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enrich 76Ge from 7.44% (natural) 
to 86%.  Can build large arrays of 
closely packed detectors.
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reasonably slow 

2νββ rate!
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Immediate thrust is to build a 60 kg prototype module to 
demonstrate backgrounds needed in a future experiment 
capable of reaching a sensitivity to the “inverted hierarchy” 
neutrino mass scale (30-40 meV).

Using this prototype, expect to make a down-select between 
MAJORANA and GERDA technologies, picking the best method.

Also exploring longer term R&D to minimize costs and optimize 
the schedule for a 1 ton experiment.

Our plan has been guided by advice from NuSAG, an 
independent external panel review (March 06), and a DOE ββ-

decay Pre-conceptual design review panel (Nov. 06)
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Backgrounds will make or break this experiment
Goal: 1 event/ton-year in 4 keV ROI
Mostly have to worry about:

Compton scattered γ, surface α
Natural isotopic chains: 232Th, 235,238U, Rn
Cosmic Rays:

Activation gives 68Ge and 60Co
Hard neutrons from rock and shielding

2νββ events
Require 100x reduction over previous experiments
Monte Carlo estimates of acceptable levels
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Pulse Shape Analysis (PSA)

Excellent for rejecting 
internal 68Ge and 60Co

Works well with 
segmentation and allows 
sophisticated techniques

Helps separate radially extended evetns
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GERDA-MAJORANA Cooperation

 ‘Bare’ enrGe array in liquid argon  

 Shield: high-purity liquid Argon / H2O

 Phase I (mid 2008): ~18 kg (HdM/
IGEX diodes)

 Phase II (mid 2009): add ~20 kg new 
detectors (Total ~40 kg)

 Modules of enrGe housed in high-purity 
electroformed copper cryostat 

 Shield: electroformed copper/lead 

 Initial phase: R&D prototype module 
(Total 60 kg)

GERDA MAJORANA

Joint Cooperative Agreement:
 Open exchange of knowledge & technologies (e.g. MaGe, R&D)

 Intention to merge for 1 ton exp. Select best techniques 
developed and tested in GERDA and Majorana



MAJORANA Simulation
Simulation Includes: 

57 Enriched crystal w/ dead layers 
LFEPs 
Support Rods 
Ge Trays 
Contact Rings 
Cryostat 
Surface Alphas 
Shields: 

Inner, Outer Cu
Inner, Outer Pb
Neutron shield
Room, rock wall

45,000 CPU hours, 12,000 jobs
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Recent MAJORANA Technical Progress
Progress in investigating potential backgrounds that can become relevant at the 1 ton scale:

Development of MaGe simulation framework (paper in preparation with GERDA)
Extensive study of backgrounds for the Majorana reference design (paper in preparation)
Understanding sensitivity to neutron induced backgrounds underground (Mei and Hime)
Geant4 validity for simulations of muon-induced neutrons (paper in preparation)
Studies of sensitivity to surface contaminations (paper in preparation)
Sensitivity of Ge detectors to neutrons using an AmBe source (paper in preparation)
Studies on potential (n, n'γ) backgrounds at TUNL and LANSCE

Effectiveness of background cuts using a Clover detector (Elliott et al.)
Background reduction using 36 and 40-fold segmented detectors (paper in preparation)
Background reduction using SEGA and the TUNL HIGs facility (paper in preparation)
Quantitatively comparing sensitivities for different detector configurations and segmentations
Large prototype electroformed cryostat (MEGA) and operated with multiple crystals
Improved techniques to electroform large, ultra-clean Cu cryostats (Hoppe et al.)
Progress on pushing ICP-MS assay sensitivities to the sub μBq/kg level (Hoppe et al. paper)
Exploration of an improved modified electrode Ge detector (Collar et al. papers submitted)
Sensitivity of 2νββ and 0νββ to excited states in  76Ge (Kazkaz thesis, paper in preparation)
Development of an improved Geant4 surface sampling routine (paper in preparation)
Support of Gretina digitizing card in ORCA
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An initial prototype 76Ge module with 30-60 kg of 86% enriched 76Ge and 
backgrounds on the order of or less than 1 count/ROI/t-y will allow us to 
demonstrate the feasibility of Ge for a 1-ton scale experiment capable of reaching 
a sensitivity to the “inverted hierarchy” neutrino mass scale (30-40 meV)

Our technical reference plan has been reviewed and deemed achievable
The remaining Majorana R&D is aimed at reducing risks

Demonstrating electroformed Cu that meets the low-activity requirements
Producing low-background, low-mass cables
Examining options to avoid potential detector fabrication & schedule delays

We have to continue to explore ways to “aggressively pursue the construction 
of the first 60 kg module”

Prototype module using existing natGe modules and realistic cryostat, small 
parts and strings
Alternative detector technologies
Mixed deployment of different detector technologies
Early deployment of smaller numbers of crystals



Any Questions?


