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The Schwinger-Dyson equations for the propagators of the Chern-Simons- Witten model are analysed using Ward identities 

implied by the recently discovered N = 1 supersymmetry of the gauge-fixed action. An integral constraint on the wave-function 

renormalization constant is derived and shown to imply the vanishing of all radiative corrections to the ghost and gauge 

propagators in the Landau gauge. 

1. Introduction 

The finiteness of the Chern-Simons-Witten (CSW) [l] model is an essential ingredient in its relation to the 
invariants of knots and links, and to conformal field theory. The calculation of ref. [2] indicates not only that 
the model is finite up to two loops in perturbation theory but also that all radiative corrections to two- and 

three-point functions vanish to this order. Recently Birmingham et al. [3,4] have discovered an additional 
(super)symmetry of the Landau gauge Chern-Simons action which can be used to constrain the Lorentz tensor 

structure of the gauge-field propagator, and it has been speculated [4,5] that the finiteness properties of the 
model have their origin in this new invariance. In this letter we will show that the Ward identities of this 
symmetry actually force the kernels of the Schwinger-Dyson equations for the gauge and ghost propagators to 
vanish, implying that the exact, non-perturbative, two-point functions are simply the bare ones. 

This approach assumes that the supersymmetry is unbroken at the quantum level but in fact recent work [6] 
has shown that if the theory is regulated in a fully gauge invariant way then anomalous finite contributions 
occur at one loop which are equivalent to the finite shift in the coupling constant originally observed in ref. 

[l]. However, it is shown in an accompanying letter [7] that although a gauge invariant regularization scheme 
breaks the symmetry, Ward identities for the broken symmetry still hold and in fact reproduce the shift in the 

coupling found in ref. [6]. Hence the aim of the present analysis is simply to demonstrate that in the absence 
of corrections to the Ward identities there are no radiative corrections to the gauge or ghost propagators. 

2. The Chern-Simons action and its symmetries 

The Chern-Simons action in three-dimensional euclidean space is given by 

SC, = $ d3x l ‘(fA; &,A; + (1/3!)j@‘A;Ab,A;), 

where fabc are the structure constants of a semi-simple Lie algebra and k is a positive integer. As in four- 
dimensional Yang-Mills theory, path-integral quantization requires integration over gauge-inequivalent 

82 0370-2693/90/$ 03.50 @ 1990 - Elsevier Science Publishers B.V. (North-Holland) 



Volume 246, number 1, 2 PHYSICS LETTERS B 23 August 1990 

configurations only, necessitating the introduction of gauge-fixing and ghost terms by the usual Fadeev-Popov 
construction, 

SGv=4-~fd3xa~o~'Ba , SFp=Id3x(O~,~'~)(D~e)a , (2,3) 

where (D~,c) a =O~,c --rabc--b c ~-j A~,c and B is a Lagrange multiplier field enforcing the Landau gauge condition [2]. 
In addition to the usual BRS symmetry, the full gauge-fixed action, S =Scs+  SOF+ SFp, has a further global 

invariance [3,4] under the following transformations: 

~A~,=e~,~v3Vc ~, 3ca=0,  B~a=4-~e~A ~, BB°=~(Dac)  a, (4) 

where e ~ is a constant, anticommuting vector parameter (hence this is referred to as an N = 1 supersymmetry). 
Following ref. [4], the invariance of the path-integral under these transformations leads to Ward identities 
relating the Greens functions of the theory. In terms of the effective action F, 

d2x emav 8A. 8~ "~ 8B ~ ~-,a 3 C +~--~A~ 4 -  =0, (5) 

where S~ is a source for the non-linear variation of the multiplier field B. Functionally differentiating this 
identity with respect to A" and c and setting the fields equal to zero gives a relation between the two-point 
gauge and ghost functions 

82F[0] k e'~ , O~ 82F[03 

8A~(x)SAb~(y) - 4~ O] 8e,,(X)~eb(y ), (6) 

where the transversality of the Landau gauge propagator has been imposed. In fact it can be shown that this 
Ward identity holds for the transverse part of the gauge propagator in arbitrary covariant gauge. 

When gauge invariant regulator terms, such as Pauli-Villars fields and higher derivative interactions [6], are 
added to the action they break the supersymmetry and lead to corrections to this Ward identity. However it 
can be shown [7] that the effect of these corrections is to reproduce the shift in the coupling k ~ k + c~, where 
c~ is the quadratic Casimir in the adjoint representation of the gauge group, previously observed in refs. [1,6]• 
In what follows we neglect this effect• 

One additional differentiation of (5) with respect to A p prior to setting the fields equal to zero yields a 
relationship between the three-point functions of the theory. In momentum space, using the equation of motion 
for the B field, this Ward identity is 

k 
• 31 p . v p  _ _  p v v p v " v e~,(~k )F~b~ (k, p, q) - ~ [SaFb~(p, q, k) + 8~F~ba(q, p, k) -iK~bco(p, q, k)p -1Ka~b~(q , p, k)qP], (7) 

where F "~p is the 1PI three-point gauge function and F ~ is the irreducible (A ~, ~, c)-vertex. The auxiliary 
function K~ is given by 

f 83F[0] K~3ob~(p, q, k) = d3x d3y d32 exp[- i (p  • x + q" y + k. z)] BS;3,,(x)~Ab(y)Sc~(z ). (8) 

3. The Schwinger-Dyson equations 

The Schwinger-Dyson equations are an infinite hierarchy of integral equations between the Greens functions 
of a quantum field theory which usually require drastic approximations before any solutions can be obtained. 
Remarkably, in the CSW model the Ward identities of supersymmetry are sufficiently restrictive to decouple 
the equations for the two-point gauge and ghost functions from the others and allow an exact treatment. The 
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Schwinger-Dyson equations are derived from the path integral in the usual way by considering the integral of 
a functional derivative of the action with respect to the fields (see, for example, ref. [8]). The form of the full 
gauge fixed action (1)-(3) ensures that these equations are similar diagrammatically to their counter-parts in 
QCD, with the obvious omission of terms coming from the extra vertices of the QCD lagrangian (four-gluon, 
e tc . , . . .  ). The equation for the ghost propagator, Sob(p) = S(p)Sab, is (see fig. 1) 

f d3 k SS~(p) = S~o~)(p)Sab--ip'~f acd ~ S(k)A,~(q)F~bcd(q, k, -p) .  (9) 

where q = p - k  and A ~'~ is the full gauge propagator. Eq. (9) is an exact relation between unrenormalized 
Greens functions which are potentially divergent and must be made finite. The theory will be regulated by 
introducing some cut-off, A, in all loop integrals. This procedure is not gauge-invariant and it is tacitly assumed 
that gauge invariance is recovered when the cut-off is removed at the end of the calculation, i.e. that there is 
no gauge anomaly. The nature of the Schwinger-Dyson equations makes the implementation of gauge-invariant 
regularization schemes extremely difficult. 

The euclidean space Feynman rules derived from the action (1)-(3) give the bare ghost and gauge propagators 
8ab 

--~ . . . .  8 - - ~ -  e ~  p2 (10, 11) S~ob)(P) =--~T, A(O)ab(n~ = ab 4rr (--ip) a 

If  the exact ghost propagator is written in terms of the bare one as S(p) = H(pE)S(o)(p) where H is an unknown 
wave-function renormalization function, the Ward identity (6) constrains the exact gauge propagator; 

ab = ~ H ( p 2 ) E ~  p2 (12) A (p) 8 ab (- iP)a 

The main result of this calculation will be to demonstrate that H ( p  2) is identically equal to one. In order to 
simplify the Schwinger-Dyson equation for the ghost propagator it is necessary to expand the gauge-ghost-ghost 
vertex as a three-vector in terms of the obvious basis; 

F~bc(p, k) = i[Aab~(p, k)p ~ + B,,b~(p, k)k ~" + C,~b~(p, k)e~'"~p~k~], (13) 

where p and k are incoming momenta on the anti-ghost and ghost legs respectively. The Feynman rule for the 
bare vertex, F ~ corresponds to A =- f fb~  and B = C = 0 and it has been shown [2] that this receives no 
perturbative corrections up to two loops. However, higher order or even non-perturbative contributions cannot 
be ruled out. 

Substituting the expressions (12), (13) for A and F ~ in eq. (9) leads to considerable simplification. The 
antisymmetry of the e "~* tensor causes the terms involving the functions A(p, k) and B(p, k) to vanish. The 
structure constants facd in (9) project out the part of the vertex which is totally antisymmetric in group indices. 
Writing COb~(p, k) as fabcC(p, k) + symmetric parts, and using the identity facdfbcd = CvSab gives a relation 
between the functions H ( p  2) and C(p, k) 

1 47rc~i[ dak H(k2)H(q 2) 
H(p2 ) - 1 - ~  - (2~r)3 p2k2q2 C(k, -p ) [p2kE- (p .  k)2]. (14) 

The other Schwinger-Dyson equation to be considered here is the equation for the gauge propagator in terms 
of the other two- and three-point functions (see fig. 2). 

ZI a ~ f f ( p )  - 1  = A ~o~b(p)-' - [Ze~(p) + At~(p) ]  (15) 

Fig. 1. The Schwinger-Dyson equation for the ghost propagator. 
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-1 ~ .r~ 1 = /X./X/VVX./X,~ 

/ z ~ O ~ x  ~ 

X x x o  ,,t 

Fig. 2. The Schwinger-Dyson equation for the gauge propagator. 

where ~ "  and .,¢/"~ are the kernels coming from gauge field self-interaction and gauge-ghost interactions 
respectively. 

Sf,~(p) = facaE~'~"(½) ~ A~,(k)Ao,(q)Fcdb(k, q,--p), (16) 

I d3k • ,, ado v 
~ t ~ ( p ) =  (--1) ~ O q  f )S(k)S(q)Fbcd(-p, k, q). (17) 

Substituting for A"" from (12) in (15) and inverting the antisymmetric tensor gives 

8 ab = 8~ b 21ri ~2 
H(p2 ) - --~-- ~,~p __ [37~(p) +.,¢/~(p)]. (18) 

The first term on the RHS of (18) involves the contraction P ~" E,,,,pp F~db (k, q, -p) which can be expressed in terms 
of ghost functions using the Ward identity (7). Substituting everywhere for A ~'~ and F ~ using (12), (13) and 
performing the tensor algebra, making repeated use of the identity ~ ~,,sv = 8~88~v_ 8~v8~8, it is found that 
all terms involving the unknown tensor K~ (coming from the RHS of (7)) cancel amongst each other and, as 
in the ghost equation, all terms involving the functions A(p, k) and B(p, k) vanish. Similarly the group tensor 
structure projects out the vertex part proportional to f~b, giving another integral equation relating the functions 
H(p 2) and C(p, k). 

1 4kv i  f d3k n(k2)n(q 2) 
H(p2 ) = 1 - - - . . ,  (27r)3 p2k2q2 [C(k, -p ) -½C(k ,  q ) ] [p2k2- (p ,  k)2]. (19) 

Comparison with (14) reveals 

f d3k H(k2)H(q 2) 
(2~r)3 p2k2q: C(k, q)[p2k2-(p, k) 2] =0. (20) 

Multiplying (14) by H ( p  2) and integrating with respect to p gives 

d3p[H(P:)-I]=4 ~---!i d~P (2~r? p2k2q2 C(k,-p)[p2k2-(p. k)2]. (21) 

However, performing the same operation to (20) gives 

f f d3k H(p2)H(k2)H(q 2) 
dap (2¢r)3 p2kEq2 C(k, q)[pEkE-(p, k) ~] =0. (22) 

This integral is well defined when the cut-off is removed and so an interchange in the order of integration and 
a linear shift in integration variables are allowed. In particular the change of variables p -~ k - p  shows that this 
integral is equal to the one on the RHS of (21). Thus, allowing A to become infinite in (21) and performing 
the trivial angular integration on the LHS, gives 

p dp2[ H(p 2) - 1] = 0. (23) 

0 
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The above relat ion is an integral constraint  on the cont inuum wave-function renormalizat ion,  in par t icular  
it rules out  any momentum- independen t  divergences in H(p 2, A 2) as A ~ oo. Thus no renormal izat ion of  the 
bare coupl ing k is required at the level of  two-point  functions. This is consistent with the expectat ion that  k 
should be held equal to a fixed positive integer as A ~ oo in order  to preserve gauge invariance [1]. The vanishing 
of  the beta function has also been demonst ra ted  by Blasi and Coll ina [9] as a consequence of  the unbroken 
scale invariance of  the theory at the quantum level. In fact scale invariance dictates that  the dimensionless  
function H ( p  2) can only be a constant,  in which case (23) clearly implies that  

n ( p  2) -= 1, (24) 

or, equivalently,  that  the exact ghost and gauge propagators  are just  the free ones. 

4. Conclusion 

This calculat ion has demonst ra ted  that, up to anomalous  contr ibut ions to the Ward identit ies of  supersymmetry,  
two-point  functions in the CSW model  are not  renormal ized in the Landau gauge. It seems likely that similar 
methods  may be appl ied  successfully to higher Greens  functions. In fact (5) generates an infinite hierarchy of  
Ward  identi t ies relating the n-point  functions of  the theory to each other. When combined with the Schwinger-  
Dyson equations which relate n-point  functions to (n + 1)-point  functions and separated into parts of  different 
tensor  structure they may be sufficiently restrictive to prove non-renormal izat ion for general  n. 

Supersymmetry  frequently improves the UV divergences of  Greens functions in quantum field theory. In 
most higher  d imensional  cases (SQCD, SUGRA,  e t c . , . . .  ) it is implemented  by introducing superpartners  for 
the existing fields in the action. Cancel lat ions then occur between graphs and non-renormal iza t ion  theorems 
can often be proven to all orders  in per turbat ion theory. The CSW model  is an interesting example  of  a case 
where a supersymmetry between the existing degrees of  f reedom (gauge and ghost) leads to finiteness, and the 
Schwinger -Dyson  equations of  the theory may be treated exactly to prove a non-renormal izat ion theorem for 
two-point  functions in a non-perturbat ive context. 
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