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Semileptonic form factors of heavy-light mesonsfrom lattice QCDRajan Gupta, Tanmoy Bhattacharya and David DanielT-8, MS-B285, Los Alamos National Laboratory, Los Alamos, NM 87545The form factors for the semileptonic decays of heavy-light pseudoscalar mesons ofthe type D ! Ke� are studied in quenched lattice QCD at � = 6:0 using Wilson fermions.We explore new numerical techniques for improving the signal and study O(a) correctionsusing three di�erent lattice transcriptions of the vector current. We present a detaileddiscussion of the relation of these lattice currents to the continuum vector current andshow that the disagreement between the previous results is to a large extent due to thevalue of ZV used in the calculations. We also present results for the decay constants oflight-light, heavy-light and heavy-heavy mesons.
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1. IntroductionThe physics of mesons containing one heavy valence quark (c, b) and one light valencequark (u, d, s) is of considerable interest at present. Experimental investigations of thesesystems may provide the most accurate determination of the parameters of the standardmodel responsible for 
avor mixing and CP violation (the CKM matrix).* This can onlybe achieved, however, if we are able to obtain a quantitative understanding of the in
uenceof the strong interaction on their structure and decays.Numerical simulations of lattice QCD provide a solution to this problem, and therehas been considerable activity in the �eld in recent years. Two groups have presentedresults for the form factors for the semi-leptonic decays of heavy-light pseudoscalar andvector mesons, namely Bernard et al. [2] [3] [4], and the Rome-Southampton group [5] [6][7]. These results have large statistical errors, and, in certain instances, are in con
ict. Toresolve these discrepancies and check for systematic errors, further studies using di�erentmethodologies are necessary, and this is what we undertake in this paper.In this paper we present data on the pseudoscalar and vector meson decay constantsfor light-light, heavy-light and heavy-heavy systems. We then move on to the main topicof this paper semileptonic form factors for pseudoscalar meson decays such as D ! Ke�.The structure of this paper is the following. We review the phenomenology of semi-leptonicform-factors in Section 2. In Section 3 we discuss the renormalization of lattice operatorsand give details of the lattice setup in Section 4. Results for the decay constants arepresented in Section 5 along with those for the vector current renormalization ZV . Theanalysis of the form-factors is given in Section 6 along with a discussion of the quality ofthe signal and a comparison with previous data is given in Section 7. Finally, we state ourconclusions in Section 8.2. Phenomenological BackgroundWe consider the case, D!Xl�, where X has 
avor content us (K or K�). In the oneW exchange approximation the amplitude is
X�l+���HW ��D0� = GFp2 Z d4x 
X�l+��� (V � A)y�(V �A)� ��D0�;= GFp2 Vsc v(l)
�(1� 
5)u(�)
X��� s
�(1� 
5)c ��D0�; (2:1)* A recent overview of the experimental status of charmed meson physics is given in ref. [1].1



where GF is the Fermi constant, Vcs is the c ! s CKM matrix element. This processis particularly simple because the hadronic and leptonic currents factorize. The leptonicpart of the decay can be calculated accurately using perturbation theory, while to takeinto account non-perturbative contributions to the hadronic partH� = hXj s
�(1� 
5)c jDi (2:2)one resorts to lattice QCD. In this paper we present results for the simpler of the twocases, i:e: D0 ! K�e+�.The matrix element H� can be parameterized in terms of two form factors:
K�(pK)�� s
�(1� 
5)c ��D0(pD)� = p�f+(Q2) + q�f�(Q2); (2:3)where p = (pD + pK) and q = (pD � pK) is the momentum carried away by the leptons,and Q2 = �q2 (which is always positive). We use the Euclidean notation p = (~p; iE) sothat p2 = ~p 2 �E2. An alternative parameterization is
K�(pK)�� s
�(1� 
5)c ��D0(pD)�= �p� � m2D �m2KQ2 q�� f+(Q2) + m2D �m2KQ2 q�f0(Q2); (2:4)where f0(Q2) = f+(Q2) + Q2m2D �m2K f�(Q2): (2:5)In the center of mass coordinate system for the lepton pair, i.e. ~q = 0 or equivalently~pK = ~pD , one has 
K�(pK)�� s~
c ��D0(pD)� = 2~pDf+(Q2);
K�(pK)�� s
4c ��D0(pD)� = m2D �m2KpQ2 f0(Q2): (2:6)Thus, the form factor f+(Q2) is associated with the exchange of a vector particle, whilef0(Q2) is associated with a scalar exchange. It is common to assume nearest pole domi-nance and make the hypothesisf+(Q2) = f+(0)1�Q2=m21� ; f0(Q2) = f0(0)1�Q2=m20+ ; (2:7)wheremJP is the mass of the lightest resonance with the right quantum numbers to mediatethe transition; D+s (1969) or D�+s (2110) in the pseudoscalar or vector channels respectively.2



The goal of the lattice calculations is to determine the normalizations f+(0) and f0(0) andmap out the Q2 dependence.In the limit of vanishing lepton masses, the vector channel dominates and one canwrite the the di�erential decay rate asd�(Q2) = G2F jVcsj2192�3m3D dQ2�(Q2)3=2jf+(Q2)j2;�(Q2) = (m2D +m2K �Q2)2 � 4m2Dm2K : (2:8)To integrate this, the functional form of f+ must be known. Assuming vector mesondominance, numerical integration gives�(D0 ! K�e+�) = 1:53jVcsj2jf+(0)j2 � 10�11sec�1: (2:9)Using Eqn. (2.9) one can extract Vcs once �(D0 ! K�e+�) has been measured andf+ calculated using lattice QCD. In this case D0 ! K�e+�, however, jVcsj = 0:975 isknown very accurately, so one extracts jf+(0)j � 0:75. The quantity f0(0) has not beendetermined.The present study, whose goal is to investigate di�erent numerical techniques in orderto improve the signal to noise ratio, shows that �rst principles calculation of form-factorscan be carried out reliably with today's massively parallel computers.3. Renormalization of lattice operatorsLattice transcriptions of continuum operators like the vector and axial currents su�erfrom O(a) corrections. To get a handle on these O(a) e�ects in the study of form factors,we use three transcriptions for the vector currentV local� (x) = q1(x)
�q2(x);V ext:� (x) = 12 �q1(x)
�U�(x)q2(x+ a�) + q1(x+ a�)
�U�(x)yq2(x)� ;V cons:� (x) = 12 �q1(x)(
� � 1)U�(x)q2(x+ a�) + q1(x+ a�)(
� + 1)U�(x)yq2(x)� : (3:1)We remind the reader that V cons:� (x) is conserved only for degenerate quarks. In the calcula-tion of the pseudoscalar decay constant we use only the local axial current q1(x)
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�q2(x).In these currents the quarks q1 and q2 may both be light, or one heavy and one light, or3



both heavy. The �rst step in relating these lattice currents to their continuum counterpartsis to calculate the normalization of lattice �elds.Lepage and Mackenzie have given a prescription for relating lattice quantities to theircontinuum counterparts [8]. They show how to handle the large tadpole contributionsto operators and as an example show that the renormalization constant ZV for the localvector current agrees very well with non-perturbative measurements even for ma � 1[9]. Since the reliablity of calculations of matrix elements depends crucially on accuratedetermination of these parameters, we present an explicit 1-loop analysis and reproducethe results of Lepage and Mackenzie.The overall philosophy of the O(�s) improvement scheme is that in perturbationtheory tadpole contributions are large when quantities are expressed in terms of the bareparameters. The three basic ways in which tadpoles contribute to Feynman diagrams areshown in Fig. 1. These can and should be absorbed into the renormalized quantities,so that the resulting perturbation theory is well behaved. The goal is to absorb thecorrection to the fermion line in the de�nition of the renormalized mass, to the gluon linein the de�nition of the renormalized coupling, and whenever possible to cancel the tadpolecontributions in operators by combining them with the renormalized quantities. We nowshow how this works to order �s for the di�erent currents we use in this paper.3.1. Field renormalizationWe want to calculate Z , the relative normalization of lattice �elds, de�ned as continuum =pZ  lattice: (3:2)On dimensional grounds, Z can only be a function of r, �s and ma for Wilson fermions,where ma is the quark mass in lattice units. The inverse of the Wilson propagator is (weset r = 1 to simplify the discussion)(2�P)�1 = 1aX� i
� sin k�a+ 2aX� sin2 k�a2 +m+ 1a�sf(k�a;ma) +O(�2s) (3:3)where the factor of 1=a has been extracted to make it dimensionless. The 1-loop con-tribution f has the structure f = �0 + �1/ka + �2ma and it contains the tadpole con-tribution (i/ka � 4)K [10] [11]. The �i and K are numerical constants. In this equationma is de�ned to be the bare value 1=2� � 4. We shall keep track of terms of O(�s) andO(ma), but neglect O(�2s) and O(�sma) terms. Thus, the results are strictly speaking4



valid only for �sma < �s, though in practice the range of validity has to be determinednon-perturbatively.We now set ~k = 0 and express quantities in terms of k0 = ik4. For brevity of notationwe write f(�ik0;ma) as f(k0;ma). Then the forward moving part of the inverse propagatoris (2�P)�1 a = � exp k0a+ 1 +ma+ �sf(k0a;ma): (3:4)The renormalized mass is de�ned by the location of the pole in the propagator, which isgiven by the relation expk0a = 1 +ma+ �sf(k0a;ma): (3:5)The zero mass limit is determined from the condition (mc � 1=2�c � 4)mca+ �sf(0;mca) = 0 (3:6)which is used to de�ne the value of �c12�c = 4� �sf(0;mca)8�c = 1 + 14�sf(0;mca) (3:7)Close to the chiral limit ma is of order �s as can be seen from Eq. (3.6). In order tocalculate the wave-function renormalization one needs to evaluate the residue at the pole.This is exp k0a� �s @f(k0a; 0)@k0a = 1 +ma + �sf(k0a; 0)� �s @f(k0a; 0)@k0a� [1 +ma+ �sf(k0a; 0)][1 � �s @f(k0a; 0)@k0a ] (3:8)where we have set ma = 0 in terms proportional to �s as these are O(�sma). Note thatall the terms proportional to �s have contributions from tadpole diagrams. In latticecalculations it has been traditional to factor the residue into two terms, the �rst term isa lattice e�ect and de�ned to be the relative renormalization of the lattice to continuum�eld  and the second is the square of the wave-function renormalization that has to beincluded for each external fermion leg in the operator. The seemingly bad behavior ofperturbation theory arises if these two terms are truncated at di�erent orders of �s. Weconsider it useful to give explicit details of how the tadpole contributions are distributed5



and absorbed into the renormalized quantities so that the resulting perturbation expansionis well-behaved.The �rst step in the reorganization is to renormalize the bare quark mass and expressit in terms of �c. Using Eq. (3.7) we get1 +ma+ �sf(k0a; 0) = 12� � 3 + �sf(k0a; 0)= 4�c� �1� 3�4�c �+ �s �f(k0a; 0)� f(0;mca)8� � : (3:9)Now the term proportional to �s is of order �sma, and can therefore be dropped. Thisrearrangement gives the �nal result for the residue of the propagator P (note that we haveto multiply Eq. (3.8) by 2�), i:e:8�c �1� 3�4�c � �1� �s @@k0af(k0a; 0)� ; (3:10)which is to be evaluated at the pole. The tadpole contributions are distributed as follows.As shown in Eq.(3.7) the factor 8�c absorbs 1=4 of the tadpole term that is not proportionalto /k . This is equal and opposite in sign to the tadpole term proportional to /k that isincluded in the standard wave-function renormalization �1��s@f(k0a; 0)=@k0a�. Thereforethese two pieces always cancel. We reiterate this observation in slightly di�erent words toemphasize the point. The tadpole contribution to 8�c in the perturbative expansion8�c = 1 + 1:364�V + : : : (3:11)is equal and opposite to that from wave-function renormalization of the external legs. Thisis true for any operator O. Thus the combination 8�cZO will be better behaved at O(�s).The remaining tadpole part is included in p1� 3�i=4�c. On using the measured value for�c this factor becomes independent of perturbation theory and is therefore well behaved.This completes our discussion of tadpoles on the fermion line. A way to include tadpoleson gluon lines will be discussed later when we describe the Lepage-Mackenzie scheme.Using this scheme we can now write down the normalizations for the vector current.The 1-loop calculations of the local vector and axial currents have been done by Martinelliand Zhang [10] and we have checked their calculations. The local vector current containsa tadpole contribution from the wave-function renormalization, so we combine it with theperturbative expansion for 8�c to getV�����cont � q1(x)
�q2(x)����cont =r1� 3�14�cr1� 3�24�c (1� 0:82�V )q1(x)
�q2(x)����L: (3:12)6



Here �V is the renormalized coupling that is de�ned later. To get the normalization forextended currents one has also to include the O(ma) terms in the vertex. For the conservedcurrent the vertex at tree level is modi�ed to e�k0a
�. The extra factor e�k0a has beenobtained by making the same simpli�cations as in Eq. (3.4). This factor exactly cancelsthe [1+ma+�sf(k0a; 0)] part of Eq. (3.8). The remainder (1��1) is equal and oppositein sign to the 1-loop corrections to the vertex. Thus the renormalization factor for the\conserved" current is unchanged from the tree level de�nitionyV�����cont = p2�1p2�2V cons:� ����L: (3:13)The above result also applies to the case when the current is 
avor changing but its matrixelements are taken in the forward direction. On the other hand the vertex for the extended1-link current is 
� cos k�a, which reduces to 
� at the order to which we are working. Thetwo tadpole contributions, one from the wave-function renormalization 1 � �1 and theother from the expansion of the link in the operator are again equal and opposite. Sincethese two cancel one does not need to combine the perturbation result for Zext:V with thatfor 8�c. Thus we useV�����cont = 8�cr1� 3�14�cr1� 3�24�c (1� 1:038�V )V ext:� ����L: (3:14)It should be emphasized that our analysis does not specify whether it is better to use theperturbative or non-perturbative value for 8�c in cases where the tadpoles in the pertur-bative part cancel. The di�erence between using the perturbative and non-perturbativeresult is � 6% at � = 6:0, i:e: 8�pert:c = 1:185 versus the non-perturbative value of 1:256.This di�erence is a measure of the residual uncertainties in the renormalization of thecurrents.Lastly, the vertex for the local axial current gets a tadpole contribution only from(1� �1). This can be cancelled by combining it with the perturbative expansion for 8�c.Then A�����cont =r1� 3�14�cr1� 3�24�c (1� 0:31�V )A�����L: (3:15)Lepage and Mackenzie have given a mean-�eld prescription for determining the re-lation between lattice and continuum quantities [8]. The only di�erence in the �nal re-sults for local operators in the mean-�eld approach is to replace the prefactor 8�c byy We thank G. Martinelli for discussions on this point.7



1=U0 � 1=U1=4plaq where Uplaq is the trace of the plaquette. However, within the mean-�eld framework 8�cU0 = 1 and deviations from unity are a measure of uncertainty in thisapproach. To give the reader a feel for how consistent these approaches are we give thenumerical values at � = 6:0. They are 1=U0 = 1:140 and 8�cU0 = 1:1. The perturbativeresult for 1=U0 is 1 + 1:047�V = 1:165.To summarize the Lepage-Mackenzie prescription for removing the potentially largetadpole contributions in local fermionic operators at O(�s) the cook-book recipe is(a) For each quark of 
avor i in the operator use the normalization icont = p8�cr1� 3�i4�c  iL (3:16)between the lattice �eld and its continuum counterpart.(b) Calculate the �s corrections to the operator O, both on the lattice and in the contin-uum in say the MS scheme. In the result ZO replace �bare by �V where [8]�V (�a ) = �lath1=3TrUplaqi�1 + 0:513�V +O(�2V )�: (3:17)This replacement removes the large tadpole contributions to gluon lines that wouldotherwise show up at O(�2s) and make the series look badly behaved.(c) Determine the scale q at which �V is de�ned (one prescription for doing this is givenin Ref. [8]) and scale �V (�=a) to �V (q) using 2-loop running. With these three thingsin hand one has the �nal relation ZO between the lattice and continuum operatorto O(�s). In the rest of the paper we shall choose �V = g2R=4� as the renormalizedcoupling at scale q = 1:4�=a, where g2R = 1:7g2bare at � = 6:0.(d) To extend the analysis to non-local operators one has to include the O(ma) tree levelcorrections to the operator. These have to be combined with the renormalization ofthe �eld  at the stage of Eq.(3.8). This can change the relation between the latticeand continuum �eld  from that given in Eq. (3.16) as we have shown by the examplesof the two 1-link vector currents.The lesson from our analysis is that one cannot apply the mean-�eld prescription tocalculate the renormalization factors for extended currents by simply counting the numberof  �elds and links in the operator. Instead one has to work self-consistently to a givenorder in �s and include O(ma) and O(pa) terms present in the Taylor expansion of theoperator. 8



We shall present results using the improved normalizations given above and makecomparisons with the naive scheme (without the improvement incorporating tadpoles onfermion lines), i:e:  icont = p2�i  iL. In both cases, however, we will use the boosted g2 in�V to sum up the tadpole contribution to the gluon line. To allow the reader to evaluatethe di�erence between the two normalizations we give the normalization factor for bothschemes and their ratio in Table 1. As the numbers show, the di�erence due to the choiceof the normalization of the currents grows rapidly with the quark mass.Our perturbative analysis is only valid close to the chiral limit and takes into accountO(ma) e�ects only for on-shell quarks and for processes with no momentum transfer, i:e:it is not O(a) improved. These conditions are not realized in the semi-leptonic decaysof heavy quarks. Since the normalization factors have a large uncertainty especially atlarge quark mass, it is necessary to check the perturbative renormalization factors bynon-perturbative methods where possible. El Khadra et al. [9] have measured ZlocalV bycalculating the matrix element hJ= j V local4 jJ= i for heavy quarks (mqa � 1) and �ndthat Eq. (3.12) works incredibly well. This encouraging result needs to be veri�ed for avariety of di�erent matrix elements and we discuss this issue further in Section 5.3.2. Extension to Sheikholeslami-Wohlert ActionThe above analysis can be easily extended to improved actions. The case of the O(a)improved action proposed by Sheikholeslami and Wohlert [12] is particularly simple. Thisis because the tadpole contributions to the propagator with the SW action are the sameas those for the Wilson action. Secondly, the perturbative expansion for �c is unchanged.Thus the expression (3.10) is still valid except that the extra fermion-gluon vertex changesthe function f and consequently the precise form of 1 � �1. Similarly, the �nite parts ofthe 1-loop result for the vertex are also di�erent. These corrections have been calculatedin Ref. [13] and all one needs to do is extract the appropriate perturbative corrections to agiven operator from it. The rest of the renormalization factors are the same as for Wilsonfermions and are given by the steps (a,c,d) described above.The numerical data show that the improved normalizations work better for the SW ac-tion as a consequence of O(a) improvement. For example, at � = 6:0 the non-perturbativevalue for the chiral limit has been measured to be �c = 0:14556(6) [14]. Thus 8�c = 1:1645agrees very well with the perturbative result 1:185 and 8�cU0 = 1:02.9



4. Details of the lattice setup4.1. Lattice parametersOur statistical sample consists of 35 lattices of size 163 � 40 at � = 6:0. This sets oflattices have been used previously for spectrum and weak matrix element analysis usingboth Wilson and staggered fermions [15] [16] [17], and the details of the lattice generationare given in [15].In this study our main goal is to investigate di�erent numerical techniques in orderto improve the signal to noise ratio. For this purpose we use only one value of the heavyquark mass, � = 0:135, and only two values of the light quark mass, � = 0:154 and0:155. Our results for meson masses expressed in lattice units are given in Table 2. Usinga�1 = 1:9 GeV, these corresponds to a heavy meson of mass 1:54 and 1:59 GeV (aboutthe mass of the physical charm quark) and to light-light pseudoscalar masses of roughly690 MeV and 560 MeV. Our heavy-light pseudoscalar mesons therefore correspond mostclosely to the physical D meson, with a somewhat massive light constituent, while the light-light mesons are analogous to the physical K. We will henceforth adopt this nomenclature.4.2. Quark propagatorsThe calculation of quark propagators is done on lattices doubled in the time direction,i.e. 163 � 40 ! 163 � 80. We use periodic boundary conditions in all four directions.These propagators on doubled lattices are identical to a linear combination of propagatorscalculated with periodic (P ) and antiperiodic (A) boundary conditions on the original163 � 40 lattice. For the source on time slice 1, the forward moving solution (time slices2{40) is F = (P + A)=2 while the backward moving solution (time slices 80{42) is B =(P � A)=2.The details of our implementation of the \Wuppertal" smeared source method [18]are described in [16] and we have reused the light-quark propagators generated in earliercalculations. For a given light quark mass we have four types of quark propagator whichwe denote GlLS(x; 0), GhLS(x; 0), GlSS(x; 0) and GhSS(x; 0) for \light local-smeared", \heavylocal-smeared", \light smeared-smeared" and \heavy smeared-smeared". The \smeared-smeared" quark propagators are obtained by applying the Wuppertal smearing procedureat each sink time slice of the \local-smeared" propagators.For the calculation of 3-point functions we require a �fth type of quark propagator,namely a light-heavy propagator with the insertion of a zero 3-momentum smeared pseu-doscalar source at some �xed time t0. This propagator, which we denote Ghlt0 , is calculated10



by doing a heavy quark inversion using a zero-momentum solution of the light propagatoron a speci�ed time-slice as the source. In terms of quark propagators without insertionswe have the de�nition Ghlt0 (x; 0) =X~y GhLS(x; ~y; t0)
5GlSS(~y; t0; 0): (4:1)Note that we perform \Wuppertal" smearing twice at t0 in the construction of Ghl. Thisis needed to cancel the smearing factors when constructing ratios of 3-point to 2-pointcorrelators. We choose t0 = 32 in order to be far from the boundary at t = 40. Thuswrap-around e�ects in time direction are exponentially damped by at least 18 time slicesbecause we use propagators calculated on doubled lattices.Our method for extracting form-factors is similar to that used by the Rome-Southampton group [5] [6] [7] except that we have used smeared quark propagators whichimprove the signal and calculate the form-factors for three di�erent currents. In Sections6 and 7 we comment on the improvements over previous results and make a detailedcomparison.4.3. 2-point and 3-point correlatorsThe large time behavior of a 2-point correlator at a given 3-momentum isC12(~p; t) =X~x exp(�i~p � ~x)hO2(~x; t)O1(0)yi;� e�Eh(~p)t2Eh(~p) h0j O2 jh(~p)ihh(~p)j Oy1 j0i; t!1= pZ1(~p)Z2(~p)2pm212 + ~p 2 exp��tqm212 + ~p 2� : (4:2)where O1 and O2 are interpolating operators for the hadronic state, jhi of mass Mh(Eh(~p)2 = ~p 2 +M2), and Zi is the amplitude for creating and annihilating the state. Thesubscript i in Zi stands for both the 
avor of the quarks and the type of smearing for thesource and sink. We have collected data using both the local and smeared pseudoscalardensity and axial vector current P (x) = q1(x)
5q2(x);A�(x) = q1(x)
�
5q2(x); (4:3)11



to interpolate for pseudoscalar mesons. The three point function giving the matrix elementof current, J�, between hadronic states is de�ned to be:Cinst0 (~p; t) =X~x;~y exp(�i~p � ~x)hO2(~y; t0)J�(~x; t))O1(0)yi;� e�Eh1(~p)(t0�t)�Mh2t4Mh2Eh1(~p) h0j O2 ���h2(~0)EDh2(~0)���J� jh1(~p)ihh1(~p)j Oy1 j0i; (4:4)for 0� t� t0.In order to extract H� we construct the following two ratios of 3-point to 2-pointcorrelation functions. For the case O1 = O2 = P and J� = V local� in Eqs. (4.2) (4.4), andusing the LS heavy-light and light-light 2-point correlators, the ratio RLS(~p) is de�ned tobe RLS(~p) � C inst0 (~p; t)CllLS(~p; t)ChlLS(~0; t0 � t)� qZllLS(~p)ZhlLS(~0) hK(p)j s
�c ���D(~0)E; 0 < t < t0: (4:5)Similarly, using the SS heavy-light and light-light 2-point correlators givesRSS(~p) � C inst0 (~p; t)CllSS(~p; t)ChlSS(~0; t0 � t)� qZllSS(~p)ZhlSS(~0) hK(p)j s
�c ���D(~0)E; 0 < t < t0: (4:6)The meson decay amplitudes in Eqs. (4.5) and (4.6) are determined in separate �ts. Theresults of these �ts are combined at the time of jackknife analysis to extract H�. Thisprocedure is described in more detail in the next sub-section. Note that the two waysof calculating H� di�er only in the 2-point correlators used to cancel the exponentialdependence on t and subsequently on which meson decay amplitudes have to be removed.Thus the di�erence between the results is a measure of the uncertainty in the �ts. Weshow results for the two cases separately and for the average of the two as it reduces the
uctuations. The normalization of the currents is incorporated at the very end of theanalysis as it is a common overall factor.4.4. Fitting procedureTo extract amplitudes and masses from the large time behavior of 2- point correlatorswe assume that at large t only the lowest mass state dominates the correlation functions.To ensure this we �rst examine the e�ective mass plot for a plateau and then make a single12



mass �t selecting the range of the �t based on the following criteria: (a) tmin always liesin the plateau, (b) tmax is selected to be as large as possible consistent with a signal.In most cases we �nd that the central value obtained from the �ts is the same withand without using the full covariance matrix. In some cases we cannot use the full rangeof the plateau because the covariance matrix is close to being singular. In such cases theproblem is not that we cannot invert the covariance matrix but that the result is verysensitive to the range of the �t (the central value can change by one or more standarddeviations on the addition of a single point to the �t range) and/or some of the jackknifesamples give grossly di�erent results. Our tests using subsets of the data and by examiningthe covariance matrix show that this instability is a result of inadequate statistics. Someof the causes for this bad behavior are discussed in Ref. [19]. To overcome this problem wereduce the range of the �t until we get a stable result and compare it with that obtainedwithout the full covariance matrix to check for consistency.All error estimates are obtained using a single-elimination jackknife procedure. Pre-vious analysis [20] leads us to believe that the lattices used are su�ciently decorrelated forthis method to be adequate.In order to extract the matrix elementH� we make two separate �ts for each jackknifesample to (1) the ratios of correlators de�ned in Eqs. (4.5) and (4.6) assuming that theresult is constant over times slices on which the lowest state saturates the 2-point corre-lation functions; (2) the 2-point correlators needed to extract the extra decay amplitudesthat have to be removed from RLS and RSS. The results of the �ts are combined for eachjackknife sample and the �nal value and error on it is calculated by the jackknife method.This process is explained in more detail in Sections 5 and 6.5. Meson decay constants5.1. Pseudoscalar mesonsThe de�nition of the pseudo-scalar decay constant on the lattice is [21]f� = Z2 ZAh0jAlocal4 j�(~p)iE�(~p) ; (5:1)where Z2 ZA is the axial current renormalization, and f� = 132 MeV in our convention.The details of the four di�erent methods we use to extract the decay amplitude are given13



in Ref. [16], so we only present the results here. All four methods give consistent estimatesof f� and we quote their mean in Table 3 for three di�erent choices of Z2 ZA.Since we combine results from di�erent correlators in order to extract f� we select the�t range based on the following criteria: (1) goodness of the �t, (2) presence of a plateauwith a similar mass estimate from each of the individual correlators. To monitor for thepossibility that the covariance matrix is not well determined we make �ts with and withoutthe full covariance matrix. In cases where the results with the covarience matrix deviatefrom the data we decrease the range of the �t to see if the results stabilize, otherwisewe quote the central value from the uncorrelated �ts and give the larger of the two errorestimates.Results for f� at ~p = (0; 0; 2�=16) are also given in Table 3 and are consistent with~p = 0 data. The quality of the signal is good enough to extract reliable numbers eventhough the plateaus in the e�ective mass are much shorter than those for the ~p = (0; 0; 0)case. At higher momenta the errors get much larger and the determination of f� is notreliable.Some of the data in Table 3 have been published previously in Ref. [16]. The oldnumbers may di�er from those given in Table 3 under label C because we reanalyzedall the data and the subjective choice of the range of the �ts may be di�erent. Thusthe di�erence between the two results should be treated as a measure of the associatedsystematic error.5.2. Vector mesonsThe vector decay constant is de�ned in terms of the matrix element of the local vectorcurrent Vi between the rho and vacuum statesh0jV loc:i j�i = �iM2VZ2 ZV fV : (5:2)In our calculation V locali is used to both create and annihilate the vector meson. The twomethods used to extract f�1V are described in Ref. [16] and we quote the mean value ofthe two values in Table 3 using three di�erent choices for Z2 ZV .14



5.3. AnalysisThe data in Table 3 show that estimates for the decay constant have a very large de-pendence on the normalization of the currents. Results for f�1� with the Lepage-Mackenziescheme deviate by a large amount from experimental values as shown in Fig. 2 (case A inTable 3). Choosing a di�erent value for the q2 at which �V is to be evaluated changes thenumbers by �< 5%, which is insigni�cant compared to the di�erence at the heavier masses.The results using the non-perturbative value of ZV are in much better agreement (case Cin Table 3 and Fig. 2). The non-perturbative values of ZV , given in Table 4, are calculatedusing the ratios of 2-point correlators for rho mesons, for example Zloc:V is de�ned asZloc:V = hVi(t = 0)V cons:i (~p = 0; t)ihVi(t = 0)V loc:i (~p = 0; t)i ; (5:3)with Z = p2�i for V cons:i . The data for Zext:V is obtained using a similar ratio with V loc:ireplaced by V ext:i . Note that in the calculation of f�1� using the above non-perturbativevalue of ZV , the factors of Z in V loc:i cancel, so one cannot test a particular normalizationscheme by this procedure.In the case of the zero momentum correlator the vector current does not insert anymomenta at the sink time-slice, so there should be no O(a) corrections to the conservedcurrent. This is why Eq. (5.3) is considered a good way to de�ne ZV . The data in Table 4has been obtained using Z = p2�i for V loc:i and V ext:i to allow comparison with previouspublished work. We �nd that Zloc:V and Zext:V show very little dependence on the quarkmass. Furthermore, the results are essentially unchanged when ZV is calculated fromcorrelators at non-zero momentum. To convert to a di�erent normalization, say Lepage-Mackenzie, requires multiplying the numbers in Table 4 by the ratio of the respective Z factors, in which case ZV develop a dependence on the mass.The same problem arises in the calculation of form-factors. The perturbative andnon-perturbative normalizations give signi�cantly di�erent results and it is the improvedperturbative normalization that seems to give consistent results for semi-leptonic formfactors as we will discuss below. This dependence of the normalization on the nature ofthe initial and �nal state in the matrix element has been exposed and investigated by theRome-Southhampton group [22]. In a recent study of semi-leptonic form factors they [23]have argued that this mismatch is a symptom of O(a) e�ects and have presented datashowing that the di�erences decrease on using the Sheikholeslami-Wohlert O(a) improvedaction. Clearly this issue needs further study in view of the fact that the di�erences areso large. 15



6. Semileptonic form factors for D0 ! K�e+�To orient the reader we �rst summarize the ways in which our method is technicallydi�erent from those used in previous calculations.1. We use smeared quark propagators to improve the signal while the previous calcula-tions used point sources.2. In our approach the interpolating operator for the �nal state meson sits at the sourcepoint (t = 0) of the original smeared light propagators. The source for the initial Dmeson is at t = 31 and obtained by making a smeared pseudoscalar insertion in thelight-to-heavy propagator Gins. By using quark propagators calculated on doubledlattices we essentially eliminate wrap-around e�ects. With the two interpolating op-erators at a �xed separation, we can carry out the �nal contraction for the matrixelement by placing the weak current at all intermediate times 0 < t < 31. At eachtime slice t we average the matrix element over all spatial points in a state of de�nitemomentum transfer. One advantage of this method is that non-local lattice currentscan be used to calculate the matrix elements. This approach is same as that used bythe Rome-Southhampton group [5] but di�erent from that used by Bernard et al. [3].3. We calculate the matrix elements for three di�erent transcriptions of the lattice currenton the same set of lattices. Bernard et al. have only used V local while the Rome-Southhampton collaboration used only V cons:.Our calculation should be regarded more an exploration of methods rather than pro-viding hard numbers that can be compared to experimental data because of the number ofapproximations made. We �nd that the data is of much better quality for the case wherethe �nal meson is annihilated by the pseudoscalar density  
5 as compared to the axialcurrent  
4
5 . For this reason we only present results for the pseudoscalar case.In �gs. 3-5 we show data for the ratiosRLS andRSS for the three lattice transcriptionsof the vector current. We have multiplied the RSS data by 105 and RLS by �1 to put themon the same plot. The plots show that the signal is very similar with all three currents.When making �ts to the data we �nd that RSS has a better plateau and �ts can be madeusing the full covariance matrix. The same is not true of RLS and these results have beenobtained without including the correlations.To extract a composite quantity like the form-factor we have combined results fromseparate �ts for each jackknife sample as our data sample is too small to make a simul-taneous �t to all the necessary correlators. For example, to calculate f+ we �rst make16



separate �ts to the ratio RSS for V4 and Vi and to the 2-point correlators CllSS and ChlSSneeded for the decay amplitudes occuring in Eqs. (4.6). A second estimate is similarlyobtained by using Eq. (4.5). The di�erence between the two is a measure of the statisticaluncertainty in the data. A third estimate is constructed by averaging the RLS and RSSresults for each jackknife sample.The results for all three estimates are given in Tables 5-7 using the normalizationsde�ned in Eqs. (3.12), (3.14) and (3.13). There is a � 20% di�erence between the resultsobtained from RSS and RLS for the case of momentum transfer ~p = (�=8; 0; 0). Thisis a manifestation of the fact that the signal in non-zero momentum correlators falls veryrapidly with ~p and this presents the largest source of error in the calculation of form-factors.We regard the third estimate (average of LS and SS) as our best estimate, however, thereader should be aware that there is no deep reason for this.We �nd that all three lattice transcriptions of the vector current give consistent results.The results with V ext are about 10% higher. This di�erence is of the same magnitude asthat between the perturbative and non-perturbative value for 8�c and would be removed ifwe use the perturbative value for it in Eq. (3.14). It is this consistency which suggests thatit is the improved normalizations for the currents that work well for the 3-point matrixelements.The results for matrix elements in the forward direction are, within errors, 1:0 for allthree currents. For non-zero momentum transfer our result for f+ is consistent with thephenomenological estimate f+ � 0:75, however, we have used too few values of quark massand momentum transfer to determine whether pole-dominance is an accurate descriptionof the variation of f+ with respect to Q2. We also �nd that f+ � f0 while the errors inf� are too large to make useful deductions.If we express results using the normalization that seems to work for f�, i:e: the im-proved Z with the non-perturbative value for ZV , then the results are no longer asconsistent. For example the results for f+ in Table 7 for �l = 0:154 get changed to 0:37(7),0:42(11) and 0:60(9) for V loc:� , V ext:� and V cons:� respectively. The di�erence in results withthe two schemes is substantial and indicates that the O(a) e�ects with Wilson fermionsare large and that the improved perturbative normalizations may not be very reliable forall matrix elements at � = 6:0. 17



7. Comparison with previous resultsThere are two previous calculations against which we can make direct comparisonsas these use almost the same lattice parameters. The group of Bernard et al. [3] havemeasured the form-factors on 243�40 lattices at the same values of � and �. They used onlythe local vector current, and adopted yet a di�erent normalization. Converting their resultto our \improved" normalization gives f0(~p = 0) = 0:85(10) at � = 0:154 to be comparedwith our value of 0:91(9). Similarly the Rome-Southampton group [6] [7] have measuredthe form-factors on 20 � 102 � 40 lattices at the same value of � and similar �. They usethe \conserved" vector current with the same normalization for the vector current that weuse. Interpolating their results to � = 0:154 and noting that their momentum (~q = 2�=10)(and hence Q2) is slightly di�erent we get f+ = 0:67(5) and f0 = 0:65(4), to be comparedwith our results 0:60(9) and 0:62(10) respectively at (~q = 2�=8).Thus we �nd that all three calculations give consistent results. The central remainingissue is to understand how to reduce the large uncertainty in the normalization of thecurrents.8. ConclusionsWe have given explicit details of how to self-consistently derive renormalization factorsfor fermionic operators to O(�s). Our analysis reproduces the Lepage-Mackenzie mean-�eld results for local operators. We also show how to extend the analysis to non-localoperators and to the Sheikholeslami-Wohlert improved action.The results for decay constants and form-factors show large di�erences depending onthe choice of normalization used for the currents. No one scheme seems to give reliableresults for all the di�erent matrix elements. These di�erences grow rapidly with the quarkmass. Further work, possibly at weaker coupling and/or using O(a) improved actions, isrequired to resolve this issue.We �nd an acceptable signal in the 3-point correlators needed to calculate semi-leptonic form-factors using quark propagators with smeared sources. We show that di�er-ences in previous results is a consequence of di�erent renormalization constants used forthe vector current. Using the improved normalizations, we �nd that all three transcriptionsof the vector current give consistent results. The biggest limitation in the calculation ofform-factors is the rapidly decreasing signal in the non-zero correlators. Based on present18



data we believe that major improvements in results for the form-factors are possible by ahigh statistics study on larger lattices, say 323 � 64.AcknowledgementsWe acknowledge the tremendous support received in the form of a DOE Grand Chal-lenge award at NERSC at Livermore. A signi�cant fraction of the calculation was done atthe Pittsburgh Supercomputer Center and we are grateful to R. Roskies for his support.We thank G. Martinelli, S. Sharpe and A. Ukawa for useful discussions.
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�1 = 0:155�2 = 0:155 �1 = 0:154�2 = 0:154 �1 = 0:155�2 = 0:135 �1 = 0:154�2 = 0:135 �1 = 0:135�2 = 0:135V loc(imp:) 0:231 0:235 0:270 0:272 0:316V loc(naive) 0:218 0:217 0:204 0:203 0:190Ratio 1:058 1:084 1:326 1:342 1:661V ext(imp:) 0:280 0:286 0:328 0:331 0:384V ext(naive) 0:266 0:265 0:249 0:248 0:232Ratio 1:052 1:079 1:319 1:335 1:653V cons(imp:) 0:310 0:308 0:289 0:288 0:270V cons(naive) 0:310 0:308 0:289 0:288 0:270Ratio 1:000 1:000 1:000 1:000 1:000Aloc(imp:) 0:249 0:253 0:291 0:294 0:340Aloc(naive) 0:240 0:238 0:224 0:223 0:209Ratio 1:039 1:065 1:302 1:318 1:631Table 1: The normalization constants for the three lattice transcriptions of the vectorcurrent and for the axial current used in this study for the 5 di�erent combinations ofquark masses. We give the improved and \naive" normalizations along with the ratio ofthe two for ease of comparison.
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�1 = 0:155�2 = 0:155 �1 = 0:154�2 = 0:154 �1 = 0:155�2 = 0:135 �1 = 0:154�2 = 0:135 �1 = 0:135�2 = 0:135�SS(0; 0; 0) 0:299(9) 0:362(6) 0:813(5) 0:833(5) 1:216(4)�LS(0; 0; 0) 0:300(8) 0:365(7) 0:812(4) 0:833(4) 1:217(3)�SS2 (0; 0; 0) 0:297(16) 0:369(10) 0:815(8) 0:836(7) 1:217(4)�LS2 (0; 0; 0) 0:303(13) 0:370(7) 0:812(6) 0:832(6) 1:216(4)�SS(1; 0; 0) 0:5(1) 0:49(3) 0:89(1) 0:91(1) 1:265(7)�LS(1; 0; 0) 0:5(1) 0:51(3) 0:89(1) 0:91(1) 1:267(4)�SS2 (1; 0; 0) 0:5(1) 0:52(3) 0:90(1) 0:92(1) 1:268(7)�LS2 (1; 0; 0) 0:5(1) 0:51(3) 0:90(1) 0:92(1) 1:267(5)�SS(0; 0; 0) 0:407(16) 0:459(14) 0:842(8) 0:862(7) 1:229(4)�LS(0; 0; 0) 0:411(10) 0:460(8) 0:840(6) 0:862(6) 1:230(3)�SS(1; 0; 0) 0:6(1) 0:60(3) 0:93(2) 0:94(2) 1:278(8)�LS(1; 0; 0) 0:6(1) 0:62(2) 0:93(2) 0:94(1) 1:280(5)aSS0 (0; 0; 0) 0:7(1) 0:7(1) 1:08(5) 1:07(4) 1:42(3)aLS0 (0; 0; 0) 0:7(1) 0:7(1) 1:11(4) 1:10(3) 1:44(2)aSS0 (1; 0; 0) 0:7(1) 0:8(1) 1:2(1) 1:1(1) 1:47(3)aLS0 (1; 0; 0) 0:8(1) 0:8(1) 1:2(1) 1:2(1) 1:49(3)Table 2: Meson energies extracted from 2-point correlators. LS and SS denote local-smeared and smeared-smeared corrletors respectively. Two types of correlator were usedfor the to extract the pseudoscalar mass: (a) hPP i denoted �; and (b) hA4A4i denoted�2. The energy is given for the particle at rest (the mass) and for the case of one unit ofmomentum. Quoted errors are statistical.
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�1 = 0:155�2 = 0:155 �1 = 0:154�2 = 0:154 �1 = 0:155�2 = 0:135 �1 = 0:154�2 = 0:135 �1 = 0:135�2 = 0:135(A) f�(0; 0; 0) 0:076(5) 0:089(5) 0:125(4) 0:131(4) 0:206(4)(A) f�(1; 0; 0) 0:084(6) 0:090(5) 0:126(5) 0:133(5) 0:209(6)(A) f�1� (0; 0; 0) 0:34(2) 0:327(17) 0:195(6) 0:200(6) 0:201(4)(B) f�(0; 0; 0) 0:073(7) 0:084(6) 0:098(4) 0:101(3) 0:126(4)(B) f�(1; 0; 0) 0:080(7) 0:085(5) 0:098(5) 0:101(4) 0:129(5)(B) f�1� (0; 0; 0) 0:33(2) 0:31(1) 0:148(5) 0:150(5) 0:121(4)(C) f�(0; 0; 0) 0:082(7) 0:093(6) 0:107(4) 0:111(3) 0:141(5)(C) f�(1; 0; 0) 0:090(7) 0:094(5) 0:108(5) 0:112(4) 0:143(5)(C) f�1� (0; 0; 0) 0:27(2) 0:25(1) 0:119(4) 0:121(4) 0:098(4)Table 3: The meson decay constants fP and fV extracted from LS and SS 2-point corre-lators. Quoted errors are statistical. The three cases di�er in the normalization used forthe currents. Case A uses the improved normalizations de�ned in this paper; case B uses icont = p2�i  iL and perturbative values of ZA and ZV with boosted g2; case C uses icont = p2�i  iL, ZA = 0:86 and the non-perturbative estimate ZV = 0:57.
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�1 = 0:155�2 = 0:155 �1 = 0:154�2 = 0:154 �1 = 0:155�2 = 0:135 �1 = 0:154�2 = 0:135 �1 = 0:135�2 = 0:135Z loc:V (~p = 0) 0:572(5) 0:571(3) 0:565(2) 0:565(3) 0:551(2)Z loc:V (~p =k) 0:55(2) 0:57(1) 0:544(8) 0:545(7) 0:536(5)Z loc:V (~p =?) 0:58(2) 0:56(1) 0:562(6) 0:563(5) 0:548(3)Zext:V (~p = 0) 0:685(5) 0:686(3) 0:695(2) 0:696(3) 0:706(2)Zext:V (~p =k) 0:68(2) 0:68(1) 0:692(5) 0:693(4) 0:705(3)Zext:V (~p =?) 0:69(2) 0:70(2) 0:690(7) 0:693(6) 0:704(3)Table 4: The renormalization constants Z loc:V and Zext:V extracted from ratios of LS 2-point correlators for the � meson. These numbers have been obtained using Z = p2�normalization for all three vector currents. We give the results for zero momentum, andfor one unit of momentum both parallel and perpendicular to the index of the current.Quoted errors are statistical.
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� = 0:154Current f+(Q2 = �0:043) f�(Q2 = �0:043) f0(Q2 = �0:043) f0(Q2 = 0:222)V Local� 0:56(13) �0:33(23) 0:58(14) 0:91(12)V Ext:� 0:60(12) �0:34(24) 0:62(14) 0:98(11)V Cons:� 0:55(11) �0:20(16) 0:56(11) 0:88(13)� = 0:155Current f+(Q2 = �0:021) f�(Q2 = �0:021) f0(Q2 = �0:021) f0(Q2 = 0:268)V Local� 0:59(19) �0:54(30) 0:61(20) 0:91(9)V Ext:� 0:60(23) �0:43(31) 0:61(24) 1:00(10)V Cons:� 0:55(20) �0:22(25) 0:56(21) 0:87(9)Table 5: Form factors for the semi-leptonic decay D ! K�e+� using the ratio de�nedin Eq. (4.6). The results for f+, f� and f0 in columns 2-4 are for momentum transfer~q = (�=8; 0; 0) while column 5 gives f0 at ~q = 0. Quoted errors are statistical.
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� = 0:154Current f+(Q2 = �0:043) f�(Q2 = �0:043) f0(Q2 = �0:043) f0(Q2 = 0:222)V Local� 0:67(12) �0:56(31) 0:73(15) 0:91(10)V Ext:� 0:76(18) �0:47(30) 0:81(18) 1:02(15)V Cons:� 0:65(10) �0:25(20) 0:68(11) 0:89(9)� = 0:155Current f+(Q2 = �0:021) f�(Q2 = �0:021) f0(Q2 = �0:021) f0(Q2 = 0:268)V Local� 0:71(23) �0:76(42) 0:78(24) 1:01(13)V Ext:� 0:73(25) �0:61(41) 0:78(25) 1:10(14)V Cons:� 0:67(22) �0:33(33) 0:70(21) 0:98(12)Table 6: Form factors for the semi-leptonic decay D ! K�e+� using the ratio de�ned inEq. (4.5). The rest is as in Table 5.
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� = 0:154Current f+(Q2 = �0:043) f�(Q2 = �0:043) f0(Q2 = �0:043) f0(Q2 = 0:222)V Local� 0:61(11) �0:45(25) 0:66(13) 0:91(9)V Ext:� 0:68(13) �0:41(24) 0:72(14) 1:00(12)V Cons:� 0:60(9) �0:23(17) 0:62(10) 0:88(9)� = 0:155Current f+(Q2 = �0:021) f�(Q2 = �0:021) f0(Q2 = �0:021) f0(Q2 = 0:268)V Local� 0:65(20) �0:65(36) 0:69(21) 0:96(10)V Ext:� 0:66(24) �0:52(36) 0:70(24) 1:05(11)V Cons:� 0:61(21) �0:28(29) 0:63(20) 0:93(10)Table 7: Form factors for the semi-leptonic decay D ! K�e+� using the average of LSand SS data. The rest is as in Table 5.
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A B CFig. 1: The tadpole contributions to (a) fermion line, (b) gluon line, and (c) operator.
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Fig. 2: The vector decay constant f�1� as a function of m2�=m2�. The experimental numbersare labeled by the symbol . The data given as case A (C) in Table 3 are marked by thesymbol � (�). 29



Fig. 3: The data and �t to RLS and RSS versus the seperation from the kaon's annihilationtime-slice using the local vector current for (a) V4(~p = (0; 0; 0), (b) Vi(~p = (�=8; 0; 0)), and(c) V4(~p = (�=8; 0; 0). 30



Fig. 3: The data and �t to RLS and RSS versus the seperation from the kaon's annihilationtime-slice using the local vector current for (a) V4(~p = (0; 0; 0), (b) Vi(~p = (�=8; 0; 0)), and(c) V4(~p = (�=8; 0; 0). 31



Fig. 3: The data and �t to RLS and RSS versus the seperation from the kaon's annihilationtime-slice using the local vector current for (a) V4(~p = (0; 0; 0), (b) Vi(~p = (�=8; 0; 0)), and(c) V4(~p = (�=8; 0; 0). 32



Fig. 4: The data and �t to RLS and RSS versus the seperation from the kaon's annihilationtime-slice using the extended vector current for (a) V4(~p = (0; 0; 0), (b) Vi(~p = (�=8; 0; 0)),and (c) V4(~p = (�=8; 0; 0). 33



Fig. 4: The data and �t to RLS and RSS versus the seperation from the kaon's annihilationtime-slice using the extended vector current for (a) V4(~p = (0; 0; 0), (b) Vi(~p = (�=8; 0; 0)),and (c) V4(~p = (�=8; 0; 0). 34



Fig. 4: The data and �t to RLS and RSS versus the seperation from the kaon's annihilationtime-slice using the extended vector current for (a) V4(~p = (0; 0; 0), (b) Vi(~p = (�=8; 0; 0)),and (c) V4(~p = (�=8; 0; 0). 35



Fig. 5: The data and �t to RLS and RSS versus the seperation from the kaon's annihilationtime-slice using the conserved vector current for (a) V4(~p = (0; 0; 0), (b) Vi(~p = (�=8; 0; 0)),and (c) V4(~p = (�=8; 0; 0). 36



Fig. 5: The data and �t to RLS and RSS versus the seperation from the kaon's annihilationtime-slice using the conserved vector current for (a) V4(~p = (0; 0; 0), (b) Vi(~p = (�=8; 0; 0)),and (c) V4(~p = (�=8; 0; 0). 37



Fig. 5: The data and �t to RLS and RSS versus the seperation from the kaon's annihilationtime-slice using the conserved vector current for (a) V4(~p = (0; 0; 0), (b) Vi(~p = (�=8; 0; 0)),and (c) V4(~p = (�=8; 0; 0). 38


