPC schematic view

TPC Dimension and Fields

Height 95 cm
Diameter 96 cm
Active LXe Mass/Volume 2000 kg/ 0.708 m?
PTFE Mass/Volume 85 kg/ 0.04 m*
Copper Support Mass/Volume 112 kg/ 0.013 m?
Nomuinal Drift Field 10kV/em
Drift Length 90 cm
Operating Cathode Voltage —-900kV
Nomuinal Extraction Field 130 kV/em
Operating Anode Voltage 45kV
Xenon Gas Gap 25 mm
TPC Grids

Grid Diameter 100 em
Frame Thickness 5 mm
Ring Material low radioactivity SS 316T1
Wire Diameter 140 ym
Wire Spacing 5 mm
Grid Optical Transparency 97%
Inner Cryostat

Height 160 cm
Diameter 104 cm
Volume 1.389 m?
Total LXe Mass/Volume 2400 kg/0.85 m°

Table 1: XENONIT TPC characteristics
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Spin-Independent Projected Sensitivity
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WIMP-Nucleon Cross Section [cm?]
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WIMP-Nucleon Cross Section [cm?]
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Spin-Dependent Projected Sensitivity
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Xe OAr
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—
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Fig 1.2 Main parameters of the 10-ton/50-ton (fiducial) G3 system
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Fig 1.3 G2 system (1t Xe/5t Ar) in water and liquid scintillator shields



sides (if instrumented) | 520 (3”) | 670 (6”) | 670 (6™) | 2400 (6) | 2400 (6)

8000 (6™)

bottom | 120 (37) | 160 (6”) | 160 (6”) | 670 (6”) | 670 (67)

2000 (6”)

2m

3" QUPID x 121 (Top)
3" QUPID x 121 (Bottom)

3 QUPID X 595 (Top) =
6” QUPID x 825 (Side/Bottom)

Fig 1.1 Main parameters of the 1-ton/5-ton (fiducial) G2 system




DM Direct Search Progress Over Time (2010)
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The expected background spectrum in Nal dark matter detectors and the
DAMA result

V.A. Kudryavtsev*, M. Robinson, N.J.C. Spooner

Department of Physics and Astronomy, University of Sheffield, Sheffield S3 7RH, UK

ARTICLE INFO ABSTRACT

Article history: Detailed Monte Carlo simulations of the expected radioactive background rates and spectra in Nal crys-
R&‘efvt'dﬁs'fpllfmbef 2009 tals are presented. The obtained spectra are then compared to those measured in the DAMA/Nal and
Received in revised form 14 November 2009 DAMA/LIBRA experiments. The simulations can be made consistent with the measured DAMA spectrum

Accepted 11 December 2009

Available online 16 December 2009 only by assuming higher than reported concentrations of some isotopes and even so leave very little room

for the dark matter signal. We conclude that any interpretation of the annual modulation of the event rate
observed by DAMA as a dark matter signal, should include full consideration of the background spectrum.

gg“:kwor:gsl‘;er This would significantly restrict the range of dark matter models capable of explaining the modulation
WIMPs effect.

Background radiation © 2009 Elsevier B.V. All rights reserved.
Radioactivity

DAMA experiment
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Fig 3. Energy spectra of single hit events as reported by the DAMA/Nal [2] (open
circles) and DAMA/LIBRA [3] (filled circles) experiments. The spectrum of events
expected from 60 GeV WIMP interactions with the spin-inde pendent cross-section
of 7 % 1075 pb in the isothermal halo model is shown as example by the solid curve
(labeled as ‘60 GeV WIMPs’). The difference between the measured DAMA/LIBRA
spectrum and the WIMP signal is plotted as filled squares (labeled as ‘LIBRA-
WIMPS'). An example spectrum from one of the NAIAD crystals is shown by filled
triangles.
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The Search for Dark Matter (WIMPS) at Low Mass

David B. Cline’

UCLA Physics & Astronomy
Astroparticle Physics Group

Abstract

We review the constraints on the search for low mass wimps (< 15 GeV) and
the various experimental methods. These experiments depend on the response of
detectors to low energy signals (less than 15 KeV equivalent energy). We then
describe recent fits to the data and attempt to determine L., the energy response at

low energy. We find that the use of a liquid Xenon 2-phase detector that employs the
S; data near threshold is the most sensitive
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Figure 1. WIMP masses and spin-independent (SI) cross-sections compatible with the DAMA
modulation signal and total number of events, determined with (dashed green) and without (solid
orange) the channeling effect included. The largest channeling fractions shown in Figure 1 (taken
from Ref. [3]) are used here for the channeling case. Comparing the cases with or without channeling,
we find negligible difference in the DAMA modulation regions at the 90%, 3¢, and 50 levels; only the

70 contours differ and only for WIMP masses below 4 GeV. The lower and higher mass DAMA regions
correspond to parameters where the modulation signals arise from scattering predominantly off of
NA and |, from Reference 2.
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Figure 2. XENON10 (green) and XENON100 (purple) 90% C.L. constraints for a constant .4,
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described in the text; dashed curves and lighter filled regions indicate how these 90% constraints
vary with the 1o uncertainties in .£... The blue region indicates an overlap between the XENON10
(green) and XENON100 (purple) 1o regions. Also shown are the CDMS constraint (orange curve),
DAMA modulation compatible regions (gray contours/region), and the CoGeNT 7-12 GeV region

(pink contour/region). The lower and higher mass DAMA regions correspond to parameters where

the modulation signals arise from scattering predominantly off of Na and I, from Reference 4.
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Giving up S2/S1 discrimination in exchange for a lower energy threshold

Peter Sorensen
on behalf of the XENON 10 Collaboration

Identification of Dark Matter 2010, Montpellier

Talk Overview

e the XENON10 direct detection experiment

e [imitations of S1 (scintillation signal) threshold

® new analysis of S2 (electron signal) energy scale

e using S2 width to obtain approximate z coordinate
e S2-only (no discrimination) dark matter limits

Peter Sorensen, LLNL

IDM, Montpellier FR

26 July 2010




(preliminary) dark matter exclusion limits

Notice: this S2-only exclusion limit curve is preliminary, and has not been fully reviewed by
the XENONI 0O collaboration. Pending review it is subject to change.

o eMax Gap 90% C.L. upper limit
arXiv:1001.2834 between 1.6 keVr and 3.8 keVr
arXiv:1007.1005 ©12.5 live days
®1.2 kg target
CoGeNT 2008 ® conservative -10° Q, energy
calibration
eno account of resolution (this

CoGeNT 2010
would improve limits)

F| XENON10 S2-only
L| (no discrimination)

Peter Sorensen, LLNL IDM, Montpellier FR 26 July 2010
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Low-threshold analysis of CDMS shallow-site data
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(CDMS Collaboration)
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Data taken during the final shallow-site run of the first tower of the Crvogenic Dark Matter Search
(CDMS II) detectors have been reanalyzed with improved sensitivity to small energy depositions.
Four ~224 g germanium and two ~105 g silicon detectors were operated at the Stanford Underground
Facility (SUF) between December 2001 and June 2002, yielding 118 live days of raw exposure. Three
of the germanium and both silicon detectors were analvzed with a new low-threshold technique,
making it possible to lower the germanium and silicon analysis thresholds down to the actual trigger
thresholds of ~1keV and ~2keV, respectively. Limits on the spin-independent cross section for
weakly interacting massive particles (WIMPs) to elastically scatter from nuclei based on these data
exclude interesting parameter space for WIMPs with masses below 9GeV ,-'cg. Under standard
halo assumptions, these data partially exclude parameter space favored by interpretations of the
DAMA/LIBRA and CoGeNT experiments’ data as WIMP signals, and exclude new parameter
space for WIMP masses between 3 GeV /c? and 4 GeV /c?.

PACS numbers: 95.35.4d, 14.80.Ly. 95.30.Cq, 29.40.Wk, 95.30.-k, 85.25.0j



Low-threshold analysis of CDMS shallow-site data
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Data taken during the final shallow-site run of the first tower of the Crvogenic Dark Matter Search
(CDMS II) detectors have been reanalyzed with improved sensitivity to small energy depositions.
Four ~224 g germanium and two ~105 g silicon detectors were operated at the Stanford Underground
Facility (SUF) between December 2001 and June 2002, yielding 118 live days of raw exposure. Three
of the germanium and both silicon detectors were analvzed with a new low-threshold technique,
making it possible to lower the germanium and silicon analysis thresholds down to the actual trigger
thresholds of ~1keV and ~2keV, respectively. Limits on the spin-independent cross section for
weakly interacting massive particles (WIMPs) to elastically scatter from nuclei based on these data
exclude interesting parameter space for WIMPs with masses below 9GeV ,-'cg. Under standard
halo assumptions, these data partially exclude parameter space favored by interpretations of the
DAMA/LIBRA and CoGeNT experiments’ data as WIMP signals, and exclude new parameter
space for WIMP masses between 3 GeV /c? and 4 GeV /c?.

PACS numbers: 95.35.4d, 14.80.Ly. 95.30.Cq, 29.40.Wk, 95.30.-k, 85.25.0j
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Summary

Dark energy

All consistent with A

JDEM dead, Euclid going ahead
FNAL DES very promising, could have a robust result soon

Dark matter

SUSY predictions for direct search 10-% - 10 pb
Indirect search: some claim that Pamela data supports WIMPS (G. Kane)
Indirect search: FERMI unlikely to observe DM

Galactic Center 1s a possible exception, D. Hopper claims a signal

Direct searches: more problems for DAMA CDMS not confirmed XENON
100; Edelweiss and CRESST promising; COUPP and other similar detectors
very sensitive to spin dependent DM; 11 days of XENON 100: best limit
XENON started taking blind data January 15,2010, can reach 2 x 10 pb in
2010

Design of XENON 1 ton making progress, one half of detector already funded
Low mass WIMP region likely excluded by CDMS and XENON 10 and 100



