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Abstract. Pach and Tóth [15] proved that any n-vertex graph of genus g and maximum degree
d has a planar crossing number at most cgdn, for a constant c > 1. We improve on this results
by decreasing the bound to O(dgn), if g = o(n), and to O(g2), otherwise, and also prove that our
result is tight within a constant factor.

1 Introduction

A drawing of a graph G in the plane is an injection of the set of the vertices of G into points of the
plane and a mapping of the set of the edges of G into simple continuous curves such that the endpoints
of each edge are mapped onto the endpoints of its image curve. Moreover, no curve should contain an
image of a vertex in its inside and no three curves should intersect in the same point, unless it is an
endpoint. The planar crossing number (or simply the crossing number) of G, denoted by cr(G), is the
minimum number of edge crossings over all drawings of G in the plane.

The concept of crossing numbers was introduced by Turán [20] more than 50 years ago. Although
there have been scores of results and publications since, because of the difficulty of the problem there
are only a few infinite classes of graphs with determined exact crossing numbers. For instance, Glebsky
and Salazar recently proved that the crossing number of the Cartesian product of two cycles Cm × Cn

is (m− 2)n [11]. But the exact crossing numbers for such important graphs as the complete graph Km

and the bipartite graph Km,n are not known. For an annotated bibliography of crossing number results
see [14] and for a more extensive and up-to-date chronological bibliography see [19].

From algorithmic point of view, crossing numbers have been studied by Leighton [13], who was
motivated by their application in VLSI design. In graph drawing, crossing numbers have been used for
finding aesthetic drawing of nonplanar graphs and graph-like structures [3]. Typically, such graphs are
drawn in the plane with a small number of crossings and next each crossing point is replaced by a new
vertex of degree 4. The resulting planar graph is then drawn in the plane using an existing algorithm
for nicely drawing a planar graph, and finally the new vertices are removed and replaced back by edge
crossings. The general drawing heuristics are usually based on the divide and conquer approach, using
good separators, or using 2-page layouts [4, 13].

The problem of finding the crossing number of a given graph was first proved to be NP-hard by
Garey and Johnson [9] and, more recently, it was shown to be NP-hard even for cubic graphs [12]. There
is only one exact algorithm of practical use [2], but it works for small and sparse graphs only. The best
polynomial algorithm approximates the crossing number with a polylogarithmic factor [8].

Another direction of research is to estimate crossing numbers in terms of basic graph parameters,
like density and edge separators. There are only a few results of this type [1, 13]. And although the
crossing number and the genus of the graph are two of the most important measures for nonplanarity,
there are only a few results that study the relationship between them. Pach and Tóth [15] showed that
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any n-vertex d-degree toroidal graph G (i.e., graph that can be drawn on the torus with no intersections)
has crossing number O(dn). If G is of genus g (i.e., can be drawn on a surface Sg of genus g with no
intersections), they proved that

cr(G) ≤ cgdn,

for some constant c > 1. Unfortunately, the constant c is very large and, as a consequence, their result
can be useful for very small values of g only. Although their proofs are of a constructive type, Pach and
Tóth do not discuss algorithmic issues.

In this paper we show that

cr(G) = O(dgn), for g = o(n), or (1)
cr(G) = O(g2), otherwise,

and that the bound is tight within a constant factor. Our approach allows one to estimate the surface
g′ crossing numbers of genus g graphs drawn on any surface Sg′ of genus g′, for g′ < g.

Our result is also interesting because of the fact that it relates the crossing numbers of a given graph
on two different surfaces. Specifically, let crg(G) denote the surface g crossing number of G, i.e., the
minimum number of edge crossings over all drawings of G in Sg. The above type of results says that if
crg(G) = 0, then cr(G) cannot be very large. We further strengthen this result by showing as a corollary
of our main result (1) that cr(G) = O(crg(G) g + gn) for bounded degree graphs.

This paper is organized as follows. In Section 2 we give some basic definitions and facts about
embeddings and surfaces. In Section 3, we prove our main result (1) and describe the drawing algorithm
based on our upper bound proof. In Section 4, we give a lower bound proof that shows the tightness
of (1). We conclude with a discussion of extensions and generalizations of the results presented in the
paper.

2 Preliminaries

In this paper by G we denote an undirected graph and by V (G) and E(G) we denote the set of the
vertices and the set of the edges of G, respectively. The size of G is |G| = |V (G)| + |E(G)|. For any
vertex v, the number of the adjacent vertices to v is called the degree of v and is denoted by deg(v).
The maximum degree of any vertex of G is called the degree of G. The set of the vertices adjacent to v
is called the neighborhood of v and is denoted by N(v). For any set of vertices X the neighborhood of
X is N(X) =

⋃
v∈X N(v).

The bisection width of G, denoted by bw(G), is the smallest number of edges whose removal divides
the graph into parts having no more than 2|V (G)|/3 vertices each.

By a surface we mean a closed manifold and by Sg we denote a surface of genus g. A drawing of G
on Sg is any injection of the vertices of G onto points of Sg and the edges of G onto continuous simple
curves of Sg so that the endpoints of any edge are mapped onto the endpoints of its corresponding
curve. The drawing is called an embedding, if no two curves intersect, except possibly at an endpoint.
The genus of G, denoted by g(G), is the smallest genus of a surface G can be embedded in. G is planar,
if the genus of G is zero. Every planar graph can be drawn in the plane without any edge intersections.
Throughout this paper we will use combinatorial representations of embeddings, where each undirected
edge of G is replaced by a pair of opposite directed edges, and the cyclic list of outgoing edges from any
vertex v (called edge-orbit) specifies the counterclockwise order in which the edges appear around v in
the embedding. In a facial walk, the successor of any edge (v, w) is the edge after (w, v) in the edge-orbit
for w. The faces of embedding are all simple closed facial walks and they correspond to the maximal
connected regions into which the drawing of G divides the plane. The outer face of a planar embedding
corresponds to the infinite face of the corresponding drawing. In a combinatorial embedding, any face
can be chosen to be the outer face.

In the remainder of this paper, we will use n, m, and d to denote the numbers of vertices, edges,
and the degree of G, respectively. We also assume that we are given an embedding μ(G) of G in Sg as
an input. If f denotes the number of the faces of μ(G), then the Euler characteristic E(μ(G)) of μ(G),
denoted simply by E(G) when the embedding is clear from the context, is defined as

E(G) = E(μ(G)) = n − m + f.



The relation between the Euler characteristic and the genus g of the embedding is given by the Euler
formula

n − m + f = 2 − 2g. (2)

For any subgraph K of G, let μ(K) denote the embedding of K induced by μ(G), let gμ(K) denote
the genus of μ(K), and let g(K) denote the genus of K. Note that gμ(K) and g(K) may not be equal.
In order to simplify notations, we denote gK = gμ(K).

3 The drawing algorithm

We will start in Section 3.1 by describing a procedure for partitioning G into components with special
properties, which we divide into three classes. In Section 3.2 we will outline the rest of the algorithm
that draws each component according to its type and then combines all drawings into a drawing of the
original graph.

3.1 Dividing the graph into components.

Without a loss of generality we assume that G is biconnected, since otherwise one can draw the bicon-
nected components separately in the plane and then combine their drawings into a planar drawing of G.
Triangulate μ(G) by inserting a suitable number of additional edges in each face that is not a triangle.
Assign weights 1 to all original edges of G and weights 0 to all new edges.

In order to simplify the notations, we will continue to denote by G and μ(G) the modified graph and
embedding, respectively, and will refer to the edges of weights 1 and 0 as original and new edges of G,
respectively. For any set X ⊆ V (G), let wt(X) denote the sum of the weights of all edges of X . Since
in our algorithms we will only be interested in intersections between original edges of G, we introduce
the term original crossings to refer to crossings where both intersecting edges are original.

Select any vertex t and divide the vertices of G into levels according to their distance to t. For a
constant r to be determined later, denote by Lj, for 0 ≤ j < r, the set of all edges between level i and
level i + 1 vertices, for all i satisfying i mod r = j. Assume that the number of all levels is at least r.
Then there exists an i∗ < r such that

wt(Li∗) ≤ �m/r�. (3)

Replace each edge e = (v, w) ∈ Li∗ by a pair of new edges s1 = (v, x1) and s2 = (w, x2) called stubs,
where x1 and x2 are new vertices. This has the effect of ”cutting” e. The stubs s1 and s2 are a matching
pair of stubs and e is a parent of s1 and s2. For any stub (v, x), where v ∈ V (G) and x �∈ V (G), vertex
v is called attached and vertex x is called unattached. Our drawing algorithm will eventually join each
pair of stubs back into their parent edge.

Compute the connected components of the resulting graph, G′. For any component K of G′, let qK

and q′K denote the number of the bicomponents induced by the vertices on the lowest and on the highest
level of K, respectively, that are incident to edges from Li∗ . Without loss of generality, we assume that
qK > 0 for any component K except the one containing t, since otherwise K will be degenerate (a
forest), which is easy to draw without intersections. Denote LK = N(V (K)) ∩ Li∗ .

Let μ(K) be the embedding of K induced by the embedding of G, let nK and mK be the numbers
of the vertices and the edges of K, and let fK be the number of the faces of μ(G) whose all edges are
in K.

Lemma 1. The Euler characteristic of μ(K) is

E(K) = nK − mK + fK + qK + q′K .

Proof. Denote by K(K) the set of bicomponents induced by the vertices on the lowest and the highest
levels of K. Then μ(K) has exactly one new face for each bicomponent of K(K). The lemma follows
from (2). 	

Corollary 1. The embedding μ(K) has genus gK = 1 − (nK − mK + fK + qK + q′K)/2.



Assign a label (qK , q′K) to K. Consider the set M of all components K with gK = 0 (i.e., such that
μ(K) is a planar embedding) and with label (1, 1) or (1, 0). Merge any two components K1 and K2 from
M that contain a pair of matching stubs by replacing all pairs of matching stubs by their parent edges.
Assign a label (1, 1) to the resulting component, K̄, and continue until no more merges are possible.

Let K(G) denote the set of all resulting components of G. We will use the following lemma from [7].

Lemma 2. Let qG′ denote the sum of qK over all components K of G′. Then

gμ(G′) ≤ g(G) − qG′ + |K(G)| − 1. (4)

The next lemma shows that, after the merges, the number of the resulting components is O(g).

Lemma 3. |K(G)| < 2g.

Proof. Since gμ(G′) ≥ 0, by (4)
qG′ − |K(G)| < g(G) = g. (5)

Let K′ be the set of all components K with qK = 1 and let K′′ be the set of components K with
qK > 1. Let q′ and q′′ be the sums of qK for K in K′ and K′′, respectively. Then clearly q′ = |K′|,
q′ + q′′ = qG′ , and |K(G)| = |K′|+ |K′′|. By (5), q′′ − |K′′| < g. Since each component in K′′ contributes
to the sum q′′ with at least 2, then q′′ ≥ 2|K′′| and hence |K′′| < g. The claim follows as |K′| ≤ |K′′|. 	


The next result strengthens Lemma 3 by showing that not only the number of the components of
G′, but also the sum of their labels is O(g).

Lemma 4.
∑

K∈K(G)

(qK + q′K) < 6g.

Proof. For each bicomponent induced by the vertices on level i and incident to edges from Li∗ , there
corresponds at least one bicomponent induced by the vertices on level i + 1, where i mod r = i∗. Then
we have

qG′ =
∑

K∈K(G)

qK ≥
∑

K∈K(G)

q′K . (6)

By (4),
qG′ − |K(G)| + 1 ≤ g(G) − gμ(G′) ≤ g(G) = g.

Combining the last inequality with Lemma 3 gives

qG′ ≤ |K(G)| + g − 1 < 3g.

The lemma follows by (6). 	

We will divide all components K of G′ into three classes depending on their labels (qK , q′K) and on

gK as follows. (i) If gK > 0, then K will be of non-planar type (note that K can actually be planar if
the genus of K is smaller than the genus of μ(K)). (ii) If gK = 0 and the label of K is (1, 1) or (1, 0),
then K will be of l-planar (for ”long planar”) type. (iii) If gK = 0 and the label of K is not (1, 1) or
(1, 0), then K will be of s-planar (for ”short planar”) type. Recall that components of non-planar and
s-planar types have no more than r levels, but components of l-planar type can have larger number of
levels.

3.2 Algorithm outline

The rest of the algorithm draws each component K of G′ in the plane according to its type. The goal is
to have the unattached endpoints of all stubs drawn in the outer face and a relatively small number of
original crossings between edges of K. After all components are drawn in this way, all pairs of matching
stubs are joined into their parent edges. As all stubs are already in the outer face, intersections may
occur only between pairs of stubs. Since, by (3), the weight of all stubs is O(m/r), this final step will
increase the total number of original crossings by O((m/r)2).



3.3 Drawing non-planar components

If K is non-planar, then we will show that a subgraph of K of relatively small size can be found such
that ”cutting” the embedding of K along the edges of that subgraph and appropriately pasting a face
f along the cut produces a planar surface. Then we will draw K in the plane with f as an outer face
and redraw the edges that were destroyed by the cut. Since those edges will be entirely in f , they will
not intersect other edges of K. Finally, we will route all stubs to the outer face.

3.3.1 Finding a planarizing set for K. Consider a component K such that gK > 0 and let l−K and
l+K denote the lowest and the highest levels of K. Define a spanning forest FK of K with qK trees as
follows. For each connected bicomponent Q defined by the vertices of K on level l−K define a spanning
tree TQ for Q and add the edges of TQ to FK . For each vertex v on level greater than l−K choose any
vertex w on a lower level adjacent to v and add edge (v, w) to FK . Finally, for each stub s from K,
make the attached endpoint of s parent of its unattached endpoint. Clearly, FK contains qK trees, one
for each connected bicomponent induced by level l−K in K.

We will call an FK-cycle any simple cycle in K that has exactly one non-forest edge. Since K has
no-more than r levels, any FK -cycle will contain no more than 2(r − 1) vertices of K, excluding the
vertices on level l−K .

For any non-forest edge e of K incident to two different faces f1 and f2 of the embedding, remove e
and merge f1 and f2 into a single face. Since this operation eliminates one edge and one face, the Euler
characteristic does not change. Continue until no such edge e remains. Then any of the remaining non-
forest edges should be incident only to f . Clearly, f should be the only face of the resulting embedding,
since any face must contains a non-forest edge (otherwise T will contain a cycle). Next, remove any edge
that is incident to a degree-1 vertex as well as the degree-1 vertex itself. Since each removal reduces
the number of the vertices and the number of the edges by one, this operation preserves the Euler
characteristic of μ(K).

Denote by Pl(K) the resulting graph. We will think of Pl(K) as a ”planarizing” graph since, as we
will show in Step 4.2, it can be used to transform the embedding of K into a planar embedding. Denote
by nPl and mPl the number of the vertices and the number of the edges of Pl(K). By (2) we have

nPl − mPl + 1 = 2 − 2gK , (7)

and hence
mPl = (nPl − 1) + 2gK ,

which implies that the number of remaining non-forest edges is 2gK . Therefore, Pl(K) is a union of
2gK FK-cycles.

We proved the following.

Lemma 5. The embedding μ(Pl(K)) of Pl(K) has a single face, genus gK, and no more than 2gK(r−1)
vertices whose levels are in the interval (l−K , l+K ].

We will use Pl(K) in the next subsection to ”planarize” μ(K).

3.3.2 Transforming µ(K) into a planar embedding. Next we transform μ(K) by modifying
Pl(K) so that it is transformed into a new face f bounded by a simple cycle c. See the example on
Figure 1 (b). Next we describe more formally the transformation of the different elements of K. We
denote by e = (w1, w2) an edge of K with at least one endpoint in Pl(K).
1) Vertices of Pl(K). Let v be any vertex of degree k from Pl(K) and let < e1, · · · , ek > be the
counterclockwise permutation of the edges of Pl(K) incident to v. Define k new vertices that will
replace v and denote them by {e1, e2}, {e2, e3}, · · · , {ek, e1} (Figure 1 (a)).

2) Edges not in Pl(K). Let e �∈ E(Pl(K)). We will define an edge (w′
1, w

′
2) to replace e. If w1 is not

from Pl(K) let w′
1 = w1. Else denote by < e1, · · · , ek = e0 > the edge-orbit of w1 and let ej be the

first edge from Pl(K) in a counterclockwise direction from e and let ej−1 be the first edge from Pl(K)
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Fig. 1. The transformation of P l(K). (a) Replacing v by k new vertices. (b) Replacing P l(K) by a simple cycle
c. The arrows show the direction of the face walk.

in a clockwise direction. Then define w′
1 = {ei, ej}. Similarly define a vertex w′

2 corresponding to w2.
Replace e = (w1, w2) by the edge (w′

1, w
′
2), which we will denote by new(w1, w2).

3) Edges from Pl(K). Let e ∈ E(Pl(K)) and let e′ be the first edge from Pl(K) in a clockwise direction
from e in the edge-orbit of w2 and let e′′ be the first edge from Pl(K) in a counterclockwise direction
of the edge-orbit of w1. Define a new edge −−→new(w2, w1) = ({e, e′′}, {e′, e}). Similarly, define an edge−−→new(w1, w2) by swapping w1 and w2. Finally, replace e by the two edges −−→new(w2, w1) and −−→new(w1, w2)
(note that both those new edges are undirected).
4) Updating the edge-orbits. Next update the edge-orbits for the vertices incident to the new edges as
follows. Let w be a vertex of Pl(K) and let < e1 = (w, v1), · · · , ek = (w, vk) > be the counterclockwise
permutation of the edges of K incident to w. For any pair of edges (w, vi) and (w, vj), 1 ≤ i, j ≤ k, such
that (w, vj) is the first edge from Pl(K) in a counterclockwise direction from (w, vi) define the edge-orbit
of the new vertex w(ei, ej) as follows: < −−→new(w, vi), new(w, vi+1), · · · , new(w, vj−1),−−→new(vj , w) >.

Denote by K ′ the resulting component, by μ̄(K ′) its embedding, and by c the cycle corresponding
to Pl(K)..

In order to simplify notations, let VPl = V (Pl(K)), Vc = V (c). By construction, we have the
following.

Lemma 6. The resulting component K ′, its embedding μ̄(K ′), and the cycle c constructed by the trans-
formation of Pl(K) have the following properties:

(a) V (K) = V (K ′) \ Vc ∪ VPl, E(K) = E(K ′) \ N(Vc) ∪ N(VPl);
(b) {N(v) | v ∈ VPl} \ VPl = {N(v) | v ∈ Vc} \ Vc;
(c) The number of the faces of μ̄(K ′) exceeds the number of the faces of μ(K) by one.

Lemma 7. The embedding μ̄(K ′) is planar.

Proof. Let nK , mK , and fK be the number of the vertices, edges, and faces of μ(K) and let n′
K , m′

K ,
and f ′

K be those numbers for μ̄(K ′). Since the genus of μ(K) is gK , by (2)

nK − mK + fK = 2 − gK . (8)

By Lemma 6 (c),
f ′

K = fK + 1.

Moreover, there is a unique vertex in K ′ for any vertex in V (K) \ V (Pl(K)) and the vertices from
Pl(K) are replaced by the vertices of c. Hence

n′
K = nK − nPl + |c|.

Similarly, for the number of edges we have

m′
K = mK − mPl + |c|.

Combining the last three equalities with (7) and (8) we get

n′
K − m′

K + f ′
K = (nK − mK + fK) − (nPl − mPl) + 1

= (2 − 2gK) − (2 − 2gK) + 2 = 2.

Hence, by (2), μ̄(K ′) is planar. 	




3.3.3 Transforming µ̄(K′) into a planar drawing of K with a small crossing number.
Recall that the cycle c in K ′ corresponds to the subgraph Pl(K) of K. Replacing c with Pl(K) will
transform K ′ back into K.

Without loss of generality assume that the face corresponding to c is not the outer face. Remove
all vertices from c and all of their incident edges. Denote by h the resulting face. Draw all vertices of
Pl(K) inside h. By Lemma 6 (b), all edges of K incident to a vertex in Pl(K) will have both their
endpoints inside h. Since there are no more than dnPl such original edges, they can be drawn inside h
with no more than (dnPl)2 original crossings.

By Lemma 6 (a), the above operation transforms the embedding of K ′ into a drawing of K. Let μ̄(K)
denote the resulting drawing. We summarize the properties of that drawing in the following lemma.

Lemma 8. μ̄(K) is a drawing of K in the plane that has no more than (dnPl)2 original crossings.

3.3.4 Routing the stubs of K to the outer face. Assign length 0 to all edges joining two vertices
on level l−K and assign length 1 to all other edges of K. A length of a path in K is defined as the sum
of the lengths of its edges. We will make use of the following fact.

Lemma 9. Between any pair of vertices of K there exists a path entirely in K of length no more than
2qK(r − 1) + qK − 1.

Proof. Let Q1, · · · , QqK be all bicomponents induced by the set of the vertices on level l−K . Let v and
w be any two vertices of K. Construct a path p = (v1, · · · , vs) in K joining v and w. Suppose v is a
descendant of a vertex from Qi. Let j be the largest index for which vj is a descendant of a vertex
from Qi. Replace the subpath (v1, · · · , vj) with a simple path p1 that uses forest edges only. The length
of p1 is no greater than 2(r − 1). By the choice of j, the path (vj+1, · · · , vs) has no vertices that are
descendants of a vertex from Qi. Using induction, the subpath (vj+1, · · · , vs) can be replaced by a path
p2 between vj+1 and vs of length no more than 2(qK −1)(r−1)+qK−2. Merging p1, the edge (vj , vj+1),
and p2 results in a path between v and w of length at most 2qK(r − 1) + qK − 1. 	


Finally, route all stubs of K to the outer face of μ̄(K) using Lemma 9. More precisely, let s be a
stub corresponding to an original edge and let p be the path constructed by the procedure of Lemma 9
for s. Informally, s will be routed along a path ”parallel” to p that avoids vertices of p and that, for the
portions of the path on level l−K , makes a ”shortcut” inside the corresponding faces in order to minimize
the number of intersections. More formally, remove all edges incident to vertices of p on levels greater
than l−K (i.e., that have lengths 1) or on level l−K , but not on p. This operation creates a new face f that
includes all faces defined by the vertices on level l−K and that have at least one edge from p. Route s
inside f avoiding vertices from p. Then s will intersect no more than l(s)·d original edges of G plus a
number of stubs of K. (We will separately bound the number of all intersecting pairs of original stubs
in our analysis below.)

Recall that LK = N(V (K)) ∩ Li∗ , where Li∗ was defined in (3). The next lemma summarizes the
results of this section regarding the drawing of K.

Lemma 10. The constructed drawing of K has less than 8(dgKr)2 +2wt(LK)2 +2dqKr original cross-
ings.

Proof. Crossings in the embedding of K may have occurred during the planarizing step (Subsec-
tion 3.3.3), or from stubs routed to the outer face. By Lemma 8, the original crossings from the first
type are no more than (d · nPl)2, which by Lemma 5 is no more than (2d gK(r − 1) + wt(LK))2 <
8(rd gK)2 + 2wt(LK)2, where the 2wt(LK)2 bound accounts for all possible intersections between pairs
of original stubs. By Lemma 9, the number of original crossings of the second type are no more than
d(2qK(r−1)+ qK −1) < 2d qK r, excluding crossing between pairs of original stubs, which have already
been counted (we assume that no two edges cross more than once). 	


When we apply the above algorithm to all non-planar components, the total number of original
crossings is estimated in the following lemma.



Lemma 11. All non-planar components of G can be drawn in the plane so that the unattached endpoints
of all stubs are in the outer face of the drawing and the total number of original crossings is no more
than 8(dgr)2 + 12dgr + 2(m/r)2.

Proof. By Lemma 10 the total number of original crossings is bounded by∑
K is l−planar

(8(rdgK)2 + 2wt2(N(V (K)) ∩ Li∗) + 2dqKr)

≤ 8(dgr)2 + 12dgr + 2wt2(E(G) ∩ Li∗) (by Lemma 4)

≤ 8(dgr)2 + 12dgr + 2(m/r)2 (by (3)).

3.4 Drawing s-planar components

This case is similar to the case of non-planar components, except that there is no need to planarize.

Lemma 12. All s-planar components of G can be drawn in the plane so that the unattached endpoints
of all stubs are in the outer face and the total number of original crossings is no more than 12dgr.

Proof. Let K be any s-planar component. Draw K in the plane (with 0 crossings) so that one of the
cycles defined by the vertices on the lowest level is the outer face. Route all stubs of K to the outer
face of the drawing as described in the proof of Lemma 9. By Lemma 9, the drawing of K has less than
2dqKr original crossings.

Draw by the same procedure all remaining s-planar components. By Lemma 4, the total number of
crossings for all s-planar components is no more than∑

K is s−planar

12dqKr ≤ 12dgr.

	


3.5 Drawing l-planar components

Since l-planar components may have up to Ω(n) levels, the bound derived from (3) on the number of
edges that have to be routed is not sufficient to guarantee a small crossing number. Hence, we have to
additionally cut each l-planar component along some small set of edges joining two consecutive levels.

Let K be any l-planar component and let l−K and l+K be the lowest and the highest levels of K,
respectively. By Lemma 1, the embedding of K− induced by the embedding of G is planar.

Denote by f− and f+ the faces defined by the set of the vertices on levels l−K and l+K , respectively.
We will make use of the following fact.

Lemma 13. Let v be a vertex on level i, where l−K ≤ i ≤ l+K . There exists a continuous line in the plane
joining v to a point inside f− (respectively f+) that contains no other vertices of K except v and with
no more than (i − l−K + 1)d (respectively (l+K − i + 1)d) original crossings with edges from K, excluding
the edges joining a vertex on level i and a vertex on level i + 1.

Proof. Suppose a is any point inside f+. Let x be any vertex on level l+K . There exists a path p of
i− l−K + 1 vertices joining x with some vertex, say w, on level i. The set S of all original edges incident
to vertices of p has size no more than (i− l−K + 1)d. Moreover, the removal of all the edges of S creates
a new face q that contains both w and a inside it. Let l1 be a line joining w and a that lies entirely
inside f . Clearly, the set of the edges of G that l1 intersects is a subset of S and hence l1 can be chosen
so that it has no more than (i− l−K + 1)d original crossings with such edges. Furthermore, w and v can
be connected by a line l2 that intersects only edges joining vertices on levels i and i+1. Connect l1 and
l2 at w and modify the joined line so that it avoids w. The resulting line satisfies the lemma. The case
where a is inside f− is similar. 	




Lemma 14. There exists a drawing of K in the plane with at most |V (K)|+wt(LK)2 original crossings
such that all stubs have their unattached endpoints drawn in the outer face.

Proof. Find a level i such that the number of the original edges of K joining a vertex on level i with a
vertex on level i + 1 is minimum. Replace each edge joining levels i and i + 1 by a pair of stubs as we
did with G in Section 3.1. This splits K into components K−, induced by the vertices in K on levels
less than or equal to i, and K+, induced by the vertices in K on levels greater than i.

Convert μ(K−) into a drawing with an outer face f−. For any stub s of K− incident to a vertex
from level i, use Lemma 13 to route s to f− so that s intersects no more than (i − l−K + 1)d edges of
K−. Repeat the procedure for all other stubs of K− incident to vertices from level i. The total number
of original crossings produced in this step is no more than L(i)(i − l−K + 1)d ≤ |V (K−)|d, where L(i)
denotes the number of original edges joining a vertex on level i and a vertex on level i + 1.

Similarly, convert μ(K+) into a drawing with an outer face f+ and route all stubs of K+ incident
to vertices from level i + 1 to f+, producing no more than |V (K+)|d original crossings. Add to the
drawing the one of K− found in the previous step. Finally, merge any pair of stubs incident to vertices
from levels i and i + 1 into their parent edge of G. Since all stubs were already in the outer face of
the drawing, all new intersections are between stubs incident to vertices from levels i and i + 1. Hence
the number of new original crossings is no more than (L(i))2, resulting in a total number of original
crossings no more than

|V (K−)|d + |V (K+)|d + (L(i))2 = |V (K)|d + (L(i))2 ≤ |V (K)|d + wt2(LK).

	

We summarize the results of this section in the following lemma.

Lemma 15. All l-planar components can be drawn in the plane so that the unattached endpoints of all
stubs are in the outer face of the drawing and the total number of original crossings is no more than
nd + (m/r)2.

Proof. Apply Lemma 14 to all components of l-planar type. The total number of original crossings for
all components of that type is∑

K is l−planar

(|V (K)|d + wt2(N(V (K)) ∩ Li∗)) ≤ |V (G)|d + wt2(E(G) ∩ Li∗)

≤ nd + (m/r)2 (by (3)).

	


3.6 Reconnecting the embedded components

After all components of G−S are drawn in the plane by applying the algorithms described in Subsections
3.3, 3.4, and 3.5, all the wt(Li∗) original stubs will have their unattached endpoints in the outer face.
Joining all pairs of original stubs into their parent edges so that no two stubs intersect more than once
will produce at most wt(Li∗)2 additional original crossings. This leads to the following result.

Theorem 1. Any n-vertex graph of maximum degree d embedded in Sg can be drawn in the plane with
O(dgn), if g = o(n), or O(g2), if g = Ω(n), edge crossings.

Proof. By Lemmas 11, 12, and 15, the total number of original crossings from drawing individual
components is no more than

8(dgr)2 + 24dgr + nd + 3(m/r)2 = O((dgr)2 + nd + 3(m/r)2,

where m is the number of original edges of G. Choosing r = �√m/(gd) � and adding the number of
the original crossings resulting from joining the stubs in the final step, which is bounded by wt2(Li∗) =
O((m/r)2), the number of all original crossings is O(dgm + dn) = O(dgm).



Without loss of generality we can assume that G is connected and has no vertex of degree two. Then
we have the inequalities m ≥ 3/2n and m ≥ 3/2f , which we will use next, where f is the number of
the faces of the embedding.

If g = o(n), then from the Euler formula (2) and the above inequalities m = O(n) and hence
O(dgm) = O(dgn), which proves the theorem. If g = Ω(n), then by (2) m = Ω(n) and g = Ω(m).
Since any straightline drawing of G in the plane has less than m2 = O(g2) crossings, it satisfies the
theorem. 	

Corollary 2. Let G be any n-vertex bounded degree graph and let 0 < g = o(n). Then

cr(G) = O(crg(G) g + gn).

Proof. Draw G in Sg with crg(G) crossings. Replace every crossing by a new vertex. We get a new
bounded degree graph G′ of genus g and crg(G) + n vertices. By Theorem 1 we have

cr(G′) = O((crg(G) + n)g).

Observe that cr(G) ≤ cr(G′) + crg(G), which implies the result. 	


3.7 Complete algorithm and complexity analysis

Here we describe the entire algorithm and analyze its complexity.

Algorithm DRAW

Input: An n-vertex, d-degree graph G, an embedding μ(G) of G in Sg.
Output: A drawing of G with O(max{dgn, g2}) crossings.

1. If g = Ω(n), construct an arbitrary straightline drawing of G and exit.
2. Triangulate μ(G) assigning weight 0 to any new edge and weight 1 to any original edge of G.
3. Set r = �√|E(G)|/(gd) �. Divide the vertices of G into levels depending on their distances to a

chosen vertex. Cut a subset of selected edges joining consecutive levels, as described in Section 3.1,
producing components of the following three types: (i) non-planar components, having at most r
levels and induced genus greater than zero; (ii) s-planar components, having at most r levels and
genus 0; and (iii) l-planar components, whose vertices on their lowest and on their highest levels
define single faces and that have genus 0. Each cut edge is replaced by a pair of stubs.

4. For each component K, draw K in the plane applying one of the Steps 5, 6, or 7.
5. If K is non-planar, then

5.1. Construct a subgraph Pl(K) of K such that (i) Pl(K) contains at most 2gK(r − 1) vertices
not counting the vertices on the highest and the lowest levels of K; (ii) converting Pl(K) into a
simple cycle c that is a face, denoted by f , of the new embedding as described in Section 3.3.2
transforms the embedding of K into an embedding of the updated graph, denoted by K ′, in S0.
Moreover, Pl(K) and c have the same set, M , of edges joining them to K and K ′, respectively.

5.2. Draw K ′ in the plane with f as an outer face.
5.3. In order to transform K ′ back to K, remove c, draw the vertices of Pl(K) in the resulting

face, f ′, and draw all edges of M . Since both endpoints of any edge from M are on or inside f ′,
intersections will occur only between pairs of edges from M .

5.4. Route any stubs of K to the infinite face of the drawing as described in the proof of Lemma 9
and join matching pairs of stubs into their parent edges.

6. If K is s-planar, then draw K in the plane with one of the cycles determined by the vertices on the
lowest level of K as outer face and continue as in Step 5.4.

7. If K is l-planar, choose a pair of adjacent levels of K such that the total weight of the edges between
vertices on those levels is minimum. Replace these edges by pairs of stubs and draw the resulting
planar components on the plane so that the cycles on the lowest and on the highest level of K are
outer faces. Route each stub to the corresponding outer face as in the proof of Lemma 9. Merge all
matching pairs of stubs with both endpoints in K into their parent edges.



8. After all components are drawn in the plane, restore G by merging matching pairs of the remaining
stubs (all located in the infinite face) into their parent edges.

It is easy to show that Steps 1, 2, and 3 can be implemented in O(|G|) time. Steps 5.1 and 5.2 take
O(|K|) time, and Steps 5.3, 5.4, 6, and 7 can be implemented in time proportional to the number of
the original crossings produced in these steps. Hence we have the following.

Theorem 2. Algorithm DRAW constructs a drawing satisfying Theorem 1 of any n-vertex d-degree
graph embedded in Sg in O(dgn) time, if g = o(n), or in O(g2) time, if g = Ω(n).

4 Lower bound

In this section we provide a matching lower bound for Theorem 1.

Theorem 3. There is a constant α such that for any positive integers n, g < n2, and d < n, there
exists an n-vertex graph G of genus and degree not exceeding g and d, respectively, such that

cr(G) ≥ αdgn, if g = o(n), or cr(G) ≥ αg2, otherwise. (9)

Proof. Let g, d, and n be any integers such that g = O(n2) and d = O(n). We will show that there
exists a graph of n̄ = Θ(n) vertices, degree d̄ = Θ(d), genus ḡ = Θ(g), and crossing number satisfying
(9) for some global constant α.

It is known [16, 17] that any n-vertex graph H satisfies

cr(H) ≥ 1
40

bw2(H) − 1
16

√ ∑
v∈V (H)

deg2(v). (10)

Consider the following two cases.

(a) g = o(n). In [18], it was a shown that for any g, n, and d, there exists an n̄-vertex, d̄-degree, ḡ-genus
graph G, such that n̄ = Θ(n), d̄ = Θ(d), ḡ = Θ(g), and

bw(G) ≥ β

√
d̄ḡn̄, (11)

for some absolute constant β. Suppose G is such a graph. By (10),

cr(G) = Ω(d̄ḡn̄) − O(d̄n̄) = Ω(d̄ḡn̄).

(b) g = Ω(n). Let s = �√g� and G be a graph consisting of the complete graph on s vertices
Ks plus max{0, n − s} isolated vertices. Clearly, G has n̄ = max{n, s} = Θ(n) vertices, genus
ḡ = Θ(s2) = Θ(g), and crossing number

cr(G) = cr(Ks) = Θ(s4) = Θ(g2).

Since g = Ω(n), then ḡ = Ω(n̄) and the theorem follows. 	


5 Extensions and generalizations

The bound in Theorem 3 on the time complexity of our algorithm is asymptotically optimal, if the
algorithm is required to explicitly output all edge crossings. However, if a succinct encoding of the
output is allowed, then a more careful implementation of the drawing phase of the algorithm can reduce
the complexity to O(|G|). For instance, instead of listing all intersections of an edge e with the edges
incident to the vertices of a path (v0, · · · , vk) such that vi is a parent of vi−1 in FK , for 1 ≤ i ≤ k,
we need only to output the endpoints v0 and vK , since they uniquely determine that portion of the
drawing. If g = Ω(n), then we need only to output the positions of the vertices, since they determine



the drawing satisfying the theorem (the edges will be drawn as straight-line segments). We omit the
detailed prescription of such an algorithm here for a lack of space.

Pach and Toth showed in [15] that their O(cgdn) upper bound on the crossing number of n-vertex
d-degree graphs of genus g can be generalized to graphs of arbitrary degrees by substituting the product
dn in their bound by the number σ(G) =

∑
v∈V (G) deg2(v). The technique they use for this purpose

is to replace any vertex v of G by a deg(v) × deg(v) 2-dimensional mesh Mv of vertices, where the
edges incident to v appear in the same order around the boundary of Mv as they do around v. Clearly,
the same technique, if used to modify the proof of our Theorem 1, will result in an upper bound of
O(σ(G)g) for the case g = o(n). Such an approach, however, will increase the size of the graph, and
hence the computation time, by a factor of σ(G)/|G| (if a succinct encoding of the output is used),
which can be as much as Ω(n). This increase in time can be reduced to only O(log n), while achieving
the same bound on the crossing number, by using the technique from [6] that is based on shortest path
computation in a modified version of G.
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