
Lepton-Nucleus Cross Sections
in MiniBooNE

(Neutrino Engineering…)
• This is really two talks…

– MiniBooNE CCQE measurement
• Work by Teppei Katori (University of Indiana)

– (Thanks Teppei !!!)
• Relevant to oscillation analysis

– Possible future improvements to models
• Detailed comparison to electron data to constrain 

nuclear response 
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MiniBooNE CCQE Measurement
• Charged Current Quasi Elastic (CCQE) 

reaction is the “golden” channel for the 
MiniBooNE oscillation analysis

• The event generator (Nuance) for our 
simulation employs a simple Fermi gas 
(FG) model for the nuclear response 
function (a la Smith and Moniz, 1972)

• We “tune” a few parameters of the 
simple FG model which is the subject of 
the first talk… 
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General cross section
( a la Simth and Moniz, 1972 )

Small

Determined by
Electron scattering

W1, W2 are determined by electron scattering, 
W8 must be determined by neutrino scattering
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(this is an assumption…)
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Lepton-Nucleus Cross Sections in 
the Energy Range 150-700 MeV 

Geoffrey Mills
July 2, 2007

Motivation
Nuclear Models

Effects of Nuclear Correlations
Benchmark Data: C(e,e')X Saclay ALS
Comparison: Theory and Experiment

Extensions to Neutrino Scattering
Summary
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Motivation
• A simple truth in neutrino physics:

( ) ( )( )( )observed event rate cross  section flux of neutrinos detection efficiency=

Contains everything interesting: oscillation physics, 
exotic event rates, cross sections, etc.

The subject of this talk
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MiniBooNE Neutrino Cross Section 
Predictions

• MiniBooNE was designed to utilize 
the quasi elastic neutrino-12C 
charged current reaction to study 
neutrino oscillations.

• The L/E of the LSND result was 
centered in L/E around 0.5-1.4 
meter/MeV.

• This corresponds to neutrino 
energies in the range 350 MeV to 
1000 MeV at the MiniBooNE 
distance of 500 meters.



22

A “first principle” calculation is too difficult

• In systems of A >~ 10 nucleons it is not (yet) possible to 
perform exact, many-body, field theory calculations. 
MiniBooNE uses Carbon, A=12… oh well…

• There are several different approaches commonly seen: 
shell model, TDA, RPA, shell model, etc…

• Here, I employ a simple “Fermi Gas motivated” 
momentum-space spectral function description, which 
seems to work remarkably (better than it should!). It can 
be corrected for nuclear effects and extended to higher 
energies.
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LSND Excited State νμ-12C Events

This is 40-50% lower than 
expected!
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•The only “precision” 
measurement of quasi 
elastic neutrino scattering 
on Carbon



24

Neutrino and Electron Scattering on 12C
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Time Tested Strategy: 
Use electron scattering to measure the response of the nucleus.
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Moments of Initial Nucleon Momenta

Electron scattering:

Neutrino scattering:
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• Finite system effects
– There are only 12 nucleons in carbon
– Start with harmonic oscillator ground state momentum 

distributions

• Non-local nuclear potential
– Also known as long range correlations
– Due to strongly attractive scalar field (σ)
– Implies a dispersion relation for the nucleon

• Short range correlations
– Due to the nucleon’s hard core, i.e. repulsive vector forces (ω)
– Causes high momentum tails to nucleon momentum distributions

Some Important Nuclear Effects
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• Use a harmonic oscillator momentum 
distribution as a starting point

k0 controls the oscillator strength ~ 122 MeV/c

Finite System with A=12
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Long Range Correlations
Non-local nuclear potential form:
(M is the nucleon mass, k is the nucleon momentum)

This fractional form has nice properties:

• approximates a scalar interaction (σ field)

• gives correct dispersive behavior at low k

• goes to zero at high momentum

• a ~ 7.9, b~10, M is nucleon mass
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Effects of Short Range Correlations

Pandharipande et. al., Phys Rev C 46, 1741 (1992) , fig 4 
(~1 GeV/c)
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Short Range Correlations cont.
• Dominant effect is high momentum tail in n(k)

• ktail~350 MeV/c, ftail~0.30, Ntail normalization
Note: It is vital to include the recoil energy in the integration over k



32

Our Benchmark: ALS (Saclay) Data
Electron energies 150 MeV->680 MeV
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Model 0 (naive)

• Simple Fermi Gas (sphere)

• No binding energy

• No nuclear potential effects

• Impulse approximation
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Model 0 (naive)
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Model 0 (naive)
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Model 0 (naive)
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Model 1

• Simple Fermi Gas (sphere) 

• Include binding energy

• No nuclear potential

• Impulse approximation
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Model 1 (better)
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Model 2

• Harmonic oscillator momentum distribution

• Include binding energy

• ‘Realistic’ nuclear potential
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Model 2 (good)
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Neutrino-12C Interactions
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LSND Excited State νμ-12C Events

This is 40-50% lower than 
expected!
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•The only “precision” 
measurement of quasi 
elastic neutrino scattering 
on Carbon
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Result of “Model 2”-like calculation for 
LSND inclusive 

Nuclear Corrections:

-effective mass of nucleon
-binding energy change 

The LSND data prefers:

M/M* ~ 1.4
Eb ~ 15.11 + 12 MeV

~ 27.1 MeV
( this corresponds to 25 MeV in
electron scattering )
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Conclusions
(quasi elastic neutrino scattering)

• “Model 2” seems to provide a “simple intuitive solution” 
to LSND’s cross section puzzle

• Simple nuclear effects are important for quasi elastic 
neutrino processes

• Provides a good anchor point for MiniBooNE…. but 
MiniBooNE requires cross sections up to ~1 GeV
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Extension to Higher Energies: Model 3

• Harmonic oscillator momentum distribution

• Include binding energy

• ‘Realistic’ nuclear potential

• Add short range correlation effects (high momentum)

• Add Delta resonance
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Model 3 (very good)
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TBD…

• Extend Model III to neutrinos, mostly done but needs 
finishing touches

• Comparison with other ee’ data, other A ?
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Antineutrino Running

• Good agreement with electron scattering data is not 
enough! Determines only the Vector part of the cross 
section.

• Axial part of weak current is not present in electron 
scattering, however the axial part can be extracted in an 
unambiguous way from a combination of neutrino and 
anti-neutrino data at MiniBooNE
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Axial Part of Cross Section

Difference of neutrino and anti-neutrino cross section
gives axial terms directly:
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The End…
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