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Abstract. The Open Run-Time Environment (OpenRTE)—a spin-off
from the Open MPI project—was developed to support distributed high-
performance computing applications operating in a heterogeneous en-
vironment. The system transparently provides support for interprocess
communication, resource discovery and allocation, and process launch
across a variety of platforms. In addition, users can launch their applica-
tions remotely from their desktop, disconnect from them, and reconnect
at a later time to monitor progress. This paper will describe the capa-
bilities of the OpenRTE system, describe its architecture, and discuss
future directions for the project.

1 Introduction

The growing complexity and demand for large-scale, fine-grained simulations
to support the needs of the scientific community is driving the development of
petascale computing environments. Achieving such a high level of performance
will likely require the convergence of three industry trends: the development of
increasingly faster individual processors; integration of significant numbers of
processors into large-scale clusters; and the aggregation of multiple clusters and
computing systems for use by individual applications.

Developing a software environment capable of supporting high-performance
computing applications in the resulting distributed system poses a significant
challenge. The resulting run-time environment (RTE) must be capable of sup-
porting heterogeneous operations, efficiently scale from one to large numbers of
processors, and provide effective strategies for dealing with fault scenarios that
are expected of petascale computing systems [7]. Above all, the run-time must
be easy to use, providing users with a transparent interface to the petascale
environment in a manner that avoids the need to customize applications when
moving between specific computing resources.

The Open Run-Time Environment (OpenRTE) has been designed to meet
these needs. Originated as part of the Open MPI project [3]—an ongoing col-
laboration to create a new open-source implementation of the Message Passing
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Interface (MPI) standard for parallel programming on large-scale distributed
systems [1,8]—the OpenRTE project has recently spun-off into its own effort,
though the two projects remain closely coordinated. This paper describes the
design objectives that under-pin the OpenRTE and its architecture.
Terminology. The concepts discussed in the remainder of this paper rely on
the prior definition of two terms. A cell is defined as a collection of computing
resources (nodes) with a common point-of-contact for obtaining access, and/or a
common method for spawning processes on them. A typical cluster, for example,
would be considered a single cell, as would a collection of networked computers
that allowed a user to execute applications on them via remote procedure calls.
Cells are assumed to be persistent—i.e., processors in the cell are maintained in
an operational state as much as possible for the use of applications.

In contrast, a local computer is defined as a computer that is not part of a
cell used to execute the application, although application processes can execute
on the local computer if the user so desires. Local computers are not assumed
to be persistent, but are subject to unanticipated disconnects. Typically, a local
computer consists of a user’s notebook or desktop computer.

2 Related Work

A wide range of approaches to the problem of large scale distributed comput-
ing environments have been studied, each primarily emphasizing a particular
key aspect of the overall problem. LAM/MPI, for example, placed its empha-
sis on ease of portability and performance [9], while LA-MPI and HARNESS
FT-MPI focused on data and system fault tolerance (respectively) [4,5]. Simi-
larly, the Globus program highlighted authentication and authorization to allow
operations across administrative zones [6].

The OpenRTE project has drawn from these projects, as well as other similar
efforts, to meet objectives designed to broaden the petascale computing user
community.

3 Design Objectives

The OpenRTE project embraces four major design objectives: ease of use, re-
silient operations, scalability, and extensibility.
Ease of Use. Acceptance of a RTE by the general scientific community (i.e., be-
yond that of computer science) is primarily driven by the system’s perceived ease
of use and dependability. While both of these quantities are subjective in nature,
there are several key features that significantly influence users’ perceptions.

One predominant factor in user acceptance is transparency of the RTE—i.e.,
the ability to write applications that take advantage of a system’s capabilities
without requiring direct use of system-dependent code. An ideal system should
support both the ability to execute an application on a variety of compute re-
sources, and allow an application to scale to increasingly larger sizes by drawing
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resources from multiple computational systems, without modification. This level
of transparency represents a significant challenge to any RTE in both its ability
to interface to the resource managers of multiple cells, and the efficient rout-
ing of shared data between processes that may no longer be collocated within
a highly-interconnected cell (e.g., a cluster operating on a high-speed network
fabric).

Several desirable system features also factor into users’ perceptions of a RTE’s
ease of use. These include the ability to:

– Remotely launch an application directly from the user’s desktop or notebook
computer—i.e., without requiring that the user login to the remote comput-
ing resource and launch the application locally on that system. Incorporated
into this feature is the ability to disconnect from an application while it con-
tinues to execute, and then reconnect to the running application at a later
time to monitor progress, potentially adjust parameters “on-the-fly”, etc.

– Forward input/output to/from remote processes starting at the initiation of
the process, as opposed to only after the process joins the MPI system (i.e.,
calls MPI INIT).

– Provide support for non-MPI processes, including the ability to execute
system-level commands on multiple computing resources in parallel.

– Easily interface applications to monitoring and debugging tools. Besides di-
rectly incorporating support for the more common tools (e.g., TotalView),
the RTE should provide interfaces that support integration of arbitrary in-
strumentation (e.g., those custom developed by a user).

Finally, the RTE should operate quickly (in terms of startup and shutdown) with
respect to the number of processes in an application, and should not require mul-
tiple user commands to execute. Ideally, the run-time will sense its environment
and take whatever action is required to execute the user’s application.
Resilient. Second only to transparency in user acceptance is dependability. The
RTE must be viewed as solid in two key respects. First, the run-time should not
fail, even when confronted with incorrect input or application errors. In such
cases, the run-time should provide an informational error message and, where
appropriate, cleanly terminate the offending application.

Secondly, the RTE should be capable of continuing execution of an appli-
cation in the face of node and/or network failures. Current estimates are that
petascale computing environments will suffer failure of a node every few hours
or days [7]. Since application running times are of the same order of magnitude,
an acceptable RTE for petascale systems must be capable of detecting such fail-
ures and initiating appropriate recovery or shutdown procedures. User-definable
or selectable error management strategies will therefore become a necessity for
RTE’s in the near future.
Scalable. A RTE for distributed petascale computing systems must be capa-
ble of supporting applications spanning the range from one to many thousands
of processes, operating across one to many cells. As noted earlier, this should
be accomplished in a transparent fashion—i.e., the RTE should automatically
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scale when adding processes. This will require that users either provide binary-
compatible images for each machine architecture in the system, pre-position files
and libraries as necessary—or that the run-time be capable of providing such
services itself.
Extensible. The design objectives presented thus far have all dealt with the
RTE from the user’s perspective. However, there are also significant require-
ments in relation to both developers and the larger computer science community.
Specifically, the RTE should be designed to both support the addition of further
features and provide a platform for research into alternative approaches for key
subsystems.

This latter element is of critical importance but often overlooked. For ex-
ample, the possible response of the run-time to non-normal termination of a
process depends somewhat on both the capabilities of the overall computing en-
vironment, the capabilities of the RTE itself, and the nature of the application.
The responses can vary greatly, ranging from ignoring the failure altogether to
immediate termination of the application or restarting the affected process in
another location. Determining the appropriate response for a given situation
and application is a significant topic of research and, to some extent, personal
preference.

Supporting this objective requires that the RTE allow users and developers
to overload subsystems—i.e., overlay an existing subsystem with one of their
own design, while maintaining the specified interface, in a manner similar to
that found in object-oriented programming languages.

4 Architecture

The OpenRTE is comprised of several major subsystems that collectively form
an OpenRTE universe, as illustrated in Figure 1. A universe represents a single
instance of the OpenRTE system, and can support any number of simultaneous
applications. Universes can be persistent – i.e., can continue to exist on their
own after all applications have completed executing – or can be instantiated for
a single application lifetime. In either case, a universe belongs to a specific user,
and access to its data is restricted to that user unless designated otherwise.

Implementation of the OpenRTE is based upon the Modular Component
Architecture (MCA) [3] developed under the Open MPI project. Use of compo-
nent architectures in high-performance computing environments is a relatively
recent phenomenon [2,9,10], but allows the overlay of functional building blocks
to dynamically define system behavior at the time of execution. Within this ar-
chitecture, each of the major subsystems is defined as an MCA framework with a
well-defined interface. In turn, each framework contains one or more components,
each representing a different implementation of that particular framework.

Thus, the behavior of any OpenRTE subsystem can be altered by simply
defining another component and requesting that it be selected for use, thereby
enabling studies of the impact of alternative strategies for subsystems with-
out the burden of writing code to implement the remainder of the system.
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Fig. 1. The OpenRTE architecture

Researchers wishing to study error response strategies, for example, can over-
lay the standard error manager with their own implementation while taking full
advantage of the system-level support from the process launch, state-of-health
monitor, and other OpenRTE subsystems.

This design also allows users to customize the behavior of the run-time at the
time of application execution. By defining appropriate parameters, the user can
direct the OpenRTE system to select specific subsystem components, thus effec-
tively defining system behavior for that session. Alternatively, the user can allow
the system to dynamically sense its environment and select the best components
for that situation.

OpenRTE’s subsystems can be grouped into four primary elements.

General Purpose Registry. At the core of the OpenRTE system is a general
purpose registry (GPR) that supports the sharing of data (expressed as key-value
pairs) across an OpenRTE universe. Information within the GPR is organized
into named segments, each typically dedicated to a specific function, that are
further subdivided into containers, each identified by a set of character string
tokens. Collectively, the container tokens, segment names, and data keys provide
a searchable index for retrieving data. Users have full access to the system-level
information stored on the GPR, and can define their own segments/containers
to support their applications.

The GPR also provides a publish/subscribe mechanism for event-driven ap-
plications. Users can specify both the data to be returned upon an event, the
process(es) and function(s) within the process(es) to receive the specified data,
and combinations of actions (e.g., modification, addition, or deletion of data
entries) that define the event trigger. Notification messages containing the spec-
ified data are sent to the recipients as asynchronous communications via the
OpenRTE messaging layer (described below).
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Resource Management. Four independent, but mutually supportive, subsys-
tems collectively operate to manage the use of resources by applications within
the OpenRTE system. Together, these subsystems provide services for resource
discovery, allocation, mapping, and process launch.

True to its name, the Resource Discovery Subsystem (RDS) is responsible
for identifying the computational resources available to the OpenRTE system
and making that information available to other subsystems. The RDS currently
contains two components: one for reading hostfiles in several formats covering
the common MPI implementations. Hostfiles are typically generated by a specific
user and contain information on machines that might be available to that user;
and another that obtains its information from a system-level resource file con-
taining an XML-based description of the cells known to the OpenRTE system.
Information from each component in the RDS is placed on the GPR for easy
retrieval by other subsystems within that universe.

The Resource Allocation Subsystem(RAS) examines the environment and the
command line to determine what, if any, resources have already been allocated
to the specified application. If resources have not been previously allocated, the
RAS will attempt to obtain an allocation from an appropriate cell based on
information from the RDS. Once an allocation has been determined, the RAS
constructs two segments on the GPR – a node segment containing information on
the nodes allocated to the application, and a job segment that holds information
on each process within the application (e.g., nodename where the application is
executing, communication sockets, etc.).

Once resources have been allocated to an application, the application’s processes
must be mapped onto them. In environments where the cell’s resource man-
ager performs this operation, this operation does not require any action by the
OpenRTE system. However, in environments that do not provide this service,
OpenRTE’s Resource Mapping (RMAP) subsystem fills this need.

Finally, the Process Launch Subsystem (PLS) utilizes the information pro-
vided by the prior subsystems to initiate execution of the application’s processes.
The PLS starts by spawning a head node process (HNP) on the target cell’s fron-
tend machine. This process first determines if an HNP for this user already exists
on the target cell and if this application is allowed to connect to it – if so, then
that connection is established. If an existing HNP is not available, then the new
HNP identifies the launch environment supported by that cell and instantiates
the core universe services for processes that will operate within it. The applica-
tion processes are then launched accordingly.

Error Management. Error management within the OpenRTE is performed
at several levels. Wherever possible, the condition of each process in an appli-
cation is continuously monitored by the State-of-Health Monitor (SOH)1. The
SOH subsystem utilizes its components to field instrumentation tailored to the
local environment. Thus, application processes within a BProc environment are
monitored via the standard BProc notification service. Similarly, the SOH might

1 Some environments do not support monitoring. Likewise, applications that do not
initialize within the OpenRTE system can only be monitored on a limited basis.
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monitor application processes executing on standalone workstations for abnor-
mal termination by detecting when a socket connection unexpectedly closes.

Once an error has been detected, the Error Manager (EMGR) subsystem
is called to determine the proper response. The EMGR can be called in two
ways: locally, when an error is detected within a given process; or globally, when
the SOH detects that a process has abnormally terminated. In both cases, the
EMGR is responsible for defining the system’s response. Although the default
system action is to terminate the application, future EMGR components will
implement more sophisticated error recovery strategies.
Support Services. In addition to the registry, resource management, and error
management functions, the OpenRTE system must provide a set of basic services
that support both the application and the other major subsystems. The name
services (NS) subsystem is responsible for assigning each application, and each
process within each application, a unique identifier. The identifier, or process
name, is used by the system to route inter-process communications, and is pro-
vided to the application for use in MPI function calls.

Similarly, the Run-time Messaging Layer (RML) provides reliable adminis-
trative communication services across the OpenRTE universe. The RML does
not typically carry data between processes – this function is left to the MPI
messaging layer itself as its high-bandwidth and low-latency requirements are
somewhat different than those associated with the RML. In contrast, the RML
primarily transports data on process state-of-health, inter-process contact infor-
mation, and serves as the conduit for GPR communications.

Finally, the I/O Forwarding (IOF) subsystem is responsible for transporting
standard input, output, and error communications between the remote processes
and the user (or, if the user so chooses, a designated end-point such as a file).
Connections are established prior to executing the application to ensure the
transport of all I/O from the beginning of execution, without requiring that the
application’s process first execute a call to MPI INIT, thus providing support
for non-MPI applications. IOF data is usually carried over the RML’s channels.

5 Summary

The OpenRTE is a new open-source software platform specifically designed for
the emerging petascale computing environment. The system is designed to al-
low for easy extension and transparent scalability, and incorporates resiliency
features to address the fault issues that are expected to arise in the context
of petascale computing. A beta version of the OpenRTE system currently ac-
companies the latest Open MPI release and is being evaluated and tested at a
number of sites.

As an open-source initiative, future development of the OpenRTE will largely
depend upon the interests of those that choose to participate in the project.
Several extensions are currently underway, with releases planned for later in the
year. These include several additions to the system’s resource management and
fault recovery capabilities, as well as interfacing of the OpenRTE to the Eclipse
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integrated development environment to allow developers to compile, run, and
monitor parallel programming applications from within the Eclipse system.

Interested parties are encouraged to visit the project web site at
http://www.open-rte.org for access to the code, as well as information on par-
ticipation and how to contribute to the effort.
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