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Abstract Pach and Tóth proved that any n-vertex graph of genus g and maximum
degree d has a planar crossing number at most cgdn, for a constant c > 1. We
improve on this results by decreasing the bound to O(dgn), and also prove that
our result is tight within a constant factor. Our proof is constructive and yields
an algorithm with time complexity O(dgn). As a consequence of our main result,
we show a relation between the planar crossing number and the surface crossing
number.
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1 Introduction

A drawing of a graph G in the plane is an injection of the set of the vertices
of G into points of the plane and a mapping of the set of the edges of G into
simple continuous curves such that the endpoints of each edge are mapped onto
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the endpoints of its image curve. Moreover, no curve should contain an image of a
vertex in its inside and no three curves should intersect in the same point, unless
it is an endpoint. The planar crossing number (or simply the crossing number) of
G, denoted by cr(G), is the minimum number of edge crossings over all drawings
of G in the plane.

The concept of crossing numbers was introduced [26] more than 50 years ago by
Turán. Although there have been scores of results and publications since, because
of the difficulty of the problem there are only a few infinite classes of graphs with
determined exact crossing numbers. For instance, Glebsky and Salazar recently
proved that the crossing number of the Cartesian product of two cycles Cm × Cn

is (m − 2)n [11]. But the exact crossing numbers for such important graphs as
the complete graph Km and the bipartite graph Km,n are not known, in general.
For an annotated bibliography of crossing number results see [16] and for a more
extensive and up-to-date chronological bibliography see [23]. A recent survey paper
on crossing numbers is in [25].

From algorithmic point of view, crossing numbers have been studied by Leighton
[15], who was motivated by their application in VLSI design. In graph drawing,
crossing numbers have been used for finding aesthetic drawing of nonplanar graphs
and graph-like structures [6]. Typically, such graphs are drawn in the plane with
a small number of crossings and, next, each crossing point is replaced by a new
vertex of degree 4. The resulting planar graph is then drawn in the plane using an
existing algorithm for planar graph drawing. Finally, the new vertices are removed
and replaced back by edge crossings. The general drawing heuristics are usually
based on the divide and conquer approach, using graph separators, or using 2-page
layouts [5,15].

The problem of finding the crossing number of a given graph was first proved
to be NP-hard by Garey and Johnson [10] and, more recently, it was shown to be
NP-hard even for cubic graphs [13]. There is only one exact algorithm of practi-
cal use [3], but it works for small and sparse graphs only. The best polynomial
algorithm approximates the crossing number with a polylogarithmic factor [9,4].
A quadratic, fixed parameter-tractable algorithm for crossing numbers was found
in [12]. Kawarabayashi and Reed [14] construct for every fixed k a linear time
algorithm that constructs a drawing of an input graph in the plane with at most k

crossings or determines that such a drawing does not exist, answering a question
posed in [12].

Another direction of research is to estimate crossing numbers in terms of basic
graph parameters, like density, separators, cutwidths and edge congestions. There
are only a few results of this type [1,15,20,7,17]. And although the crossing number
and the genus of the graph are two of the most important measures for nonpla-
narity, there are only a few results that study the relationship between them. Pach
and Tóth [19] showed that any n-vertex toroidal graph G (i.e., graph that can be
drawn on the torus with no intersections) of maximum degree d has crossing num-
ber O(dn). If G is of orientable genus g (i.e., can be drawn on an orientable surface
Sg of genus g with no intersections), they proved that cr(G) ≤ cgdn, for some
constant c > 1. Unfortunately, the constant c is very large and, as a consequence,
their result can be useful for very small values of g only. Although their proofs are
of a constructive type, Pach and Tóth do not discuss algorithmic issues. Later on,
they proved a similar result for nonorientable surface too, [2]. Another result of
this nature estimates planar crossing numbers of H-minor-free graphs [24].
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In this paper we show that

cr(G) =O(dgn)

and that the bound is tight within a constant factor. The proof is of algorithmic
nature. Our result is also interesting because of the fact that it relates the crossing
numbers of a given graph on two different surfaces. Specifically, let crg(G) denote
the orientable surface g crossing number of G, i.e., the minimum number of edge
crossings over all drawings of G in Sg. The above type of results says that if
crg(G) = 0, then cr(G) cannot be very large. We further strengthen this result
by showing as a corollary of our main result that cr(G) = O(crg(G) g + gn) for
bounded degree graphs.

This paper is organized as follows. In Section 2 we give some basic definitions
and facts about embeddings and surfaces. In Section 3, we prove our main result
and describe the drawing algorithm based on our upper bound proof. In Section 4,
we give a lower bound proof that shows the tightness of our bound. We conclude
with a discussion of extensions and generalizations of the results presented in the
paper.

2 Preliminaries

A graph is an ordered pair of sets V and E, where V is the set of the vertices of the
graph and E is the set of the edges. Each edge e is a pair of vertices v and w. If the
pair is ordered, the edge, denoted by e = 〈v, w〉, is directed, called also an arc, and
if the pair is unordered, the edge, denoted by e = (v, w), is undirected. The graph
is undirected if all its edges are undirected, and otherwise the graph is directed.

A path P is a sequence of vertices v0, v1, . . . , vk such that (vi, vi+1) ∈ E for
i < k. If v0 = vk, then P is a cycle and P is a simple cycle if all vertices v1, . . . , vk

are distinct.
The maximal connected subgraphs of G are its components. A connected graph

is biconnected, if the removal of any vertex leaves a connected graph. The maximal
biconnected subgraphs of G are its bicomponents.

In this paper, unless stated otherwise, by G we denote an undirected connected
graph and by V (G) and E(G) we denote the set of the vertices and the set of the
edges of G, respectively. The size of G is the number of its edges. For any vertex
v, the number of the adjacent vertices to v is called the degree of v and is denoted
by deg(v). The maximum degree of any vertex of G is called the degree of G. The
set of the vertices adjacent to v is called the neighborhood of v and is denoted by
N(v). For any set of vertices X, the neighborhood of X is N(X) =

⋃
v∈X N(v).

The bisection width of G, denoted by bw(G), is the smallest number of edges
whose removal divides the graph into parts having no more than 2|V (G)|/3 vertices
each.

By a surface we mean a closed manifold and by Sg we denote an orientable
surface of genus g. A drawing of G on Sg is any injection of the vertices of G onto
points of Sg and the edges of G onto continuous simple curves of Sg so that the
endpoints of any edge are mapped onto the endpoints of its corresponding curve.
The drawing is called an embedding, if no two curves intersect, except possibly at
an endpoint. An embedding is called a 2-cell embedding if every component of Sg\G
is homeomorphic to an open disk. The genus of G, denoted by γ(G), is the smallest
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genus of a surface G can be embedded in. G is planar, if the genus of G is zero.
Every planar graph can be drawn in the plane without any edge intersections.

Throughout this paper we will use a combinatorial representation (also called a
rotation system) of a 2-cell embedding, which describes the circular ordering of the
edges incident to each vertex. Specifically, let G be a graph and let µ(G) be a 2-cell
embedding of G. In order to construct the combinatorial representation of µ(G),
replace each undirected edge (v, w) of G by a pair of opposite arcs 〈v, w〉 and 〈w, v〉,
and denote the set of the resulting arcs by Ẽ. The combinatorial representation
of µ(G) (denoted simply by µ(G) hereafter) is defined by the set of the cyclic
lists of arcs of Ẽ, called arc orbits, where each orbit lists the outgoing arcs from
any vertex v, in the order in which they appear around v in the embedding in a
counterclockwise direction. If e′ is the first edge in the edge orbit of v from e, then
we will write e

v→ e′. A facial walk of µ(G) is any sequence of arcs from Ẽ, where
the successor of any arc 〈v, w〉 is the arc after 〈w, v〉 in the arc orbit for w. The
faces of embedding are all simple closed facial walks and they correspond to the
maximal connected regions into which the drawing of G divides the surface. Note
that the set of all facial walks contain each edge exactly twice. The outer face of a
planar embedding corresponds to the infinite face of the corresponding drawing.
In a combinatorial embedding, any face can be chosen to be the outer face.

In the remainder of this paper, we will use n, m, g, and d to denote the numbers
of vertices, edges, the genus, and the degree of G, respectively. We also assume that
we are given an embedding µ(G) of G in Sg as an input. If f denotes the number
of the faces of µ(G), then the Euler characteristic E(µ(G)) of µ(G), denoted simply
by E(G) when the embedding is clear from the context, is defined as

E(G) = E(µ(G)) = n−m + f.

The relation between the Euler characteristic and the genus g of the embedding
of a graph of k components is given by the Euler formula

n−m + f = 2k − 2g. (1)

If G′ is a subgraph of G, the embedding µ(G′) of G′ induced by µ(G) is defined
by the modified orbits of µ(G), where in each orbit the edges in G′ are kept and the
ones not in G′ are skipped. The genus of the induced embedding can be determined
by computing the number of its faces and applying the Euler formula.

For any subgraph K of G, let µ(K) denote the embedding of K induced by
µ(G), let γµ(K) denote the genus of µ(K), and let γ(K) denote the genus of K.
Note that γµ(K) and γ(K) may not be equal. In order to simplify notations, we
may denote γµ(K) simply by gK , if µ(K) is clear from the context.

3 The drawing algorithm

This is the main section of the paper, where we describe and analyze an algorithm
for drawing into the plane with a small number of crossings a graph G embedded
in Sg. We will start in Section 3.1 by describing a procedure for partitioning
G into components with special properties, which we divide into three classes of
components. In Section 3.2 we will outline the rest of the algorithm that draws each
component according to its type and then combines all drawings into a drawing
of the original graph.
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3.1 Cutting the graph into components and analyzing their properties

Without a loss of generality, we assume that G is biconnected, since otherwise one
can draw the biconnected components separately in the plane and then combine
their drawings into a planar drawing of G with no additional crossings. Triangulate
µ(G) by inserting a suitable number of additional edges in each face that is not a
triangle. Assign weights 1 to all original edges of G and weights 0 to all new edges.

In order to simplify the notations, we will continue to denote by G and µ(G) the
modified graph and embedding, respectively, and will refer to the edges of weights
1 and 0 as original and new edges of G, respectively. For any set X ⊆ E(G), let
wt(X) denote the sum of the weights of all edges of X. Since in our algorithms
we will only be interested in crossings between original edges of G, we introduce
the term original crossings to refer to crossings where both intersecting edges are
original.

Select any vertex t and divide the vertices of G into levels according to their
distance to t. For an integer constant r to be determined later, denote by Lj , for
0 ≤ j < r, the set of all edges between level i and level i+1 vertices, for all integers
i satisfying i mod r = j. Assume that the number of all levels is at least r. Then
there exists an i∗ < r such that

wt(Li∗) ≤ bm/rc. (2)

Replace each edge e = (v, w) ∈ Li∗ by a pair of new edges s1 = (v, x1) and
s2 = (w, x2) called stubs, where x1 and x2 are new vertices. This has the effect of
”cutting” e. The stubs s1 and s2 are called a matching pair of stubs and e is called
a parent of s1 and s2. For any stub (v, x), where v ∈ V (G) and x 6∈ V (G), vertex
v is called attached and vertex x is called unattached. Our drawing algorithm will
eventually join each pair of stubs back into their parent edge.

Next we are going to analyze some relevant properties of the resulting graph,
which we denote by G′. Compute the set K(G′) of all connected components of
G′. Let K ∈ K(G′). Denote by l−K and l+K the lowest level and the highest level
of the vertices of K, respectively. Let µ(K) be the embedding of K induced by
the embedding of G, where stubs take the places of their parent edges in the edge
orbits of the vertices on levels l−K and l+K . Denote by B(K)− (respectively B(K)+)
the set of all bicomponents of the subgraph of G induced by the vertices on the
lowest (respectively highest) level of K that are incident to stubs.

Let B be any bicomponent of B(K)−. Let S(B) be the set of all stubs adjacent
to a vertex of B and let S(B)′ be the set of the parent edges of all stubs from
S(B). Assign level l−K to any new vertex that is an endpoint of a stub from S(B).
We will define a decomposition C(B) of S(B) into subsets as follows. Intuitively,
the elements of C(B) will correspond to new faces determined by S(B) and the
embedding of G (Figure 1 (a)). Define the dual graph of µ(G) and construct its
subgraph, which we call GB , containing all triangles whose vertices are on levels
in {l−K−1, l−K} and have at least one vertex from B and at least one vertex on level
l−K−1 (Figure 1 (b)). Clearly, each edge of S(B)′ belongs to a face dual to a vertex
in GB . The next lemma further characterizes the relationship between S(B)′ (or
S(B)) and GB .

Lemma 1 Each vertex of GB is adjacent to exactly two edges dual to edges from

S(B)′.
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(a) (b)

edges with both endpoints on level l−K

edges of stub cycles

edges of G

stubs of S(B)

Fig. 1 The set S(B) and its corresponding face of µ(K). (b) The stub cycle corresponding to
S(B). In general, S(B) may define multiple stub cycles that are not necessarily simple.

Proof Let x be any vertex of GB , let f = (u, v, w) be the face dual to x. Denote
by ni and ni−1 the number of the vertices in the set {u, v, w} on levels i and
i − 1, respectively, where i = l−K . By the definition of GB , either ni = 2 and
ni−1 = 1 or ni = 1 and ni−1 = 2. From the definition of S(B)′, exactly two edges
in {(u, v), (v, w), (u, w)} are in S(B)′. The lemma follows. ut

The claim of Lemma 1 is also true if B is a bicomponent of B(K)+. In the
latter case, we define S(B) to be the set of all edges joining a vertex of B to a
vertex on a level l+K + 1. Let, for any B from B(K)− or B(K)+, G′B denote the
subgraph of GB induced by the set of the edges S(B).

Corollary 1 G′B is a union of edge disjoint cycles and has the same vertices as GB.

Let C(B) denote the set of the cycles comprising G′B , which we call stub cycles

(Figure 1 (b)). The next lemma analyzes the changes in G that will take place if
only those edges of G corresponding to a single stub cycle were replaced by stubs.

Lemma 2 Let C be a stub cycle from C(B), let E(C) be the edges of C, let E(C)′ be

the set of edges in S(B) dual to E(C), and let E(C)′′ be the parent edges of the edges

in E(C)′. Replace in G all edges from E(C)′′ with their corresponding stubs. Let Gc

be the resulting graph and kc and gc be the number of components and the genus of Gc,

respectively. Then gc − kc = g − 2.

Proof Let s = |E(C)′′|, let i = l−K , and let nc, mc, and fc denote the number of the
vertices, edges, and faces of µ(Gc). By construction, any edge from E(C)′′ is split
into two new edges (stubs), thereby increasing the number of the vertices by two
and the number of the edges by one. Hence

nc = n + 2s

mc = m + s.

Let S1 denote the set of the stubs corresponding to the edges of E(C)′′ that are
incident to vertices on level i and let S2 denote the corresponding stubs that are
incident to vertices on level i− 1. By Lemma 1, each face of µ(G) that is incident
to a stub from S1 is incident with exactly two stubs from S1. Furthermore, since
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by construction µ(G) is a triangulation, each stub of S1 is incident with exactly
two faces of µ(G). To prove that, assume that there is a stub (x, y) such that
both arcs 〈x, y〉 and 〈y, x〉 appear in the same face, say f . Then the facial walk
corresponding to f should be either (〈x, y〉〈y, y〉〈y, x〉) or (〈x, y〉〈y, x〉〈x, x〉), both of
which are impossible as G has no self-loops.

Hence, the number of faces in µ(G) incident to stubs from S1 is exactly equal
to the number of the stubs of S1, which is s. Furthermore, these s faces of µ(G) are
replaced by two new faces of µ(Gc) that are not in µ(G), namely, one containing
all stubs from S1 and the other containing all stubs from S2. Hence

fc = f − s + 2 .

Combining the last three equalities we get

nc −mc + fc = n−m + f + 2 .

Finally, applying the Euler formula on the left-hand and right-hand sides of
the last equation, we get

2kc − 2gc = 2− 2g + 2 ,

implying the claim of the lemma. ut

For any component K of G′, let c−K denote the sum of |C(B)| for all bicom-
ponents B ∈ B(K)−. Let c−G′ denote the sum of c−K over all components K of
K(G′). We can think of c−G′ as the number of the handles cut by the division of the
graph (the replacement of edges by stubs). Denote g′ = γµ(G′), where γµ(G′) by
definition denotes the genus of the embedding µ(G′) induced by µ(G). Then the
following equality gives the relationship between the genus before and after the
division, the number of handles cut, and the number of the resulting components.

Lemma 3 g′ = g − c−G′ + |K(G′)| − 1.

Proof Let K be any component of K(G′) that does not contain the vertex on level
zero (i.e., such that c−K > 0), let B ∈ B(K)−, and let C ∈ C(B). Construct the
graph Gc and let gc and kc be as defined in Lemma 2. By Lemma 2

gc − kc = g − 2 .

Applying this operation for all C ∈ C(B), B ∈ B(K), and K ∈ K(G′), we obtain
a |K(G′)|-component graph of genus γµ(G′). By induction from the last equality,

g′ − |K(G′)| = g − 2− (c−G′ − 1) = g − c−G′ − 1,

implying the correctness of the claim. ut

The next corollary establishes the intuitively evident fact that replacing the
edges of Li∗ by stubs doesn’t increase the genus of the resulting induced embed-
ding.

Corollary 2 g′ ≤ g.

Proof Follows from Lemma 3, since |B(K)−| ≥ 1 for each component K ∈ K(G′)
except the one containing vertex t and hence c−G′ ≥ |K(G′)| − 1. ut
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(a) (b) (c)

Fig. 2 The three types of components with respect to the genus of their embeddings and
the number of stub cycles: (a) non-planar component; (b) m-planar component; (c) s-planar
component.

Next we are going to estimate the genus of µ(K). For any component K of G′,
let nK and mK be the numbers of the vertices and the edges of K, respectively,
and let fK be the number of the faces of µ(G) whose all edges are in K.

Lemma 4 The Euler characteristic of µ(K) is E(K) = nK −mK + fK + c−K + c+K .

Proof As each element of B(K) is a cycle that defines a single new face of µ(K),
µ(K) has c−K + c+K faces that are not faces of µ(G). By (1), the Euler characteristic
of µ(K) is E(K) = nK −mK + (fK + c−K + c+K). The claim follows. ut

Corollary 3 The genus of µ(K) is gK = 1− (nK −mK + fK + c−K + c+K)/2.

Proof Follows from Lemma 4 and the Euler formula. ut

We will divide the set K(G′) of all components K of G′ into three types de-
pending on c−K and on gK as follows (Figure 2).

(i) If gK > 0, then K will be of non-planar type (note that K can actually be
planar if the genus of K is smaller than the genus of the induced embedding
µ(K)). Let Cnp denote the set of all non-planar components K of G′.

(ii) If gK = 0 and c−K > 1, then K will be of m-planar type (for” multi-cycle
planar,” referring to the set of stubs adjacent to the lowest level). Let Cmp

denote the set of all m-planar components.
(iii) If gK = 0 and c−K = 1, then K will be of s-planar (for ”single-cycle planar”)

type. Let Csp denote the set of all s-planar components.

Note that it will be more accurate to say that µ(K) is of the given type instead
of K, because the type depends on the embedding rather than the graph itself.
However we use the above terminology to simplify the notations and use a single
embedding µ throughout the paper.

Next we are going to estimate the sizes of Cnp and Cmp and the numbers of
stub cycles for components of those types. First we will look at Cnp. It is natural
to expect that there cannot be more than g non-planar components of G′. To prove
that formally, we will make use of the Euler formula.

Lemma 5 |Cnp | ≤ g.
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Proof Denote by n, m, f and by n′, m′, f ′ the number of the vertices, edges, and
faces of µ(G) and µ(G′), respectively. Denote k′ = |K(G′)|. By the Euler formula

n′ −m′ + f ′ = 2k′ − 2g′. (3)

Let Cp = Cmp ∪ Csp , i.e., the set of the ”planar” components K of µ(G′) for
which gK = 0. Denote by np, mp, fp and by nnp , mnp , fnp the number of the
vertices, edges, and faces of in Cp and Cnp , respectively. Then, by adding the Euler
formulas for all components of Kp and Knp, we get, respectively,

np −mp + fp = 2|Cp| = 2(k′ − |Cnp |)
nnp −mnp + fnp ≤ 0 ,

as the Euler characteristic of any nonplanar embedding is non-positive. Adding
the last two formulas gives

n′ −m′ + f ′ ≤ 2k′ − 2|Cnp |.

By combining the last inequality with (3) we get

2k′ − 2g′ ≤ 2k′ − 2|Cnp |

and, by Corollary 2,
|Cnp | ≤ g′ ≤ g.

ut

The next result strengthens the previous lemma by showing that not only the
number of the components K in Cnp , but also the number c−K of their stub cycles
is O(g).

Lemma 6
∑

K∈Cnp

c−K ≤ 2g.

Proof By Lemma 3,
c−G′ − |K(G′)|+ 1 = g − g′ ≤ g. (4)

By definition

c−G′ =
∑

K∈K(G′)

c−K =
∑

K∈Cnp

c−K +
∑

K∈K(G′)\Cnp

c−K

≥
∑

K∈Cnp

c−K + (|K(G′)| − 1)− |Cnp |

≥
∑

K∈Cnp

c−K + |K(G′)| − g − 1 , (5)

where Lemma 5 was used for the last inequality. The claim follows by substituting
the inequality (5) for c−G′ in (4). ut

Next we prove an analogue of Lemma 6 for Cmp .

Lemma 7
∑

K∈Cmp

c−K ≤ 2g.
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Proof By the definition of c−G′

c−G′ =
∑

K∈Cmp

c−K +
∑

K∈K(G′)\Cmp

c−K

=
∑

K∈Cmp

c−K + (|K(G′)| − 1)− |Cmp |. (6)

Since c−K ≥ 2 for K ∈ Cmp , then

1

2

∑

K∈Cmp

c−K ≥ |Cmp |. (7)

Adding (6) and (7) together gives

c−G′ ≥
1

2

∑

K∈Cmp

c−K + |K(G′)| − 1.

Substituting c−G′ from the last inequality into (4) results into

1

2

∑

K∈Cmp

c−K ≤ g.

ut

Note that there is no analogue of Lemmas 6 and 7 for Csp . In fact, |Csp | can be
as big as Ω(m/r), which will be Ω(

√
dgm) for the choice r = d

√
m/(gd) e we will

make in Section 3.6, i.e., |Csp| is not necessarily O(g).

3.2 Algorithm outline

The rest of the algorithm draws each component K of G′ in the plane according
to its type. The goal is to have the unattached endpoints of all stubs drawn in
the outer face with a relatively small number of original crossings between edges
of K. After all components are drawn in such a way, all pairs of matching stubs
are joined into their parent edges. As all stubs are going to be in the outer face
already, intersections might occur only between pairs of stubs. Since, by (2), the
weight of all stubs is O(m/r), this final step will increase the total number of
original crossings by O((m/r)2).

3.3 Drawing components of non-planar type

If K is of non-planar type, then we will show that a subgraph of K of relatively
small size can be found such that ”cutting” the embedding of K along the edges of
that subgraph and appropriately ”pasting” a single face f along the cut produces
a planar surface. Then we will draw the modified K in the plane with f as an outer
face and redraw the edges that were destroyed by the cut to get a drawing of the
original K. Since those edges will be drawn entirely in f , they will not intersect
other edges of K. Finally, we will route all stubs to the outer face.
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3.3.1 Finding a planarizing set for K

Consider a component K such that gK > 0 and let l−K and l+K denote the lowest
and the highest levels of K. Define a spanning forest FK of K with c−K trees as
follows.

1. For each stub cycle C defined by the vertices of K on level l−K define a spanning
tree Tc for C and add the edges of Tc to FK .

2. For each vertex v on level greater than l−K choose arbitrarily a single vertex w

on a lower level adjacent to v and add edge (v, w) to FK .
3. For each stub s from K, make the attached endpoint of s parent of its unattached

endpoint.

Clearly, FK contains c−K trees, one for each stub cycle induced by level l−K in
K. We will call FK -cycle any simple cycle in K that has exactly one non-forest
edge. Since K has no-more than r levels, any FK -cycle will contain no more than
2(r − 1) vertices of K, excluding the vertices on level l−K .

For any non-forest edge e of K incident to two different faces f1 and f2 of µ(K),
remove e and merge f1 and f2 into a single face. Since this operation eliminates
one edge and one face, the Euler characteristic does not change. Continue until
no such edge e remains. Then any of the remaining non-forest edges should be
incident only to a single face, say f . Therefore, f should be the only face of the
resulting embedding, since any face must contains a non-forest edge (otherwise
T will contain a cycle). Next, iteratively remove any edge that is incident to a
degree-1 vertex as well as the degree-1 vertex itself. Since each removal reduces
the number of the vertices and the number of the edges by one, this operation
preserves the Euler characteristic of µ(K).

Denote by Pl(K) the resulting graph. We will think of Pl(K) as a ”planarizing”
graph since, as we will show in Step 4.2, it can be used to transform the embedding
of K into a planar embedding. Denote by nPl and mPl the number of the vertices
and the number of the edges of Pl(K). By (1), we have

nPl −mPl + 1 = 2− 2gK , (8)

and hence
mPl = (nPl − 1) + 2gK ,

which implies that the number of the remaining non-forest edges is 2gK . Therefore,
Pl(K) is a union of 2gK FK -cycles.

We proved the following.

Lemma 8 The embedding µ(Pl(K)) of Pl(K) has a single face, genus gK , and no

more than 4gK(r − 1) vertices whose levels are in the interval (l−K , l+K ].

We will use Pl(K) in the next subsection to ”planarize” µ(K).

3.3.2 Transforming µ(K) into a planar embedding

Next we transform µ(K) by modifying Pl(K) so that it is transformed into a single
new face f bounded by a simple cycle C. See the example on Figure 5. We will
now describe more formally the transformation of the different types of elements
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1ee2

3e
ke

4e3 e{   ,   }

2e1 e{   ,   }3e2 e{   ,   }

1ek e{   ,   }v

Fig. 3 Replacing vertex v from Pl(K) by k new vertices.

of K. Vertices not in Pl(K) and edges with no endpoint in Pl(K) are not changed.
The other vertices and edges of K are transformed as follows. Let E′ be the set of
the edges of K with at least one endpoint in Pl(K).

(1) Vertices of Pl(K). Let v be any vertex of degree k from Pl(K) and let <

e1, · · · , ek > be the counterclockwise permutation of the edges of Pl(K) in-
cident to v. Define k new vertices that will replace v and label them by
{e1, e2}, {e2, e3}, · · · , and {ek, e1}, respectively (Figure 3).

(2) Edges from Pl(K). Let e ∈ E(Pl(K)) and let e′ w2→ e in Pl(K), i.e., e is the
first edge from Pl(K) in a counterclockwise direction from e′ in the edge-orbit

of w2. Let e
w1→ e′′ in Pl(K) (Figure 4). Define a new edge −−→new(w2, w1) =

({e, e′′}, {e′, e}). Similarly, define an edge −−→new(w1, w2) by swapping w1 and w2.
Finally, replace e by the two edges −−→new(w2, w1) and −−→new(w1, w2) (note that
both those new edges are undirected).

(3) Edges in E′ \ Pl(K). Let e = (w1, w2) ∈ E′ \ E(Pl(K)). (Note that e 6∈ Pl(K)
does not preclude both endpoints of e to be in Pl(K).) We will define an edge
(w′1, w′2) to replace e, where w′1 and w′2 are determined as follows. If w1 is not
from Pl(K), let w′1 = w1. Else denote by < e1, · · · , ek = e0 > the edge-orbit

of w1 and let e
w1→ ej+1 and ej−1

w1→ e in Pl(K). Then define w′1 = {ej , ej+1}.
Similarly define a vertex w′2 corresponding to w2. Replace e = (w1, w2) by the
edge (w′1, w′2), which we will denote by new(w1, w2). See Figure 4.

new(w  ,w )

<e,e > <e  ,e>

<e ,e>

new(w ,w )2

<e,e  >

1

e

e

1w
2w ee

2 1

edges from 

Pl(K)

edges from Pl(K)

transformed edges from 

E  \Pl(K)

Fig. 4 Replacing an edge e = (w1, w2) from Pl(K) with a pair of new edges −−→new(w2, w1) and−−→new(w1, w2).
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Fig. 5 Replacing Pl(K) by a simple cycle C. The arrows show the direction of the face walk.

Finally we update the edge-orbits of the vertices incident to the new edges as
follows. Let w be a vertex of Pl(K) and let < e1 = (w, v1), · · · , ek = (w, vk) > be
the counterclockwise permutation of the edges of K incident to w. For any pair of
edges (w, vi) and (w, vj), 1 ≤ i, j ≤ k, such that (w, vj) is the first edge from Pl(K)
in a counterclockwise direction from (w, vi), define the edge-orbit of the new vertex
w =< ei, ej > as follows:

< −−→new(w, vi), new(w, vi+1), · · · , new(w, vj−1),
−−→new(w, vj) > .

Denote by K′ the resulting component, by µ̄(K′) its embedding, and by C the
cycle corresponding to Pl(K) (Figure 5).

In order to simplify notations, let VPl = V (Pl(K)), Vc = V (C), and for any
edge e let new∗(e) = −−→new(e), if e ∈ E(Pl(K)), or new∗(e) = new(e), otherwise. By
the construction described above, we have the following.

Lemma 9 The resulting component K′, its embedding µ̄(K′), and the cycle C con-

structed by the transformation of Pl(K) have the following properties:

(a) V (K) = V (K′) \ Vc ∪ VPl, E(K) = E(K′) \N(Vc) ∪N(VPl);
(b) {N(v) | v ∈ VPl} \ VPl = {N(v) | v ∈ Vc} \ Vc;

(c) If (v, w)
v→ (v, u) in µ(K), then new∗(w, v)

v∗→ new∗(v, u) in µ̄(K′), where v ∈ VPl

and v∗ =< (v, w), (v, u) >. Intuitively, this property states that the transformation

preserves the order of the edges in the edge orbits.

Lemma 10 The number of the faces of µ̄(K′) exceeds the number of the faces of µ(K)
by at least one.

Proof Let ((v1, v2), (v2, v3), . . . ) be any face of µ(K). By Lemma 9 (c),
(new∗(v1, v2), new∗(v2, v3), . . . ) will be a face of µ̄(K′). Hence, to each face of µ(K)
there corresponds a face of µ̄(K′). Moreover, there is at least one face of µ̄(K′) that
is not a face of µ(K). To see this, we use a simple counting argument. Each edge
(v, w) of Pl(K) is encountered a total of twice in all facial walks of µ(K), i.e., it
is either encountered once in two different faces, or twice in a single face. (This is
true for any edge in any embedding.) In K′, however, there are two edges −−→new(v, w)
and −−→new(w, v) corresponding to (v, w), each of which is encountered twice in all
facial walks of µ̄(K′). Clearly, there will be a facial walk in µ̄(K′) that does not
correspond to any facial walk in µ(K). ut
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We show below (in Corollary 4) that there is actually exactly one more face in
µ̄(K′) than in µ(K).

By computing the Euler characteristic of µ̄(K′) we prove the main result of
this subsection.

Lemma 11 The embedding µ̄(K′) is planar.

Proof Let nK , mK , and fK be the number of the vertices, edges, and faces of µ(K)
and let n′K , m′

K , and f ′K be those numbers for µ̄(K′). Since the genus of µ(K) is
gK , by (1)

nK −mK + fK = 2− 2gK . (9)

By Lemma 10,
f ′K ≥ fK + 1. (10)

By Lemma 9 (a) and (b),
n′K = nK − nPl + |C|

m′
K = mK −mPl + |C|.

Adding together the last three expressions and combining with (8) and (9), we get

n′K −m′
K + f ′K ≥ (nK −mK + fK)− (nPl −mPl) + 1

= (2− 2gK)− (2− 2gK) + 2 = 2.

Hence, by (1), µ̄(K′) is planar. ut

Corollary 4 The number of the faces of µ̄(K′) exceeds the number of the faces of

µ(K) by exactly one.

Proof In the proof of Lemma 11 the inequality (10) cannot be strict, as otherwise
n′K − m′

K + f ′K > 2, which is impossible as the Euler characteristic cannot be
greater than 2 (the genus cannot be negative.) ut

That additional face in µ̄(K′) is exactly the face corresponding to the cycle C

(Figure 5).

3.3.3 Transforming µ̄(K′) into a planar drawing of K with a small crossing number

Recall that the cycle C in K′ corresponds to the subgraph Pl(K) of K. In order to
get K′ from K, we replaced Pl(K) with C. Replacing C with Pl(K) will transform
K′ back into K.

Without loss of generality assume that the face corresponding to C is not the
outer face. Remove all vertices from C and all of their incident edges. Denote by
h the resulting face. Draw all vertices of Pl(K) inside h. By Lemma 9 (b), all
edges of K incident to a vertex in Pl(K) will have both their endpoints inside h.
Since there are no more than dnPl such original edges, they can be drawn inside h

with no more than (dnPl)
2 original crossings. We will need to slightly strengthen

the last bound. Let n′Pl be the number of vertices of Pl on levels in the interval
(l−K , l+K), i.e., excluding vertices on levels l−K and l+K . Let LK = N(V (K)) ∩ Li∗ ,
where Li∗ was defined in (2). Then the number of original crossings is no greater
than (dn′Pl +wt(LK))2. That bound will be an improvement over the previous one
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in the case the vertices on levels l−K and l+K have degrees significantly lower than
d.

By Lemma 9 (a), the above operation transforms the embedding of K′ into a
planar drawing of K. Let µ̄(K) denote the resulting drawing. We summarize the
properties of that drawing in the following lemma.

Lemma 12 µ̄(K) is a drawing of K in the plane that has no more than ((dn′Pl +
wt(LK))2 original crossings.

We achieved our first goal, which is obtaining a planar drawing of K with a
small number of crossings. What we still need to do is to route all the stubs of K

to the outer face.

3.3.4 Routing the stubs of K to the outer face

Assign length 0 to all edges joining a pair of vertices on level l−K and assign length
1 to all other edges of K. The length l(P ) of a path P in K is defined as the sum
of the lengths of its edges. We will make use of the following fact.

Lemma 13 Let K be any component of G′. Between any pair of vertices of K there

exists a path entirely in K of length no more than 2c−K(r − 1) + c−K − 1.

Proof Let B1, · · · , Bc−K
be all bicomponents induced by the set of the vertices on

level l−K . Then each vertex of K is a descendant of some vertex of Bj for some j. Let
v and w be any two vertices of K. Construct a path P = (v1, · · · , vs) in K joining
v and w. We will transform P into a path in K of length satisfying the lemma.
Suppose v is a descendant of a vertex from Bi. Let j be the largest index for which
vj is a descendant of a vertex from Bi. Replace the subpath (v1, · · · , vj) with a
simple path P1 that uses forest edges only. Using the fact that edges joining vertices
on the lowest levels l−K have length zero, the length of P1 is no greater than 2(r−1).
By the choice of j, the path (vj+1, · · · , vs) has no vertices that are descendants of
a vertex from Bi. Using induction, the subpath (vj+1, · · · , vs) can be replaced by
a path P2 between vj+1 and vs of length no more than 2(c−K − 1)(r − 1) + c−K − 2.
Merging P1, the edge (vj , vj+1), and P2 results in a path between v and w of length
at most 2c−K(r − 1) + c−K − 1. ut

Lemma 14 Each stub of K can be routed to the outer face h of µ̄(K) with no more

than d(2c−K(r − 1) + c−K − 1) crossings with original non-stub edges of K.

Proof Let s = (v, w) be a stub corresponding to an original edge, where v is the
attached vertex of s, let u be the closest vertex from v on h, and let P be the
path constructed by the procedure of Lemma 13 for v and u. Informally, s will
be routed along a path ”parallel” to P that avoids the vertices of P and that, for
the portions of the path on level l−K , makes a ”shortcut” inside the corresponding
faces in order to minimize the number of intersections. Note that we need to pay
special attention to the edges with endpoints on level l−K because such edges have
length 0 and, hence, their number is not bounded by Lemma 13.

More formally, remove all edges e of K such that either (a) e is incident to a
vertex of P on a level greater than l−K , or (b) e is incident to a vertex on level
l−K , but e is not on P . The above operation creates a new face f that includes the
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(a) (b)
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Fig. 6 (a) The path P between v and u. (b) Stub s is drawn in the face resulting after edges
incident with P are deleted.

face h and all faces defined by the vertices on level l−K that contain the path P

embedded inside it (Figure 6). Route s inside f avoiding vertices from P . Then s

will intersect no more than l(P )·d original non-stub edges of G. ut
The next lemma summarizes the results of this section regarding the resulting

drawing of K.

Lemma 15 The constructed drawing of K has less than 32(dgKr)2 + 3wt(LK)2 +
2dc−Kr original crossings.

Proof Crossings in the embedding of K may have occurred during the planarizing
step (Subsection 3.3.3), or from stubs routed to the outer face (as in Lemma 14).
By Lemma 12, the original crossings from the first type are no more than

((dn′Pl + wt(LK))2,

which by Lemma 8 is no more than

(4d gK(r − 1) + wt(LK))2 < 32(rd gK)2 + 2wt(LK)2.

By Lemma 13, the number of original crossings of the second type are no more
than

d(2c−K(r − 1) + c−K − 1) < 2d c−K r,

excluding crossing between pairs of original stubs, which are no more than wt(LK)2.
The lemma follows. ut

We described an algorithm that draws a non-planar component of G′ with a
small number of crossings. When we apply that algorithm to all components of
Cnp , the total number of original crossings is estimated in the following lemma.

Lemma 16 All non-planar components of G′ can be drawn in the plane so that the

unattached endpoints of all stubs are in the outer face of the drawing and the total

number of original crossings is no more than 32(dgr)2 + 4dgr + 3(m/r)2.

Proof By Lemma 15 the total number of original crossings is bounded by
∑

K∈Cnp

(32(rdgK)2 + 3wt2(N(V (K)) ∩ Li∗) + 2dc−Kr)

≤ 32(dgr)2 + 4dgr + 3wt2(E(G) ∩ Li∗) (by Lemma 6)

≤ 32(dgr)2 + 4dgr + 3(m/r)2 (by (2)) .

ut
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3.4 Drawing m-planar components

This case is similar to the case of non-planar components in that it uses the fact
that the sum of the numbers c−K for K ∈ Cmp is of order O(g). But, unlike Cnp , in
the case of Cmp , there is no need to planarize. We state the result in the following
lemma.

Lemma 17 All m-planar components of G′ can be drawn in the plane so that the

unattached endpoints of all stubs are in the outer face and the total number of original

crossings is no more than 4dgr.

Proof Let K be any m-planar component. Draw K in the plane (with zero cross-
ings) so that one of the cycles defined by the vertices on the lowest level is the
outer face. Route each stub of K to the outer face of the drawing as described
in the proof of Lemma 13. By Lemma 13, the drawing of K has less than 2dc−Kr

original crossings.
Draw by the same procedure all remaining m-planar components in the outer

face of the drawing. By Lemma 7, the total number of crossings for all m-planar
components is no more than

∑

K∈Cmp

2dc−Kr < 4dgr.

ut

3.5 Drawing s-planar components

Unlike the previous two cases, in the case of s-planar components there is no
analogue to Lemma 6 and Lemma 7 limiting the sum of the numbers c−K . In this
case we use the fact that there is a single stub cycle adjacent to the lowest level of
any s-planar component. Routing all stubs to the face corresponding to that cycle
will be simpler than in the previous two cases.

Let K be any s-planar component and let C− be the stub cycle for K. Denote
by f− the face defined by C− and call it an outer face of µ(K). We can apply
Lemma 14 to K substituting f− for h, since both faces are on the lowest level of
K. Since c−K = 1, then, by the lemma, each stub of K can be routed to f− with
no more than 2d(r − 1) crossings with original non-stub edges of G. By (2), there
are no more than bm/rc stubs incident to the highest level of all components of
K(G′), regardless of type. Hence, all stubs can be routed from the highest levels of
all s-planar components to the faces corresponding to respective stub cycles with
no more than

2d(r − 1)bm/rc < 2dm

total crossings with original edges of G. Hence we have the following result for
drawing s-planar components.

Lemma 18 All s-planar components of G′ can be drawn in the plane so that the

unattached endpoints of all stubs are in the outer face and the total number of original

crossings is no more than 2dm.
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3.6 Reconnecting the embedded components

After all components of G′ are drawn in the plane by applying the algorithms
described in Subsections 3.3, 3.4, and 3.5, all the wt(Li∗) original stubs will have
their unattached endpoints in the outer face. Joining all pairs of original stubs into
their parent edges so that no two stubs intersect more than once will produce at
most (wt(Li∗ )

2 ) additional original crossings. This leads to the following statement,
which is the main result of this section.

Theorem 1 Any n-vertex graph of maximum degree d embedded in Sg can be drawn

in the plane with O(dgn) edge crossings.

Proof By Lemmas 16, 17, and 18, the total number of original crossings from
drawing individual components is no more than

32(dgr)2 + 8dgr + 3(m/r)2 + 2md = O((dgr)2 + (m/r)2 + md), (11)

where m is the number of original edges of G. Assume that g > 0 and d > 0 as
otherwise the theorem is trivially true. Choosing

r = d
√

m/(gd) e

in (11) and adding to the right-hand side of (11) the number of the original cross-
ings resulting from joining the stubs in the final step, which is bounded by

wt2(Li∗) = O((m/r)2),

the number of all original crossings is

O(dgm + md) = O(dgm).

Since µ(G) is a triangulation, we have the equality f = 2
3m, where f is the

number of the faces of µ(G). Consider the following two cases

1. g = o(m). From the Euler formula (1)

n− 2 = m− f − 2g = m/3− 2g (12)

and, since g = o(m),

n− 2 = Ω(m), m = O(n), O(dgm) = O(dgn),

which proves the theorem in this case.
2. g = Ω(m). Let D be any drawing of G in the plane in which no two edges

cross more than once (e.g., any straightline drawing). Then D has less than
m2 = O(g2) crossings. By (12), if n > 1,

m

3
− 2g = n− 2 ≥ 0

g ≤ m

6
≤ nd

12
.

Hence D will have no more than O(g2) = O(dgn) crossings.
ut



Planar Crossing Numbers of Graphs of Bounded Genus 19

Recall that crg(G) denotes the surface-g crossing number of G, i.e., the mini-
mum number of crossings over all drawings of G on a surface of genus g. Theorem 1
shows that if crg(G) = 0, then cr(G) cannot be very large. The next corollary gen-
eralizes this dependency by giving a relationship between the surface-g and planar
crossing numbers for bounded degree graphs that are not necessarily of genus g.

Corollary 5 Let G be any n-vertex bounded degree graph and let 0 < g = o(n). Then

cr(G) = O(crg(G) g + gn).

Proof Draw G on Sg with crg(G) crossings. Replace every crossing by a new vertex.
We get a new bounded degree graph G′ of genus at most g and crg(G)+n vertices.
By Theorem 1 we have

cr(G′) = O((crg(G) + n)g).

Since
cr(G) ≤ cr(G′) + crg(G),

the claim follows. ut

3.7 Complete algorithm and complexity analysis

Here we describe the entire algorithm and analyze its complexity.

Algorithm SMALL CROSSINGS DRAW

Input: An n-vertex, d-degree graph G, an embedding µ(G) of G in Sg.
Output: A drawing of G with O(dgn) crossings.

1. If g > m = |E(G)|, construct an arbitrary straightline drawing of G and exit.
2. Triangulate µ(G) assigning weight 0 to any new edge and weight 1 to any

original edge of G.
3. If d = 0 or g = 0, construct any planar drawing of G and exit. Else set r =
d
√

m/(gd) e. Choose any vertex t of G and divide the vertices of G into levels
depending on their distances to t. Find a set L∗i of edges such that (2) holds,
as described in Section 3.1, and replace them by stubs, producing components
of the following three types: (i) non-planar components, having induced genus
greater than zero; (ii) m-planar components, having induced genus zero and
at least two stub cycles; and (iii) s-planar components, having induced genus
zero and at most one stub cycle.

4. For each component K, draw K in the plane applying one of the Steps 5, 6, or
7 below.

5. If K is non-planar, then apply the following steps.
5.1. Construct a subgraph Pl(K) of K such that (i) Pl(K) contains at most

2gK(r−1) vertices not counting the vertices on the highest and the lowest
levels of K; (ii) converting Pl(K) into a simple cycle C that is a face, de-
noted by f , of the new embedding as described in Section 3.3.2 transforms
the embedding of K into an embedding of the updated graph, denoted by
K′, in S0. Moreover, Pl(K) and C have the same set, M , of edges joining
them to K and K′, respectively.
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5.2. Draw K′ in the plane with f as an outer face.
5.3. In order to transform K′ back to K, remove C, draw the vertices of Pl(K)

in the resulting face, f ′, and draw all edges of M . Since both endpoints of
any edge from M are on or inside f ′, intersections will occur only between
pairs of edges from M .

5.4. Route any stubs of K to the infinite face of the drawing as described in
the proof of Lemma 13 and join matching pairs of stubs into their parent
edges.

6. If K is m-planar, then draw K in the plane with one of the stub cycles as
an outer and route all stubs to that outer face as described in the proof of
Lemma 17.

7. If K is s-planar, then draw K in the plane with the single stub cycle as an
outer face and route all stubs of K to the outer face as described in the proof
of Lemma 18.

8. Merge all drawings into a single drawing in the plane by merging the outer
faces of the drawings of all components into a single outer infinite face and
restore G by merging matching pairs of the remaining stubs (all located in the
infinite face) into their parent edges.

Clearly Step 1 takes O(|G|) time. Triangulating a face f in Step 2 takes time
proportional to the number of the edges in f . Since each edge is encountered
exactly twice in all facial walks of µ(G), triangulating all faces takes O(m) time.

In Step 3, dividing the sets of vertices into levels can be done by a breadth-first
search in O(|G|) time. Finding a level i∗ takes time proportional to the number
of all levels, which cannot exceed n, and computing the set L∗i takes additional
time no more than O(m). Finally, computing the induced genus of a component
K requires computing the Euler characteristic of K, which takes O|K|) time, and
for finding the number of the stub cycles of K it is sufficient to scan all faces of
µ(K), which also takes O|K|) time. Hence Step 3 takes O(|G|) time.

Steps 5.1 and 5.2 take O(|K|) time, and Steps 5.3, 5.4, 6, and 7 can be imple-
mented in time proportional to the number of the original crossings produced in
these steps. Hence we have the following.

Theorem 2 Algorithm SMALL CROSSINGS DRAW constructs a drawing of any n-

vertex d-degree graph embedded in Sg satisfying Theorem 1 in O(dgn) time.

4 Lower bound

In this section we provide a matching lower bound for Theorem 1.

Theorem 3 There is a constant α such that, for any positive integers n, d < n, and

g < dn, there exists an n-vertex graph G of genus and degree not exceeding g and d,

respectively, such that

cr(G) ≥ αdgn. (13)

Proof We will show that there exists a graph of n̄ = Θ(n) vertices, degree d̄ = Θ(d),
genus ḡ = Θ(g), and crossing number satisfying (13) for n̄, ḡ, and d̄ and some global
constant α.

It is known [18,22] that any n-vertex graph H satisfies
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cr(H) ≥ 1

40
bw2(H)− 1

16

√ ∑

v∈V (H)

deg2(v). (14)

In [21], it was a shown that for any n > 0, d < n, and g < dn, there exists an
n̄-vertex, d̄-degree, ḡ-genus graph G, such that n̄ = Θ(n), d̄ = Θ(d), ḡ = Θ(g), and
with bisection width

bw(G) ≥ β

√
d̄ḡn̄, (15)

for some absolute constant β. Suppose G is such a graph. By (14),

cr(G) ≥ β2

40
d̄ḡn̄− d

16

√
|V (G)|

= Ω(d̄ḡn̄)−O(d̄
√

n̄) = Ω(d̄ḡn̄).

5 Extensions and generalizations

The bound in Theorem 2 on the time complexity of our algorithm is asymptoti-
cally optimal, if the algorithm is required to explicitly output all edge crossings.
However, if a succinct encoding of the output is allowed, then a more careful im-
plementation of the drawing phase of the algorithm can reduce the complexity to
O(|G|). For instance, instead of listing all intersections of an edge e with the edges
incident to the vertices of a path (v0, · · · , vk) such that vi is a parent of vi−1 in
FK , for 1 ≤ i ≤ k, we need only to output the endpoints v0 and vK , since they
uniquely determine that portion of the drawing. If g = Ω(n), then we need only to
output the positions of the vertices, since they determine the drawing satisfying
the theorem (the edges will be drawn as straight-line segments).

Pach and Tóth showed in [19] that their O(cgdn) upper bound on the crossing
number of n-vertex d-degree graphs of genus g can be generalized to graphs of
arbitrary degrees by substituting the product dn in their bound by the number
σ(G) =

∑
v∈V (G) deg2(v). The technique they use for this purpose is to replace

any vertex v of G by a deg(v)× deg(v) 2-dimensional mesh Mv of vertices, where
the edges incident to v appear in the same order around the boundary of Mv

as they do around v. Clearly, the same technique, if used to modify the proof of
our Theorem 1, will result in an upper bound of O(σ(G)g). Such an approach,
however, will increase the size of the graph, and hence the computation time, by
a factor of σ(G)/|G| (if a succinct encoding of the output is used), which can be
as much as Ω(n). Such an increase in time can be reduced to only O(log n), while
achieving the same bound on the crossing number, if, instead of replacing each
vertex by a mesh, we assign a cost on each vertex equal to its degree and then use
the technique from [8] to modify the definition of levels of the vertices of G in a
way that takes into account the vertex costs.
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19. Pach, J., Tóth, G.: Crossing number of toroidal graphs. In: Graph Drawing, Lecture Notes

in Computer Science, vol. 3843, pp. 334–342. Springer (2006). Also in: Topics in Discrete
Mathematics, M. Klazar et al. (eds.), Algorithms and Combinatorics, 26, Springer, Berlin,
2006, 581-590
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