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Abstract

We consider the classical geometric problem of determining shortest paths between pairs of
points lying on a weighted polyhedral surface P consisting of n triangular faces. We present
query algorithms that compute approximate distances and/or approximate (weighted) short-
est paths. Our algorithm takes as input an approximation parameter ε ∈ (0, 1) and a query
time parameter q and builds a data structure APQ(P, ε; q) which is then used for answering
ε-approximate distance queries in O(q) time. This algorithm is source point independent and
improves significantly on the best previous solution.

For the case where one of the query points is fixed we build a data structure SSQ(P, ε; a) that
can answer ε-approximate distance queries from a to any query point in P in O(log 1

ε ) time.
This is an improvement upon the previously known solution for the Euclidean fixed source
query problem. Our algorithm also generalizes the setting from previously studied unweighted
polyhedra to weighted polyhedral surfaces of arbitrary genus.

Our shortest path algorithms are based on a novel separator algorithm which we introduce
here and which extends and generalizes previously known separator algorithms.

1 Introduction

Motivation and problem definition Shortest path problems rank among the fundamental
problems studied in computational geometry, network optimization, graph algorithms, geographical
information systems (GIS), and calculus of variations. These problems arise naturally in various
applications such as motion/route planning, navigation, graphics, injection molding, and computer-
assisted surgery (for references see [6]). Aside from the importance of shortest paths problems in
their own right, often they appear in the solutions to other problems.

Finding shortest paths with respect to the Euclidean distance sometimes provides inadequate
solutions in practice. In GIS, for example, a terrain could consist of different types of regions (e.g.,
water, forest, rocks) which is modeled by assigning suitable weights to the regions. This leads to
the weighted shortest path problem. We consider paths that stay on the surface of a connected
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polyhedral surface1 P of genus g in the 3-dimensional Euclidean space consisting of n positively
weighted triangular faces. The cost of a path lying inside a face is its Euclidean length multiplied
by the weight of the face. The cost of a general path on P is the sum of the costs of the sub-paths
within each face traversed. For a pair of points on P the path of least cost between them is called
shortest path. The cost of the shortest path is called distance between its end-points.

Frequently, in applications like GIS, shortest paths queries are executed over time for a fixed
domain. Efficient query algorithms are not only desirable, but often required, to provide timely
answers to shortest path queries due to the relatively high time complexities for shortest path
computations, in particular in weighted domains. This motivates our search for algorithms for
answering approximate shortest path queries.

Throughout the paper ε is a user-specified accuracy parameter, i.e., a fixed real number in (0, 1).
A path whose cost divided by the cost of the shortest path is in (1−ε, 1+ε) is called ε-approximate
(or simply approximate) shortest path. The cost of an approximate path is called approximate
distance. The approximate distance (and/or shortest path) query problem is: Preprocess the
surface P so that for a pair of query points a and b approximate distance and/or an approximate
shortest path between a and b can be answered efficiently. We consider the following standard two
variations of these problems: The Single Source Query (SSQ) problem in which one of the query
points is fixed and the other one is any point on P and the All Pairs Query (APQ) problem in which
the query consists of two arbitrary points in P . To place our work in the context of the literature we
next state some relevant results. (We assume that the faces containing the query points are already
known.) Previous and new results on geometric shortest path queries Much work has
been carried out to solve shortest path problems in planar graphs (see e.g., the survey [17]). Here we
are interested in the geometric setting, where complexities tend to be much higher than for planar
graphs in particular, for geometric weighted shortest paths computations (see [6] for references).
If P is a convex surface, then a result of Dudley [11] shows that a convex set Q of size O( 1

ε3/2 )
exists, such that P ⊂ Q and the Hausdorff distance between P and Q is ε · diameter(P ). This was
used in the algorithm of [2] to compute an ε-approximate shortest path in O(n log 1

ε + 1
ε3 ) time.

Later, in [14], this algorithm was extended to answer APQs in O(log n/ε1.5 + 1/ε3) time. Chazelle
et al. [7] very recently presented a sublinear randomized algorithm for solving APQs on convex
polyhedral surfaces. A preliminary result on APQ for weighted polyhedra has been announced in
[5]. We summarize other results relevant to this paper in Table 1.
Our approach At the core of our approach is the discretization method and the Single Source
Shortest Path (SSSP) algorithm developed in [6]. The discretization method constructs a graph Gε,
called approximation graph, by inserting a set of Steiner points inside the faces of P . The edges of
Gε connect nodes incident to neighbor faces and have cost equal to the cost of the shortest “local”
paths between their endpoints. Next, a highly efficient SSSP algorithm is employed for finding
approximate distances from a fixed vertex of Gε to all other vertices Gε. Here we use a modification
of the graph Gε, which has some additional edges and the edge cost is defined in slightly different
way. Our algorithm for solving the SSQ problem builds a data structure SSQ(P, ε; a) consisting of
a SSSP tree in Gε rooted at the point a plus O(n) local data structures related to the faces of P .
Our algorithm for solving the APQ problem builds a data structure APQ(P, ε; q) consisting of a
collection of SSQ data structures. The choice of the SSQ data structures inserted into APQ(P, ε; q)
depends on a balanced decomposition of the surface P in terms of the number of nodes of Gε

incident to different parts.
1Surface P can be any polyhedral 2-manifold without assumed additional geometrical/ topological properties like

convexity, being a terrain, absence of holes, etc.
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Ref. Preprocessing time Query time Space Source Convex Weighted

[1] O(n6m1+δ) O((
√

n/m1/4) log n) O(n6m1+δ) APQ Yes No

[9] O(n11) O(log n) O(n12) APQ No No

[8] O(n2) O(d log n/ log d) O(n log n/ log d) SSQ No No

[15] O
(
n2 log n + n

ε
log 1

ε
log n

ε

)
O

(
log n

ε

)
O

(
n
ε

log 1
ε

)
SSQ No No

Here O
(

n√
ε log 1

ε logn
ε

)
O

(
log 1

ε

)
O

(
n√
ε log 1

ε

)
SSQ No Yes

Here O
(

(g+1)n2

ε3/2q
logn

ε log4 1
ε

)
O(q) O

(
(g+1)n2

ε3/2q
log4 1

ε

)
APQ No Yes

Table 1: We assume for our algorithms that the face containing the query point is known. The time complexity
of our preprocessing algorithms inherits the dependency on geometric parameters from [6]. In [8] d is an adjustable
parameter with 1 < d ≤ n.

Our contributions here are:
1. We derive an algorithm for solving the approximate SSQ problem in weighted polyhedral

surfaces of arbitrary genus. See the corresponding entry in Table 1. This result improves upon
the previous result in [15] in three ways. First, it works for weighted surfaces of arbitrary genus.
Second, the preprocessing time is reduced by a factor of n. Third, the size of the data structure
and the preprocessing time are reduced by at least a factor of

√
ε.

2. We present a novel algorithm for solving the approximate APQ problem in weighted polyhe-
dral surfaces P of arbitrary genus g. See the corresponding entry in Table 1. The algorithm takes
as input a query time parameter q within a certain range and builds a data structure APQ(P, ε; q)
to answer approximate distance and/or shortest path queries between arbitrary points in P in O(q)
time.
Previous and new results on separators A number of problems in algorithmic graph theory,
computational geometry, parallel computing and algorithms design have been solved by applying
separator algorithms to an underlying graph. As an illustration, separators were used for: efficient
message routing, design of D&Q algorithms in computational geometry, and nested dissection
(Gaussian elimination). Separator results which are most relevant to this paper are summarized in
Table 2.
Our contribution here is:

We designed a new partitioning algorithm (see the corresponding entry in Table 2). The al-
gorithm partitions embedded graphs of genus g with weights and costs assigned to their vertices
into components of specified weight so that their boundaries have small cost. This result extends
and/or improves upon results in [3, 4, 10, 12, 13, 16]. For the design of the APQ algorithm we
employed this new partitioning algorithm. Our opinion is that the algorithm may find applications
for solving other problems, in particular on weighted surfaces, and in other models of computation,
e.g., in parallel computing.
Organization of the paper

The remainder of this paper is organized as follows. In Section 2 we present the two novel
approaches to partitioning of weighted graphs. In Section 3 we first state our approximation graph
and then, in Section 4 apply it for the construction of a data structure which allows us to answer
single source shortest path queries on weighted surfaces of arbitrary genus. In Section 5 then we
present our solution to APQ on these surfaces. Finally, in Section 6 we conclude with a discussion of
extensions and open problems. (We include a detailed proof as Appendix 7 for interested readers.)
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Ref. graph G c(v) time complexity cost of separator S cost of boundaries ∂R

[16] planar 1 O(n) |S| = O(
√

n/t) n/a

[10] planar 1 O(n) |S| = O(
√

n/t) n/a

[12] planar 1 O(n log n) |S| = O(
√

n/t) |∂R| = O(
√

t)

[13] genus-g 1 O((n + g) log n) |S| = O(
√

gn/t) n/a

[3] genus-g 1 O(n + g) |S| ≤ 4
√

(g + 1/t)n n/a

[4] planar ≥ 0 O(n) c(S) ≤ 4
√

2σ(G)/t n/a

Here genus-g ≥ 0 O(g + n log n) O(
√

(g + 1)σ(G)/t) O(
√

(g + 1)tσ(G))

Table 2: Comparison of t-separator (see Section 2 for relevant definitions) theorems for an n-vertex graph G with

non-negative vertex weights summing up to 1 and non-negative vertex cost function c(·), where t ∈ (0, 1). We let ∂R

denote the boundary of the biggest/costliest region of the partition and σ(G) =
∑

v∈V (G)(c(v))2.

2 Partitioning embedded graphs with weights and costs

In this section we present two new results on partitioning of embedded graphs with weights and
costs assigned to vertices. We consider connected graphs G = (V,E) that are 2-cell embedded onto
an orientable surface of genus g where positive weights and costs are assigned to the vertices of
G. For a subgraph G′ of G, we denote by w(G′) and c(G′) the sum of the weights and sum of the
costs of the vertices in G′, respectively. Let t be a real number in (0, 1). A set of vertices S of G
is called a t-separator if its removal from G leaves no component of weight exceeding tw(G). We
denote the sum of the squares of the costs of the vertices of G by σ(G), i.e. σ(G) =

∑
v∈V (c(v))2.

The lemma below follows directly from the method presented in [3] and using this we show how
“low-cost” t-separators can be constructed.

Lemma 1 Let K be an embedded and triangulated graph of genus γ with non-negative weights on
its vertices and let T be a spanning tree of K. There exists a t-separator C of G that satisfies the
following: (a) The separator C consists of at most 4(γ + 1/t) fundamental cycles2. (b) Any of the
components of K \ C can be adjacent to at most 2(γ + 1) cycles in C. Such a separator C can be
constructed in O(|K| log |K|) time.

Theorem 1 Let G be an embedded graph of genus g with weights and costs assigned to its vertices.
For any t ∈ (0, 1) there exists a t-separator S whose cost is at most 4

√
2(g + 1/t)σ(G). Such a

separator can be constructed in O(|G| log |G|) time.

Proof: (Sketch) The theorem is proved by constructing a t-separator S whose cost is as required.
S is constructed in two phases. In the first phase we “slice” the graph into subgraphs with “short”
(in terms of cost) spanning trees using a single source shortest path (SSSP) tree T rooted at a
vertex ρ. For any real x ≥ 0 we define a set of vertices L(x) called level as follows. A vertex v is
in L(x) if its distance to ρ is at least x and the distance of its predecessor in T to ρ is less than

x. Let h = 1
2
√

2

√
σ(G)

(g+1/t) . We apply the method described in [4] and compute a set of levels Lh, so
that their removal partitions G into components with SSSP trees of radius not exceeding 2h. The

2A fundamental cycle is a cycle consisting of a single non-tree edge (v1, v2) plus the two paths in T from v1 and
v2 to their lowest common ancestor.
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total cost of the vertices in the set of levels Lh does not exceed σ(G)/h. The vertices in the levels
Lh are inserted into S.

In the second phase, we use Lemma 1 to obtain a t-separator. Each “heavy” component K,
i.e. w(K) > tw(G), of the graph G \ Lh is further partitioned by fundamental cycles as stated
in Lemma 1 with a parameter tK = tw(G)/w(K). The resulting separator S(K) is inserted in S.
By the construction in Phase I and by Lemma 1 the cost of the separator S(K) is bounded by
c(S(K)) ≤ 8(γ(K) + 1/tK)h, where γ(K) is the genus of the subsurface containing K. From this
inequality the stated bounds follow. �

Next, we extend the approach applied in the above construction to obtain “low-cost” t-separators,
which partition the graph into components with “small-cost” boundaries. Any t-separator S natu-
rally defines a partitioning of the vertices of G into sets inducing the connected components of G\S
and S itself. Let V1, . . . , Vk, S be the partitioning defined by a t-separator S. Note that a vertex in
a set Vi for some 1 ≤ i ≤ k can be adjacent to vertices in Vi ∪ S only. The subset of vertices in S
that are adjacent to vertices in Vi is called boundary of Vi (or of the component induced by Vi) and
is denoted by ∂Vi. A partitioning V1, . . . , Vk, S defined by S is called B-regular (or simply regular),
where B is a real number, if the costs c(∂Vi) for i = 1, . . . , k are bounded by B.

Theorem 2 Let G be an embedded graph of genus g with maximum degree three and with weights
and costs assigned to its vertices. For any t ∈ (0, 1) there exists a t-separator S, that defines a
2B-regular partitioning of G with B =

√
(g + 1)tσ(G), whose cost is O

(√
(g + 1)σ(G)/t

)
. Such

a separator can be constructed in O(|G| log |G|) time.

Proof: (Sketch) We set 6h = B/(g + 1) =
√

tσ(G)/(g + 1) and apply Phase I as described in the
proof of Theorem 1 above. Thus we compute a set of levels Lh, whose removal partitions the graph
into components, whose spanning trees have radii (in terms of cost) bounded by 2h and the cost
of vertices in Lh is c(Lh) ≤ σ(G)/h. Then we apply Phase II and obtain a set of fundamental
cycles C1, such that the set of vertices in S1 = Lh ∪ C1 is a t-separator for G and their cost
is c(C1) ≤ 8h(g + 1/t); but they may not induce 2B-regular partitioning since there might be
components in G \ S1 with boundaries whose cost exceeds 2B.

Let K be a component of G\S1, such that c(∂K) > 2B. We consider the subgraph of G induced
by the set of vertices V (K)∪∂K and denote it by K̃. Let the genus of the subsurface containing K̃
be γ(K). We assign new weights w1(v) and costs c1(v) to the vertices of K̃ as follows. We denote
by ∂′K the set of vertices in ∂K that belong to Lh, i.e. ∂′K = ∂K ∩ Lh. The new cost of the
vertices in ∂K is set to zero and the new cost of vertices in K equals to its original cost, i.e. for
v ∈ K we have c1(v) = c(v) and for v ∈ ∂K, c1(v) = 0. The new weight of a vertex v in K is the
sum of the costs of the vertices in ∂′K that are adjacent to v. The weights of the vertices in ∂K and
the vertices in K not adjacent to ∂′K are set to zero. By this definition and since the maximum
degree of G is three we have w1(K̃) ≤ 3c(∂′K). Then we set tK = (2/3)B/w1(K̃) and compute a
tK-separator of K̃ using Lemma 1. We denote this separator by C(K). It can be shown that the
cost of this separator is c(C(K)) ≤ 8hγ(K) + 6c(∂K ∩Lh)/(g + 1). Now for any component K1 of
K̃ \ C(K) we have c(∂K1) ≤ 2B.

We define separator S to be the union of S1 and the separators C(K) computed for all com-
ponents K with c(∂K) > 2B. Clearly, S is a t-separator that induces a 2B-regular partitioning
of G. The cost of S can be estimated as c(S) ≤ c(S1) +

∑
c(∂K)>2B c(C(K)) ≤ σ(G)/h + 8h(g +

1/t) +
∑

c(∂K)>2B 8h(γ(K) + 9c(∂K ∩ Lh))/2B) ≤ σ(G)/h + 8h(2g + 1)/t + 6c(Lh)/(g + 1) <

45
√

(g + 1)σ(G)/t. �

5



3 Approximating shortest paths

First we adapt the discretization scheme presented in [6] and establish properties which are ben-
eficial in answering shortest path queries as we will show. Let P be a polyhedral surface in the
3-dimensional Euclidean space consisting of n triangular faces f1, . . . , fn. Each face fi has an as-
sociated positive weight wi, representing the cost of traveling a unit Euclidean distance inside it.
The weight of an edge is the minimum of the weights of the triangles incident to that edge. The
cost of a path π in P is defined as ‖π‖ =

∑n
i=1 wi|πi|, where |πi| denotes the Euclidean length of

the portion of π in fi. Given two points a and b in P a path of minimum cost joining a and b is
called shortest path between a and b and is denoted by a

P� b. The cost of this path is referred to
as distance between a and b and is denoted by distP (a, b).

Let ε be a real number in (0, 1). As part of our algorithms we will be constructing an approxi-
mation graph Gε = (Vε, Eε), which is a supergraph of the corresponding graph in [6], whose nodes
correspond to geometric objects, namely, Steiner points and vertex vicinities of “small” radius in
P . Around each vertex v of P we define a “small” star-shaped polygon E(v) called vertex vicinity;
it is contained within the union of the triangles incident to v and its intersections with each of
the triangles is a “small” isosceles triangle with side length εr(v), where r(v) is a fraction of the
distance from v to the boundary of the union of the triangles incident to v. We set r(v) to be
(1/8)th of this distance (see, Definition 2.1 in [6]). The nodes of Gε are of two types depending
on the object in P they represent. For each vertex of P and its vertex vicinity we define a node
representing them in Gε and call them vertex vicinity nodes. Steiner point nodes represent Steiner
points inserted in P . Steiner points are placed along the bisectors of the angles of the faces of P
forming a geometric progressions with ratios depending on ε and on the geometry of P as detailed
in [6]. The approximation properties of Steiner points are stated in the following lemma.

Lemma 2 [6] Let x and y be points lying on two different edges of a face f of P and outside vertex
vicinities. There is a Steiner point p in f such that |xp| + |py| ≤ (1 + ε/2)|xy|.
Lemma 3 [6] (a) The number of nodes in Gε incident to a triangle f of P is bounded by C(f) 1√

ε
log 2

ε ,
where the constant C(f) depends on the geometry3 of the triangle f . (b) The total number of nodes
of Gε is less than C(P ) n√

ε
log 2

ε , where the constant C(P ) = 1
n

∑
f∈P C(f).

To define the edges of Gε we introduce the notion of face neighborhood for points in P . The face
neighborhood of a vertex of P is the union of the triangles incident to that vertex. The face
neighborhood of a point in a face f of P consists of the union of f and its neighboring faces. The
face neighborhood of a point a is denoted by N (a). A node p of Gε is connected to all nodes, whose
representations are incident with its face neighborhood N (p). To define costs of the edges of Gε

we use the notion of local paths. A path in P is called local if it intersects at most two faces. The
cost c(p, q) of an edge (p, q) in Gε is defined as the cost of the local shortest path restricted to lie in
the intersection of their face neighborhoods N (p) ∩ N (q).

3.1 Approximation properties of Gε

The paths in the approximation graph Gε are called discrete paths. The cost c(πG(p, q)) of a discrete
path πG(p, q) is the sum of the costs of its edges. For a pair of nodes p and q of Gε, p

G� q denotes
3Roughly it is about two times the sum of the reciprocals of the sinuses of the angles of f . See [6] for precise

estimates.
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a shortest path in Gε between p and q. As is shown below, in general, the cost c(p G� q) of a
shortest discrete path is an ε-approximation of the distance ‖p̃ P� q̃‖, where p̃ and q̃ are points in
P incident to the objects represented by p and q. A discrete path πG(p, q) between nodes p and
q can be naturally embedded in P as follows. First, each node on that path is embedded into the
object it represents, i.e. either a Steiner point or a vertex vicinity. Then each edge of πG(p, q) is
embedded into the local shortest path between the objects representing its end-nodes. As a result
we obtain a sequence of vertex vicinities joined by polygonal paths in P . Finally, we replace each
vertex vicinity in πG(p, q) with a two segment path through the corresponding vertex of P . We
refer to this embedding of a discrete path πG(p, q) into P as natural embedding and denote it by
π̃G(p, q). By our definitions the cost in P of the natural embedding π̃G(p, q) of a discrete path
minus the cost of its portions inside vertex vicinities equals to the cost of πG(p, q) in Gε.

Theorem 3 (follows from Theorem 4.5 in [6]) The SSSP problem in the approximation graph Gε

can be solved in O(|Vε| log |Vε|) = O( n√
ε
log n

ε log 1
ε ) time.

Next, we discuss how the approximation graph Gε can be used to approximate distances and
shortest paths in P . Let a and b be arbitrary points in P . If a and b lie in neighboring triangles
and the shortest path a

P� b between them is a local path (i.e. stays inside the quadrilateral
formed by the union of their triangles) than we can report the exact path in constant time. So, we
concentrate on the approximation of shortest paths that cross more than two faces.

Naturally, we consider paths of the form {a P� p
G� q

P� b} and then approximate distP (a, b)
by the minimum of ‖a P� p‖ + c(p G� q) + ‖q P� b‖ taken over all choices of nodes p and q in Gε.
As it is shown below, we can obtain the desired approximation by taking the minimum not over
all pairs of nodes in Gε, but only over pairs p and q such that p ∈ N (a) and q ∈ N (b). Moreover
we show that, it suffices to compute the local shortest paths between a and p and between b and q.

We denote these local shortest paths by a
N (a)� p and q

N (b)� b and define approximate discrete paths
between pairs of points in P as follows.

Definition 1 A path between a pair of points a and b in P is called approximate discrete path if
it is either a shortest local path joining a and b or a path of the form

{a N (a)� p
G� q

N (b)� b}, (1)

where p ∈ N (a), q ∈ N (b). The cost of an approximate discrete path is ‖a N (a)� p‖ + c(p G�
q) + ‖q N (b)� b‖ or its cost in P if it is a local path. The cost of a shortest approximate discrete path
between a and b is called approximate distance between a and b and is denoted by distG(a, b).

Note that by this definition the approximate distance distG(a, b) between points a and b lying in
neighbor triangles is the minimum of the cost of the shortest local path between a and b and the
cost of any path of the form (1). The next theorem establishes the relation between approximate
distances and the distances in P (proof is presented in the Appendix).

Theorem 4 For any pair of points a and b in P one of the following two holds: either (a)
(1 − 2ε)distP (a, b) ≤ distG(a, b) ≤ (1 + 2ε)distP (a, b), or (b) distP (a, b) − 2εr(v) ≤ distG(a, b) ≤
distP (a, b), where εr(v) is the radius of E(v).
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If case (a) of the theorem applies then the approximate distance distG(a, b) is an approximation
of the distance distP (a, b) with relative error |distG(a,b)−distP (a,b)|

distP (a,b) bounded by 2ε. Case (b) of the
theorem can be viewed as an exception covering a special situation where points a and b are “close”
to each other and “near” a vertex v of P , meaning that any shortest path in P between them has
to intersect the vertex vicinity E(v) and must stay in the face neighborhood N (v). Furthermore,
in case (b) distG(a, b) is less than distP (a, b) and it is an approximation with relative error not
exceeding εr(v)/distG(a, b). Therefore, if r(v) ≤ 2distG(a, b) the quality of the approximation is
2ε, same as in case (a). If the ratio r(v)/distG(a, b) is larger than 1/ε then the relative error could
be as big as 1. For example, if points a and b are inside the vertex vicinity E(v) then distG(a, b)
is zero and the relative error is 1. Note, that the conditions for the occurrence of case (b) and the
presence of eventually large (compare to ε) relative error are easily detected by the position of the
points a and b, the structure of the approximate discrete path and the ratio r(v)/distG(a, b). Thus
if the approximation is not satisfactory the exact shortest path restricted to lie inside N (v) can be
computed. The above discussion is summarized in the next corollary.

Corollary 1 The distance distG(a, b) approximates distP (a, b) with relative error 2ε, except possi-
bly when the case (b) of Theorem 4 applies and r(v) > 2distG(a, b). In the latter case distP (a, b)
can be computed directly.

We conclude this section by a remark on the computation of approximate distances. The distance

distG(a, b) between a pair of points a and b can be computed as follows. We compute min(‖a N (a)�
p‖ + c(p G� q) + ‖q N (b)� b‖), over all pairs of nodes p ∈ N (a) and q ∈ N (b). In the case where
a and b do not lie in neighbor faces this minimum is the approximate distance distG(a, b). In the
case where the points a and b lie in neighbor faces we also need to consider the shortest local path
between them.

4 Fixed source shortest path queries

In this section we describe an algorithm, that takes as input a point a in P , called source, and an
approximation parameter ε ∈ (0, 1) and constructs a data structure, called Single Source Queries
(SSQ), such that for any query point b ∈ P , called target, the approximate distance distG(a, b)
(and/or an approximate shortest path) from a to b is computed efficiently. The algorithm uses
the approximation graph Gε. For simplicity, we assume that the point a corresponds to a node in
Gε; otherwise, we can easily augment Gε with extra edges corresponding to local shortest paths
from a to nodes in its face neighborhood N (a). Approximate discrete path between the node a
and a point b is either a local shortest path (that can be computed in constant time) or a path of

the form {a G� p
N (b)� b}, where p is a node of Gε incident to the face neighborhood of b. Hence,

the computation of distG(a, b) requires finding minp∈N (b){distG(a, p) + ‖p N (b)� b‖}. We know the
distances distG(a, p) from a to all nodes p ∈ Gε (as part of preprocessing by computing SSSP
tree rooted at a in Gε) and thus our task is reduced to finding a node p(b) that minimizes the
above expression for a query point b. To accomplish this, for each face f of P we construct a data
structure, called Local Voronoi Diagram in f with respect to a, and denote it by LVD(a, f). More
precisely, let f be a face of P and let N (f) be its face neighborhood. Let p1, . . . , pk be the Steiner
points and the vertices of P incident to N (f) and let δi = distG(a, pi) for i = 1, . . . , k.
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Lemma 4 A data structure LVD(a, f) exists so that for a point b ∈ f , min1≤i≤k(δi + ‖b N (b)� pi‖)
and the point for which it is achieved can be computed in O(log k) time. The size of the data
structure LVD(a, f) is O(k) and it can be constructed in O(k log k) time.

We define SSQ(P, ε; a) data structure to consist of SSSP tree rooted at a plus the collection of
LVD(a, f) for all faces f ∈ P . The queries consist of a point b on P and the face4 f(b) containing b
and they are answered as follows. First, we use LVD(a, f(b)) and find the point p(b) for which the
minimum in Lemma 4 is achieved. Then, if a and b lie in neighbor faces, we compute the shortest
local path between a and b and output the approximate distance distG(a, b), which is the smaller
of the two values. If an approximation path is required we output the natural embedding of the
approximate discrete path whose cost is distG(a, b). The quality of this approximation follows from
Theorem 4 and Corollary 1. Hence we have the following

Theorem 5 Given a triangulated, weighted surface P with n faces, a source point a ∈ P and the
set of nodes Vε of Gε. (For every query point b in P we assume that the face containing b is
known.) A data structure SSQ(P, ε; a) of size O(|Vε|) = O( n√

ε
log 1

ε ) exists, so that the approximate

distance between a and a query point b in P can be found in O(log 1
ε ) time. The structure SSQ can

be constructed in O(|Vε| log |Vε|) = O( n√
ε
log n

ε log 1
ε ) time.

5 Arbitrary shortest path queries

In this section we describe and analyze an algorithm for constructing a data structure, called All
Pairs Queries (APQ), such that approximate distance (and/or approximate shortest path) queries
between pairs of arbitrary points in P can be answered efficiently. In addition to the weighted
polyhedral surface P and the approximation parameter ε, the algorithm takes as input a query time
parameter q and outputs a data structure APQ(P, ε; q), which can answer approximate distance
queries in O(q) time. Our preprocessing algorithm uses the results of previous sections.

First we construct the dual graph P ∗ of P . The set of nodes of P ∗ corresponds to the set of
faces of P and two nodes in P ∗ are joined by an edge if their corresponding faces are neighbors.
To each node u of P ∗ we assign weight w(u) equal to the number of nodes of Gε, that are incident
to the face f(u) corresponding to u in P . Furthermore, we assign cost c(u) equal to the number of
nodes of Gε, that are incident to the face neighborhood N (f(u)). The total weight w(P ∗) of P ∗

and the value σ(P ∗), defined in Section 2, are estimated using Lemma 3 by w(P ∗) ≤ C(P ) n√
ε
log 2

ε

and σ(P ∗) ≤ Γ(P )n
ε log2 2

ε , where C(P ) = 1
n

∑
f∈P C(f) and Γ(P ) ≤ 4

n

∑
f∈P C2(f). We observe

that the weight of P ∗ and σ(P ∗) are related by σ(P ∗) ≤ 4w2(P ∗) ≤ nσ(P ∗).
Next, we choose a value of t = q2

4(g+1)σ(P ∗) log2(1/ε)
(depending on the input query time q) and

use Theorem 2 to construct a t-separator S, that induces regular partitioning of P ∗. The separator
S of P ∗ corresponds to a set of faces in P , which we refer to as face separator (or simply separator)
and denote again by S. The face separator S partitions the surface P into regions, that are unions
of faces corresponding to the connected components of P ∗ \ S. The boundary ∂R of a region R is
the set of triangles in S, that neighbor faces in R.

Next, for each p, that is a Steiner point or vertex of P incident to a face, which is a neighbor
of a face in S, compute and store SSQ(P, ε; p) data structure. Also for each region R and for each

4Otherwise point location on P would be necessary.
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Steiner point or vertex of P incident to a face in R compute and store SSQ(R, ε; p) data structure
restricted to the faces in R.

The collection of SSQ data structures and the region partitioning induced by S constitutes the
APQ(P, ε; q) data structure. We denote the genus of the surface P by g. The query time parameter
q will not exceed an upper bound q̄ = (g+1)2/3n1/3√

ε
log2 1

ε . The next lemma presents our estimate on
the time for the construction and the size of APQ(P, ε; q) data structure.

Lemma 5 For any q ≤ q̄ = (g+1)2/3n1/3√
ε

log2 1
ε the construction of the data structure APQ(P, ε; q)

takes O( (g+1)n2

ε3/2q
log n

ε log4 1
ε ) time. The size of APQ(P, ε; q) is O( (g+1)n2

ε3/2q
log4 1

ε ).

The APQ data structure built by the preprocessing algorithm can be used to answer approximate
distance queries as outlined in Algorithm APQ Query. Note that set A plays a critical role

ALGORITHM: APQ Query

Input: The data structure APQ(P, ε; q); query points a and b lying in faces f(a) and f(b),
respectively.

Output: The approximate distance distG(a, b).

Set M0 = M1 = M2 = ∞.

Step 1. If f(a) and f(b) are neighbor faces, then compute the local shortest path

a
f(a)∪f(b)� b and assign its cost to M0.

Step 2. If either of the faces f(a) or f(b) is in the separator S, then define A to be the
set of nodes of Gε incident to the face neighborhood N (a) or N (b), respectively.

Step 3. If neither of the faces f(a) and f(b) is in S, then define A to be the set of nodes of
Gε incident to the faces in the boundary ∂R(a) of the region R(a) containing f(a).

Step 4. Use data structures SSQ(P, ε; p′) and compute
M1 = minp′∈A(distG(a, p′) + distG(p′, b)).

Step 5. If f(b) ∈ R(a) then define A1 to be the set of nodes of Gε incident to the face
neighborhood N (b). Use data structures SSQ(R, ε; p′) and compute
M2 = minp′∈A1

(distG(a, p′) + distG(p′, b)).

Set distG(a, b) = min(M0,M1,M2) and output it.

in the query algorithm. A set of nodes in Gε is called a separating set for points a and b in
P if any approximate discrete path of the form (1) between a and b contains a node from that
set. Our query algorithm specifies a separating set A for a and b, such that for any p′ ∈ A the
data structure SSQ(P, ε; p′) is present in APQ(P, ε; q) and then computes minp′∈A(distG(a, p′) +
distG(p′, b)). Clearly, this minimum is the cost of the shortest approximate discrete path of the
form (1). The time for this computation is O(|A| log 1

ε ).
If an approximate shortest path between a and b is required we output the natural embedding

of the approximate discrete path for which the minimum distG(a, b) is achieved. This can be done
by using the SSSP trees stored in the corresponding SSQ data structure in time proportional to the
size of this path. The next lemma establishes the correctness of the query algorithm and evaluates
its running time.
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Lemma 6 The algorithm APQ Query correctly computes the approximate distance distG(a, b). The
running time of the algorithm is O(max(q, 1√

ε
log2 1

ε ).

Proof: The correctness of the query algorithm follows from the observation, that the cost of any
approximate discrete path between a and b has to be equal to one of the values M0,M1,M2,
depending on the position of the faces f(a) and f(b) with respect to the partitioning defined by
the separator S. The running time of the algorithm is dominated by the times for the execution
of Steps 4 and 5. As discussed above these times are bounded by O(|A| log 1

ε ) and O(|A1| log 1
ε ).

By Lemma 3, |A1| = O( 1√
ε
log 1

ε ) and by Theorem 2 and the choice of t in the APQ Preprocessing

algorithm we obtain |A| ≤ 2
√

(g + 1)tσ(P ∗) ≤ q
log(1/ε) . �

The results obtained in this section are summarized in the next theorem.

Theorem 6 Let P be a weighted polyhedral surface of genus g and consisting of n triangular faces.
Let ε ∈ (0, 1) and q ∈ ( 1√

ε
log2 1

ε , q̄), where q̄ = (g+1)2/3n1/3√
ε

log2 1
ε . There exists a data structure

APQ(P, ε; q), such that approximate distance queries in P can be answered in O(q) time. The
structure APQ(P, ε; q) is constructed in O( (g+1)n2

ε3/2q
log n

ε log4 1
ε ) time and its size is O( (g+1)n2

ε3/2q
log4 1

ε ).

6 Extensions and Conclusions

In this paper we present novel solutions to fundamental shortest path query problems. The algo-
rithms improve and generalize previous solutions in terms of 1) setting: a) Euclidean to weighted
and b) arbitrary genus g, 2) preprocessing time, and/or 3) size of query data structure. We also
develop a new graph partitioning algorithm for graphs of genus g with weights and costs on ver-
tices which extends and/or generalizes previously known separator algorithms. Our techniques also
enable us to obtain improved results with space-query time tradeoffs for the planar case, i.e. when
the genus is 0 (we refer the reader to the full version of this paper).

A natural question arises whether the range ( 1√
ε
log2 1

ε , q̄) of query time parameter q, in Theorem
6, can be widened, while keeping the efficiency of the algorithm. This question can be answered
affirmatively by constructing a hierarchical APQ data structure, in which second level APQ data
structures are built and stored for each region of the partitioning. For each region R of the
partitioning construct an APQ(R, ε; q̄R) restricted to R, where q̄R is the corresponding upper
bound for R. Then in the APQ-Query algorithm we use APQ(R, ε; q̄R) to answer approximate
shortest path queries in the case where both query points lie in R in O(q̄R) in time. The latter is
O(q) since q̄ ≤ q. Our analysis shows that if q ≤ q̄1 = (g+1)5/9n2/3

ε2/3 log7/3 1
ε the result of Theorem 6

extends to the case q ∈ (q̄, q̄1).
Next, we briefly describe how our technique can be used to build an APQ data structure with

query time parameter q = log 1
ε . We build an ε-mesh consisting of O(1/ε2) additional points in each

triangle f of P . The mesh is constructed so that for each point a in f there is a mesh point p which
is closer to a than εd(p), where d(p) is the minimum distance from p to any node of Gε outside f .
Then for each mesh point we compute, in O( n2

ε5/2 log n
ε log 1

ε ) time, the SSQ data structure. For a
pair of query points a, b we first find the mesh point p(a) closest to a, and then use the structure
SSQ(P, ε; p(a)) to find distG(p(a), b). Each of these two steps is carried out in O(log 1

ε ) time. It
can be shown that ‖ap(a)‖ + distG(p(a), b) is an ε-approximation of the distance distP (a, b).

Note that our algorithms inherit the geometric constants analyzed in [6]. It is an interesting
open problem to determine whether eliminating these constants is inherently impossible.
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7 Appendix

Statement of Theorem 4.
For any pair of points a and b in P one of the following two holds, either

(a) (1 − 2ε)distP (a, b) ≤ distG(a, b) ≤ (1 + 2ε)distP (a, b), (2)

or

(b) There is a vertex v of P such that the points a, b are in the face neighborhood N (v). There
is a shortest path in P between a and b that stays in N (v) and intersects the vertex vicinity E(v).
Moreover

distP (a, b) − 2εr(v) ≤ distG(a, b) ≤ distP (a, b), (3)

where εr(v) is the radius of E(v).
Proof:
Case 1: Let a and b be incident with the representations of nodes p and q of Gε. Then by our
definitions distG(a, b) = c(p G� q). Following the proof of Theorem 3.2 in [6] we obtain

c(p G� q) ≤ (1 + ε)distP (a, b), (4)

which is stronger than the right part of (2). To prove the estimates on distG(a, b) from below we
assume that distG(a, b) < distP (a, b), otherwise there is nothing to prove. We consider the natural
embedding of the path p

G� q. As discussed above the cost of the path p
G� q in Gε equals to the

cost of the natural embedding in P minus the total cost of its portions inside vertex vicinities. If
the total cost of these portions is less or equal εdistP (a, b) then we have

(1 − ε)distP (a, b) ≤ c(p G� q), (5)

which proves (a) in this case.
By the definitions of the vertex vicinities and the cost of the edges in Gε the total cost of these

portions is at most (ε/2)c(p G� q) provided that the path p
G� q contains none or at least two vertex

vicinity nodes. Using our assumption distG(a, b) < distP (a, b) we have

distP (a, b) ≤ c(p G� q) + (ε/2)c(p G� q) ≤ c(p G� q) + (ε/2)distP (a, b),

and thus the inequality (5) is valid in these cases too.
It remains to consider the case where the path p

G� q contains exactly one vertex vicinity node,
say corresponding to a vertex v of P , and the cost of the portion of the natural embedding of p

G� q
inside E(v) is greater than εdistP (a, b). In this case the left inequality of (3) holds.

Case 2: Consider now the case where a and b are neither Steiner points nor inside vertex
vicinities. If the points a and b lie in neighbor triangles and the shortest path between them is a
local path then by our definitions distG(a, b) = distP (a, b) and the theorem holds. So, we assume
below that any shortest path between a and b intersects more than two faces.

First, we prove the upper bound on distG(a, b) by constructing an approximate discrete path

{a N (a)� p
G� q

N (b)� b} whose cost is at most (1 + 2ε)distP (a, b). Let π̃ = a
P� b be a shortest path

between a and b in P . The path π̃ consists of segments with end-points on the edges of P . We call
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a
P� b

p
G� q
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y(a)

N (a)

b
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q
N (b)x(b)

Figure 1: Illustration of bending points in π̃.

these points bending points of the path π̃. From our assumption the path π̃ intersects more than
two faces and the definition of face neighborhoods it follows that the path π̃ is neither entirely in
N (a) nor in N (b).

We denote by y(a) the first bending point on π̃ when traversed from a to b, where the path exits
N (a) (see Figure 1). Similarly, let x(b) be the last bending point on π̃ when traversed from a to
b, where the path enters N (b). Furthermore, we denote by x(a) the bending point on π̃ preceding
y(a) and by y(b) the bending point succeeding x(b).

Let us consider, first, the case where none of the points x(a), y(a), x(b), and y(b) is inside
vertex vicinity. By their choice x(a) and y(a) lie on two different sides of the face f containing the
segment (x(a), y(a)). We define p to be a Steiner point in f such that

|x(a)p| + |py(a)| ≤ (1 + ε/2)|x(a)y(a)|. (6)

The existence of such a Steiner point is granted by Lemma 2. Similarly, let q be a Steiner point
inside the face containing (x(b), y(b)) and such that

|x(b)q| + |qy(b)| ≤ (1 + ε/2)|x(b)y(b)|. (7)

If x(a) = x(b) and y(a) = y(b) we chose p = q. Now we have defined an approximate discrete path

π(a, b) = {a N (a)� p
G� q

N (b)� b} and estimate its cost.
We consider the case where (x(a), y(a)) �= (x(b), y(b)) (Figure 1). From the definition of the

points x(a) and y(b), and the triangle inequality we have

‖a N (a)� p‖ ≤ ‖a P� x(a)‖ + ‖x(a)p‖ (8)

and
‖q N (b)� b‖ ≤ ‖y(b) P� b‖ + ‖qy(b)‖. (9)

Again from the triangle inequality and the validity of (2) for the path p
G� q we obtain

c(p G� q) ≤ (1 + ε)(‖y(a) P� x(b)‖ + ‖py(a)‖ + ‖x(b)q‖). (10)

Then the cost of the path π(a, b) is estimated by summing (8), (10), and (9) and using (6), and (7)

c(π(a, b)) = ‖a N (a)� p‖ + c(p G� q) + ‖q N (b)� b‖ ≤
‖a P� x(a)‖ + (1 + ε)‖y(a) P� x(b)‖ + ‖y(b) P� b‖ +

(1 + ε/2)‖x(a)y(a)‖ + (1 + ε/2)‖x(b)y(b)‖ +
ε(‖py(a)‖ + ‖x(b)q‖) ≤ (1 + 2ε)distP (a, b)
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The case where segments (x(a), y(a)) = (x(b), y(b)) is simpler. The cases where some of the points
x(a), y(a), x(b), and y(b) are inside vertex vicinities are handled by the same technique.

Next, we estimate distG(a, b) from below. Again, we assume that distG(a, b) < distP (a, b)
otherwise statement (a) of the theorem holds. We consider any approximate discrete path of the

form {a N (a)� p
G� q

N (b)� b}. If p is a vertex vicinity node we denote by p̃ the vertex of P in that
vicinity. We defined the radius r(p̃) as (1/8)-th of the distance from p̃ to the boundary of its face
neighborhood N (p̃) and used r(p̃) to define E(p̃). If p is a Steiner point node then p̃ denotes the
corresponding Steiner point and we assume r(p̃) = 0. We use analogous notation q̃ and r(q̃) with
respect to q. From our definitions and using this notation we have

‖a N (a)� p‖ ≥ ‖a P� p̃‖ − εr(p̃) and ‖q N (b)� b‖ ≥ ‖q̃ P� b‖ − εr(q̃). (11)

Then for the cost of the path {a N (a)� p
G� q

N (b)� b} we obtain

‖a N (a)� p‖ + c(p G� q) + ‖q N (b)� b‖ ≥
‖a P� p̃‖ + c(p G� q) + ‖q̃ P� b‖ − ε(r(p̃) + r(q̃)) (12)

Let us consider first the case, where

r(p̃) + r(q̃) ≤ ‖a P� p̃‖ + c(p G� q) + ‖q̃ P� b‖.

In this case, we use (12) and (5) and obtain

‖a N (a)� p‖ + c(p G� q) + ‖q N (b)� b‖ ≥
(1 − ε)(‖a P� p̃‖ + c(p G� q) + ‖q̃ P� b‖) ≥

(1 − ε)(‖a P� p̃‖ + (1 − ε)distP (p̃, q̃) + ‖q̃ P� b‖) ≥
(1 − ε)2(‖a P� p̃‖ + distP (p̃, q̃) + ‖q̃ P� b‖) ≥ (1 − 2ε)dp(a, b), (13)

which implies the lower bound in (a). Consider now the case where

r(p̃) + r(q̃) > ‖a P� p̃‖ + c(p G� q) + ‖q̃ P� b‖. (14)

We show that in this case (b) holds. This inequality is possible only if one of the points p̃ and q̃ is
a vertex of P , denoted by v, and the other is either a Steiner point inside the face neighborhood of
v or the same vertex. Now, we use (5) for p̃ and q̃ and substitute in (14) obtaining

2r(v) ≥ r(p̃) + r(q̃) > ‖a P� p̃‖ + c(p G� q) + ‖q̃ P� b‖ ≥
‖a P� p̃‖ + distP (p̃, q̃) − 2εr(v) + ‖q̃ P� b‖ = distP (a, b) − 2εr(v), (15)

which implies distG(a, b) ≥ dP (a, b) − 2εr(v). Moreover, from (15) and the definition of the radius
r(v) it follows that the path a

P� b must stay inside N (v) and must intersect E(v).
The cases where just one of the points a or b is Steiner point or incident to a vertex vicinity are

treated analogously. �
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