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We calculate the relation between staggered bilinear operators on the lattice and their 
continuum counterparts to one loop, and outline the calculation for four Fermi operators. We 
apply the Ward identities and symmetries as checks and constraints on the calculation, and give 
the results in an orthonormal basis of representations of the lattice symmetry group. 

1. Introduction 

Q C D  has become the accepted theory of low energy non-leptonic physics, but 
comparison with experiment is not straightforward because of the non-perturbative 

nature of the observed bound states. Reliable prediction of non-leptonic matrix 
elements would enable the theory to be tested against currently unexplained features 
of the experimental data, dominant among which are the A I  = 1 rule in K ° -o ~r+~r - 

decays and CP violation in the kaon system [1]. The lattice regularization of QCD 
should allow the numerical calculation of these matrix elements with full control 
over the systematic errors - by the size of the lattice, and the statistical errors - by 
the size of the statistical sample. 

Numerical  simulations are being done with both Wilson and staggered fermion 
formulations. The former method completely resolves the fermion doubling prob- 
lem, making the choice of lattice operators straightforward, but does not respect 
chiral symmetry [2]. The latter method retains a continuous U(1)~ chiral symmetry 
ensuring chiral behaviour analogous to the continuum, but leaves four doubles for 
each lattice fermion species, making the choice of lattice operators less obvious 
[3, 4]. In this paper  we deal with staggered fermions. The analogous work has been 
done for Wilson fermions previously [5, 6]. 

An essential step in the numerical work is the calculation of the relation between 
lattice and continuum operators. For sufficiently small lattice spacing this can be 
done perturbatively. With staggered fermions, the fermion doubles introduce a 
discrete flavour structure giving more scope for mixing between operators. Further, 
staggered fermion operators involve link variables where Wilson fermion operators 
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do not. This results in vertices which vanish in the classical continuum limit, but 
contribute finite corrections through divergent loop integrals, giving rise to ad- 
ditional mixing and a general suppression of operators associated with link variable 
fluctuation [7]. However, the radiative corrections to staggered fermions are re- 
stricted by Ward identities arising from their residual continuous symmetry. 

Both continuum and lattice operators are related to the same tree-level operators 
by 

O, c°nt'latt = [~ijq_ g2 7?gnt,latt ] O tree, level 
(4+r)2 ~,j j+j  , (I) 

so that they are related to each other by 

o?°"'= [8,j + g~ z ]o'>" 
(4~r)2 u]  J ' 

where we define 
Zij "--- ZCj °"t -- Z ] ;  tt " 

(2) 

(3) 

In the calculation of mesonic matrix elements, two fermion operators are used to 
create the initial and final meson states, and the effective hamiltonian is an 
expansion over four-fermion operators. In the CP-violating kaon system the oper- 
ator of interest is 

HAS=2 _ ( gY~L d )(Jy/~Ld ) (4) ff -- 

where y~i. = ½y~,(1-Ys)- The A I =  ½ rule arises from matrix elements of the 
effective hamiltonian ~u, as= -1 After integrating out the heavy fields W ,  t, b, c the "" ~" eff 
effective hamiltonian is an expansion over the following six four-fermion operators, 
characterized by their symmetry under SU(2) isospin and SU(3) flavour [8, 9]. 

{ 8 .  = 

{27,½} 

{27,{} 

8 1 

0 2 = (d~t~LS)(U~t#LU) "}- (d~p.LU)(U'~t~LS) "{- 2(a~p.LS ) [  (d~ tLLd)  "4- ( S ~ L S ) ]  , 

0,= (dv, L,)(~,Lu)+ (&,LU)(~,LS)+ (d~,LS)[2(&.L~)- 3(:V, LS)]. 

(~5=(a'[l~L tIS ) E (~tY.RtIq), 
q~u,d,s 

{8,½}06=(dY~,cs) ~] (qY~Rq)- 
q=u,d,s 

t I are the hermitian generators of SU(3)~lo ~ normalised to tr(trt J) ~8 u 

(5) 
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The content of the paper is organised as follows. In sect. 2 we derive the Feynman 
rules for two- and four-fermion operators. These are used in sect. 3 to relate 
two-fermion operators in the continuum and on the lattice. In sect. 4 we discuss the 
Ward identities and their use as a check on the calculation and a constraint on the 
results. The results follow in sect. 5. In sect. 6 we outline the situation for 
four-fermion operators and our conclusions follow. 

2. Staggered fermions and their Feynman rules 

Before proceeding, it will be helpful to give a brief review of staggered fermions 
and their interpretation as "flavours" of quark in the continuum limit. This will 
help clarify the notation used later in the paper. 

The staggered fermion action is 

1 
S=a4E E -~arlp.(x)(x(x)U~(x)x( X + a#)- ~(x + att)UJ(x)x(x)) 

x ,u. 

+a4Em~(x)x(x), (6) 
x 

where ,h,(x) = ( - ) x ,  + ... +x~_,. It involves a single-component, anti-commuting field 
X (for each colour). In the continuum limit, eq. (6) describes four species of Dirac 
spinor. There are two approaches to identifying these species directly on the lattice, 
based on the analyses in coordinate and in momentum space. 
• The coordinate space method starts from the observation that the action is 

invariant under translations of 2a but not a. This suggests partitioning the lattice 
into hypercubes labelled by coordinates {yly~/2a ~ Z}. Any point on the lattice 
can then be specified by a hypercube and its position within that hypercube: 

x=y+aA, A ~  {0,1} d 

The staggered fermion field can now be reparameterized as 

dPA(y)=¼X(y+aA), 

~,4(y) = ¼X(Y + aA).  (7) 

In the continuum limit the (free) staggered fermion action then takes the form 
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Here the notation [10] is 

tr t f (8) 

~AI,~tA2~tA3.~tA4 where "/A = rl  r2 r3 r4 , and is written in such a manner as to suggest the tensor 
product of a "spin" matrix Ys and a "flavour" matrix iF- 

This needs some justification. First, it is quite simple to check that the real, 
orthogonal, 16 × 16 matrices y~ ® 1, /~ = 1 . . . .  ,4 satisfy the Clifford algebra condi- 

tion 

{ ~  ® 1,y. ® 1} = 2 ( i~ -1 )8 . . ,  

and so generate a faithful representation of it. However there is only one faithful, 
irreducible representation of the Clifford algebra with dimension 4, namely the 
Dirac gamma matrices. Therefore the constructed representation must decompose 
into 4 irreducible representations each equivalent to the gamma matrix representa- 
tion, and hence there must be a unitary transformation 

( Y - - ~ )  A. ~ (T** @ 1) aa'~b , a , a , f l ,  b = l  . . . .  ,4.  

The required unitary transformation is a simple Fierz transformation: in general 

1 eta - -  1 *fib E(2"~A ) (~[S~F)AB(2"~B ) = ( ] I s ~ F )  aa'flb' 
AB 

(9) 

where ~A = ~(1.. .  ~4A,, 4, --- 3'~*- In this way the sixteen-component field ~A can be 
identified with four "flavours" of Dirac spinor, labelled by the index a = 1 . . . . .  4. 

A very similar procedure can be applied in momentum space. Any momentum 
k ~ [ - r r /a ,  ~ ' / / a ]  4 (the first Brillouin zone) can be written 

Defining fields 

° I ° ° ] 4  k = p +  --A p c  
a '  2-a'2-a " 

the free staggered fermion action has the continuum form 
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TABLE 1 
Lattice QCD Feynman rules relevant to the above calculation, ~ = Y~I ~ 1/2 
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gluon propagator K DdJ~(k,l) = 5 . (4/a2)s in2(a/2)go.  3 ( k + l )  

quark propagator ( p 

vertex I ~ 

v rtex 

( S - 1 ) i j ( p ,  q) = 30(rn3(p  + q) 

+ (i/a)52~,sin apt 3 (p  + q + (~r/a)~)) 

- ig(tl)i&os a ( p  + 12 k)~ 3(p  + q + k + (~r/a)~) 

1 - ag2G12 ( t', r' }'i sin a(p + 12k + ~l),, 
× 3 ( p  + q + k + l + Or/a)~)  

The gluon propagator is in the Feynman gauge. 

where another set of spin-flavour matrices appears, related unitarily to the previous 
(~'s ® ~F) matrices by 

(Ys ~ ) , ~ B  = E ¼ ( - - ) A ' C ( ~ ) C D ¼ ( - - ) D ' ~ "  (11) 
CD 

The complete equivalence of these two "flavour interpretations" has been dis- 
cussed in ref. [11]. In the calculations discussed below, it is important to understand 
the distinction between and yet the equivalence of the two spin-flavour bases (~'s ® ~F) 

and (~'s ® ~F). 
The propagators and vertices associated with the staggered fermion action used in 

the calculation below are given in table 1. The variables p and q cannot be regarded 
as physical momenta because of the need for some kind of flavour identification in 
the staggered ferrnion formulation, in which space-time and spinor properties are 
intimately connected. It remains to calculate the Feynman rules associated with 
staggered fermion operators. 

The continuum limit of staggered fermion lattice QCD is a continuum QCD with 
four flavours of mass degenerate quark. In a conventional continuum regularization 
of such a theory, operators of the form 

Fl(X)Ts ® ~Fq(X) 

(f  ~ Lie algebra of SU(4)r ) can act as interpolating fields for the physical mesons. 
There is a wide choice of lattice transcriptions for the continuum operator 

q3"s ® frq. The most local operator possible, and one which will be adopted here, is 
that defined on a single hypercube using the coordinate space-flavour identification 
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outlined above 
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OsF(Y) = Y'.-~A(y)(~S--W'~r)ABqlAB(y)~8(y). 
AB 

(12) 

Here, q/AB(Y) is a product of gauge links inserted to ensure gauge invariance. To 
make 0SF as symmetric as possible, all shbrtest paths between y + aA and y + aB 
are averaged over, so that 

1 
CAB(Y) = ~ E U ( y +  aA, y+ aA + Ae,) 

P 

X . . .  X U(y  + aA + Ae, + Ae: + Ap3 , y + aB) ,  

(13) 

A last point to make about eq. (12) ~ and ~ need not arise from the same X-field. 
That  is they may correspond to different species of staggered fermion X1 and X2 
say. 

The presence of gauge links in the definition of such a quasi-local operator means 
that the vertices for the insertion of an operator in Green functions may have 
external gluon legs. The vertices required for one-loop calculations are shown in fig. 
1. The momentum dependent functions in these vertices are 

1 

M(°)[ " - q )  N~ AB 
sv , ,e ,  = - -  2 ei~PA(~S--~-CF) AB e-iaq" B, 

1 
M s  (1)~/ - k ) =  - -  ~.~(B--A)~,eiapA(ys---~-~F)ABe-iaq'%B)(ak), F t P ,  q; . .~ /v i AB 

1 
M (~)"'t" l) = Nf A, SF , e , - q ; k ,  - - E ( B - - A ) j , ( B - A ) ,  

x e ' ° '  ' aZ ) ,  

where iV/= 2 a/2 and 

f.~n(q~) = ~e'#"Ae '~'.(z-A)./2 Y'. (1 + e i * ' (n -A) ' ) ,  
v=/=~ 

(14) 

(15) 

( A B )  indicates that we have symmetrized on the indices A and B. All that is 
necessary to know about g ,~(~,  ~k) at one loop is that g~B)(~, -4))  = f ~ e ) ( ~ ) .  
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= ~ iJ ~_~_(p,- q) 

kl/.t tJ/J 

Fig. 1. Vertices for the operator OsF required at one loop. 

( l a g )  2 1 ij ~ v  
2 -~[t~, tj} IV~.(p,--q;k,t) 
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(cO (b) (c) 

Fig. 2. Continuum diagrams contributing ?/Ys ® ~Fq at one loop. 

(o) (b) 

(d) 

(c) 

(e) 

Fig. 3. Additional lattice diagrams contributing to ~lYs ® ~Fq at one loop. 
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At one loop, the perturbative corrections to 0SF come from the diagrams of figs. 2 
and 3. Remember that only ½-times the self-energy diagrams should be included. 

A difficulty is immediately apparent: the Feynman rules given above lead, via the 
relation 

( :/ ) (_)A,~(a) p _ q +  A + B + ~ )  ~ 8 ( P - q ) ( ~ ) ~ s '  
a 

a ( p - q )  ~ 0 ,  

(16) 

to spin flavour structure in the momentum space bias, related by eq. (11). An 
important part of the methodology of staggered fermion loop calculations is to 
bring everything into a single basis - the (Vs ~------~F) basis. 

3. Two-quark operators 

To renormalize the general two-quark operator 7t(x)• s ® ~ q ( x )  consider the 
bare matrix element 

( q( x ){l( y )71(O)v s ® ~vq(O) ) . 

There are three momentum-space diagrams contributing at one loop in the con- 
tinuum. These are shown in fig. 2. The tree-level operator vertex is simply "/s ® ~F. 
Only half of the self-energy diagrams (b) and (c) contribute to the operator, the 
other half supplying the self-energy to the external states. Using a simple Pauli- 
Villars cutoff Q, and an infrared regulating mass ~ so that the massless limit of the 
theory can be taken, the diagrams can be evaluated easily to give 

(71Vs ® rq) = (~/Vs ® ~Fq) tree 1 + ( - 1 ) l n - ~  + RI , (17) 

where Cf= (N 2 - 1 ) / 2 N  c is the quadratic Casimir invariant for the fundamental 
representation of SU(Nc) and RI refers to regularization scheme independent 
integrals which contain all the external momentum dependence. These are finite and 
will cancel between continuum and lattice schemes so that they need not be 
considered further. 

The coefficient o s in eq. (17) is defined by the relation 

¼ ~v~V.VsV.V~ = asVs. (18) 

For "/s--3'~, or ~'~5, then o s = 1 so that the vector and axial-vector currents are 
one-loop finite. This is a consequence of the Ward identities associated with the 
chiral symmetry of the QCD action. 
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The important points to note are that, at the massless level in the continuum, 
perturbative corrections are multiplicative (that is there is no mixing) and indepen- 
dent of the flavour structure. For the specific choice of Pauli-Villars regularization 
there are no finite corrections (other than the RI term which vanishes at zero 
external momentum) so that a calculation of the finite corrections to the lattice 
operators will immediately give the desired connexion between lattice and con- 
tinuum. 

The lattice calculation involves the diagrams of fig. 2 and the additional diagrams 
of fig. 3. First consider fig. 2a. This is the only divergent diagram apart from the 
self-energy diagrams whose divergences have been investigated by Golterman and 
Smit [12]. Taking the external momenta to be p + 7rc/a and q + ~'D/a, p, q 
[-~r/2a, ~r/2a] 4, and then neglecting the "physical" part of the external momenta 
(p  and q) since this will cancel in the comparison with the continuum result, this 
diagram has the value 

2 I'~r/a d4k d4p ' d 4-' 
, ~ ,  4-a 4B ( ak )F( ap')F(aq')  G(2a) = g  C f L e r / a ( ~ ) 4  (2~r) 4 (27r) 

a 
× cos 2 ~ k,sin ap; sin aq' o N/2eiap"A (Y-'~-'~UF) A e e-  iaq'.B 

~ r ( c + ~ + ~  ~ q ' - k +  ( D + ~ + 6  , 
a a 

where all repeated indices (except C and D) are summed over, and where 

and 

1 

B(q,) = (ax)  2 + ~4sin2½q, , (19) 

1 
F(4,) ~sin2q~ ~ , (20) 

being the infrared-cutoff mass supplied to the gluon. 
Now we can extract the spin structure from the constraints by the relations 

a c'c" 

a D'D" 
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where (~'A)BC are defined by 

(~rA) Bc = 1 when A + B + C = 0 

= 0 otherwise. (22) 

The integrations over p '  and q' can now be performed, and the relation 
(--)A.(~r~)AB=(~&® 1)A B exploited, to give, in terms of the dimensionless loop 
variable q~ = ak, 

G ,  = g2c, f ° 8(,)F2( ep)cos2½O~sin ¢o sin Oo 

1 , 

X ()'ao ® l)cc,~(--)CAe'*A(Ys~)Ase-"s~(--)n°'( '[o~ ®~)o,3' 

(23) 

where the notation "/A B ----- YA "& has been used. Note in particular that for the 
purpose of this chapter 3'~ = ~/~Y~, V/,, v, so that -&~ = 1. 

If it were not for the e i~A and e - i~B terms in this expression, the spin-flavour 
structure would just be 

(2~,oso~ ® l;v) co = + ( ~ V )  cD, (no sum) 

in which case, then the lattice result would be little different from that in the 
continuum, with no mixing. In fact there is a thorough mixing of both spin and 
flavour structures. 

To proceed with the evaluation of eq. (23), an expansion of the form 

e'*'A(YS@--~-~F)A, e-'*B= E CSF, MN(Cb)(~--~-~N)AB, 
M N  

which separates the spin-flavour (A, B) and loop momentum (¢) dependence is 
required. This separation can be achieved with the aid of the identity 

eiO'A(~)AB=(I-IeiOJ2)EEM(d#)(~[MS®~M;)AB. (24) 
/t  " M 

Here 

Eu(q~ ) = I'-I ½(e-'*./2 + (-)M~ei*,/2),  

where 3~r = ]~. .  ~M~ modulo 2. 

(25) 
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Then, using the fact that ~'s ~ is a symmetric matrix, 

iq) . A - ie~ . B e (yS--~F),4Be = E E M ( d P ) E N ( - - d p ) ( T M S N ® ~ M F N ) A B ,  
M N  

so that eq. (23) becomes 

G[,, = g 2 G I  ) q~ )F2(q) ) cos 2½q)~, 
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×sinq)osineOoEM(q))Eu(--q~)(y~oMSUo, ®~MFN)co. (26) 

This integral is logarithmically divergent in the limit aK --> 0 (see eq. (19)). All of 
this divergence is located in the M = N = (0, 0, 0, 0), O = o terms of the series, where, 
in the vicinity of ~ = 0, the integrand behaves as 

1 1 

4C" 
To evaluate this integral numerically, the divergence must be subtracted off before 
the ax ---> 0 limit is taken. This can be done using the integral J00oo(ax) defined in 
appendix A (where the details of such subtractions are discussed). 

Once this is done, the final result for fig. 2a is 

G~a)= (4~.)Z Cf Os(--lna2K2+Foooo--YE)(~)CD 

I~poMN 

where Foo0o - •E = 3.79201(1), 0 s is defined by eq. (18) and the finite integrals X~/~ ° 
are defined by 

2 " "  d4~b c°s2½q).sinq)osin4)o EM(q))EN(-q~) 
X~/~°= (4~r) J_,~(~)4 E~4sinZ½q,~(E~sinZ~B)z 

8°08M'°Su'° } 
4(E~4 sin2½q) )z " (28 t 

Numerical values for these integrals will be discussed below. 
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Figs. 3a and b are more complicated, but they are finite. The general procedure is 
the same as above, but because the one gluon vertex of eq. (14) has a more complex 
momentum dependence, two identities further to eq. (24) are required. These are 

(B--A)~(~S-~--~F)AB = }[Y~5S @ ~ 5 F  - "[Slt5@~FI~5]AB , (29) 

and 

where 

4 

ei,.Af(~B)(_q~) = 1 E E ei(A-m°2), (30) 
~'~V. i = 1  

~(1) 1 ~ ^ , 

Eq. (30) brings figs. 3a and b into a form where eq. (24) can be applied. 
At length it is found that 

3 g2Cf E 
G ( a ) + ( b ) -  2 ( 4 ¢ r )  2 MNap 

y~t, P['v ~ ~ 5 M F N -  "Y~pMSNIx5 (~ ~MFNt~5 MN ~ rlxplx5MSN 

+ "~p.5MSNplz ~ ~I~5MFN -- "~MSNp.5p,u. ~ ~MFNp.5) CD' 

~' ~ defined by where the finite lattice integrals Y~tn are 

21 " 1 (i) (i) 
• 2 ~,~" d 4 ,  c o s  2ep~,Slnq~o~,,~,~,EM(O~ )EN(--O ~, ) 

The remaining diagrams are much more straightforward: 

(31) 

(32) 

(33) 

where Zoooo = 0.154933(1) is defined in appendix A. The evaluation of the self- 
energy contributions is performed below when Ward identities are considered. 

The lattice integrals X~/~" and Y~'~ were evaluated numerically using the Monte 
Carlo integration package NAGLIB D01 GBF. The results are given in tables 2 and 

r,6 2 2 2 - -  

G(3c) (4~r)zCr½E(S--F)~(41r) Zoooo(~)co ,  (34) 
# 
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TABLE 2 
p , p o  Independent components of the lattice integrals X~i N 
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M 1,11 2,11 v-l ,  12 3,12 X~IN X~vtN "'MN X~,[N 

0000 - 0.91366(1) - 0.82302(2) - 0.07291(1) - 0.10407(2) 
1000 0.10002(1) 0.02731(1) 0.02731(1) 0.01118(0) 
0100 0.05326(0) 0.13439(1) 0.02731(1) 0.01118(0) 
0010 0.05326(0) 0.03139(1) - 0.03833(0) - 0.05855(1) 
0001 0.05326(0) 0.03139(1) - 0.03833(0) - 0.01629(0) 
1100 0.07735(1) 0.04743(0) - 0.07291(1) - 0.10407(2) 
1010 0.07735(1) 0.19072(2) 0.03833(0) 0.01629(0) 
1001 0.07735(1) 0.19072(2) 0.03833(0) 0.05855(1) 
0110 0.13593(1) 0.03833(0) 0.03833(0) 0.01629(0) 
0101 0.13593(1) 0.03833(0) 0.03833(0) 0.05855(1) 
0011 0.13593(1) 0.16189(2) - 0.02731(1) - 0.01118(0) 
0111 0.16355(2) 0.35611(2) 0.07291(1) 0.10407(2) 
1011 0.22384(2) 0.07291(1) 0.07291(1) 0.10407(2) 
1101 0.22384(2) 0.26284(2) - 0.03833(0) - 0.01629(0) 
1110 0.22384(2) 0.26284(2) - 0.03833(0) - 0.05855(1) 
1111 0.04103(0) 0.02379(1) -0.02731(1) -0.01118(0) 

3. The  in tegra ls  not  given can be  found  using the symmet ry  proper t ies  of  X and Y: 

symmetr ic  on Oo and M N ,  

Xu., oo = 0 unless 57 + 2 M  = t3 + 28 N 

ant i symmetr ic  on M N ,  

Y~m 0 unless 57 + 234 = t3 (35) 

Both  in t eg rands  are  symmetr ic  under  pe rmuta t ions  of  the indices. 

As  the non-vanish ing  integrals  have even integrands,  the in tegra t ion  can be 

res t r ic ted  to the doma in  (0, rr }4. The numer ica l  in tegra t ion  converges more  quickly 

for  s m o o t h e r  in tegrand  funct ions ob ta ined  by  averaging over  pe rmuta t ions  of  the 

indices ,  though  the calculat ion of  the in tegrand  is then more  lengthy.  Typica l ly  10 6 

M o n t e  Car lo  hits  were required per  integral .  The  accuracy  is sufficient for  the 

r e no rma l i za t i on  results  to have errors  of order  10 -4. 

4. Ward identi t ies  

As a check on the complex  analyt ic  and  numer ica l  calculat ions  so far, W a r d  

iden t i t i es  - as always - prove useful. Fo l lowing  f rom the U(1) invar iance  of  the 
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TABLE 3 
Independent components of the lattice integral Y~/~, 

M YMNI'I YMN2"I 

0000 0.85591(1) 0.58329(4) 
1000 0.02810(1) 0.00737(1) 
0100 0.05716(3) - 0.07906(6) 
0010 0.05716(3) - 0.01516(1) 
0001 0.05716(3) - 0.01516(1) 
1100 0.15787(1) - 0.04284(3) 
1010 0.15787(1) - 0.17338(2) 
1001 0.15787(1) - 0.17338(2) 
0110 0.05716(3) 0.01516(1) 
0101 0.05716(3) 0.01516(1) 
0011 0.05716(3) 0.07906(2) 
0111 0.85591(1) - 0.58329(4) 
1011 0.15787(1) 0.04284(3) 
1101 0.15787(1) 0.17338(2) 
1110 0.15787(1) 0.17338(2) 
1111 0.02810(1) - 0.00737(1) 

staggered action, there is a set of identities associated with the current 

4 ( x ) = ½ ~ l ~ ( x ) [ ~ ( x ) U ~ ( x ) x ( x + a ~ ) + ~ ( ( x + a ~ ) U ~ ( x ) x ( x ) ] .  (36) 

For example the current is conserved 

1 
Y'. (O(~-)J~(x)) - Y'~ a ( J ~ ( x ) - J ~ ( x -  a~)) =0,  

which follows from the invariance of the partition function under a local U(1) 
transformation of the functional integration variables. More interestingly 

~-, { O(~-U~,(x)x(Y)X(Z)) =(~(y)x(z))[8(x-y)-8(x- z ) ] ,  
ix 

(37) 

obtained by making a local transformation on (~(y)x(z ) ) .  This has immediate 
consequences for the perturbative corrections to J~, since when passing to the 
renormalized theory by the formal replacements XX ~ ZxXrtXR and J --, ZsJ R the 
wave function renormalizations cancel from either side of the equation, and so Zj  
must be finite. Therefore, all perturbative corrections to J must be finite. 

In fact the Ward identities provide an even stronger constraint than this: 
perturbative corrections to a conserved current vanish. To see this it is necessary to 
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derive the Ward identity in terms of 1PI diagrams. At one loop, eq. (37) becomes 

(38) 

so that when self-energy contributions are added to the operator corrections, 
everything cancels. 

What relevance does this discussion to the calculations described above? It so 
happens that the operator with spin-flavour structure 3'. ® 1 is just a superposition 
of the conserved currents J: for example 

01ooo,oooo(Y) = E 4 ( Y  + aA). 
{AIAI=0} 

So this operator should receive just the same multiplicative corrections as J,  and in 
particular it should be conserved. This can be checked using the analytic and 
numerical results derived above. What is required is an explicit verification of the 
Ward identity eq. (38) for the operator 0100o,0o0 o. 

The cancellation of the self-energy tadpole diagram with that of the operator (eq. 
(34)) is trivial. To proceed with the other diagrams, an analytic expression for the 
continuum-like staggered fermion self-energy diagram is required. Calling this graph 
G, it turns out that 

i ,7 d4~ 
o =  ½ ) sin(ap + ® 1. 

where p ~ [-~r/2a, 7r/2a] 4, and B and F were defined in eqs. (19) and (20). 
Substituting this expression into the Ward identity eq. (38) and setting external 

momenta to zero the following relation is found: 

i - - G  = g=Cf  (~-~)dB(q~)F2(dp)cos21q~sinqJpcos q~x3`~oxo~ ® 1 

-]- f~'--qr 2q'/') "d4~') . . . .  1 1 ) (--s-~B(4~)F(~)2cos~q~xsin~xsin~x3`x® 1 . (39) 
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The first term corresponds to an integral of the X-type. It is comparatively 
straightforward to sum the X integrals contributing to 01ooo,000 o and recover 
precisely this analytic form. 

The second term in eq. (39) corresponds to a Y-type integral. It is presumably 
possible to sum the Y integrals analytically to recover this form. However because 
of the complexity of the Y integrals, we perform instead a numerical check. 
Summing up the numerical estimates of table 3 with the phases appropriate for 
Olooo,ooo o agrees to better than 1% with a direct numerical evaluation of the second 
term in eq. (39). 

This examination of Ward identities provides the easiest way of identifying the 
contribution of the self-energy diagrams of figs. 2b, c and 3d, e. From each operator 
it is necessary to subtract off a multiplicative piece exactly big enough to ensure that 
the vector current 01ooo,ooo o has vanishing renormalization. 

5. Results 

After including all one-loop terms, the result for a typical two-quark operator is 
of the form 

[:::.ln ] O 1art = 0 tree 1 + a~ + C) + 0 tree C '  , (40) 

where the possibility of mixing has been symbolically included in the C '  term. The 
one loop anomalous dimension coefficient is 7 = - 2 C f ( o s -  1), where o s is defined 
by eq. (18) and C~ is the group theory factor ( N  2 - 1 ) / 2 N  c. The results for the 
finite perturbative corrections C, C '  are given in tables 4 and 5. Errors are of order 
1 in the last decimal place. The pseudoscalar, axial vector, and tensor structures not 
given, are obtained after a transformation, 

which leaves all perturbative corrections unchanged. This is the U(1)e transforma- 
tion on doublet structures. 

The notation used is essentially that defined by ref. [13] which runs as follows. 
The 256 elements 7A ® ~R can be thought of as basis vectors for a reducible 
representation space of the staggered fermion symmetry group given in ref. [13]. 
This space decomposes into subspaces stable under the group action which can be 
identified with the irreducible representations of the symmetry group. These are 
labeled by " J  PCU(1L''. The rotation representations are denoted according to the 
conventions of ref. [14]. I is the identity representation, while Young tableaux are 
used to label representations of the group of permutations of the axes. (Jl, J2) is 
used to label representations shared with the SU(2)x  SU(2) covering group of 
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TABLE 4 
Finite parts of the perturbative corrections to staggered fermion two-quark operators Osv 

with scalar or vector spin structure 

487 

Spin-flavour Representation Perturbative 
structure content correction (C, C ' )  

1 ® 1 I ++D 38.7246 
1 ® ( .  I -  s, ~ - - s  8.1426 
1 ® ~,, Bclz+-o, ~ + - D  --10.9342 

1 ® ~  5 ~ +s, ~ 3 - + s  -25.4759 

1 ® ~5 ~++D --38.8560 

)'.®1 (12,12) +-s  
+ - S  

)', ® ~/L5 1 - D 

vl  ® ( Q  - Q ) / ¢ 2  8 + o 

)'1 ® ( Q  - Q ) Q / ¢ 2  8 - ~  

)'I ®7.1/1 /~  ( 12' 12) ++S  
++S  

"/1 ® (7.2 -- "r3 )//V fff ~ 8 + + S  
)'1 ® (7.25 q- 7"35 -- 27"45)/ /22~ f 

0.0000 

-22.5089 

( 1 4 . 7 8 0 2  0.0000 ] 
- 5.2679 - 10.0407 } 

-34.5001 1.1199 / 
0.0000 10.0588] 

- 10.0407 

- 10.0588 

3.3960 

- 22.2421 

16.9473 9.1710 
11.7452 - 1.8989 

The notat ion ~-~, = )2  ,~(~,~ and ~';,5 = ~';,se5 is used. 

TABLE 5 
Finite parts of the perturbative corrections to staggered fermion two-quark operators Osr 

with tensor spin structure 

Spin-flavour Representation Perturbative 
structure content correction (C, C '  ) 

y,~® 1 [(1, 0) ~ (0,1)1 D --9.9654 

Y12 ® (~1 + ~2)/7r2 ~ (0.6818 0.0000~ 
)'12 ® ( ~3 ~_ ~4 )/~/T~ / [(1,0) O(0,1)] S \1.3523 21.2531] 

)'12 ® ( ~1 - ~2)/V/~ 6 s 0.6818 
Y12 ® (~3 - (4 ) /V~  6 + s -21.2531 

Y12 ® ~12 6++ D 6.8005 
)'12 ® ~'34 6 +o -33.0481 

"/12 ® (~1 + ~2)(~3 + ~ 4 ) / 2  [(1,0) ® (0,1)]  +D -- 9.6497 

)'1_* ® (~1 - ~2)(~3 - ~4) /2  [ (1,0) • (0,1) ]+o -9 .6497 
)'12 ® (~1 - ~2)(~3 + ~4) /2  6++D 9.6497 
)'12 ® (~1 -F ~2)(~3 -- ~ 4 ) / 2  6 +o 9.6497 
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SO(4), and finally 6 and 8 refer to additional representations of dimension 6 and 8. 
The representations R are equivalent to R ® ~. 

The superscripts PC U(1)e indicate parity under spatial inversions and under 
"charge conjunction" (YA ® ~B ~ YsY]75 ® ~5~tB45), and also the transformation 
property under U(1)e transformations (S for a singlet representation, D for a 
doublet). Whilst in four dimensions there is no rotationally invariant reflection, it is 
still true that the extension of the hypercubic group to include reflections has the 
effect of doubling all the irreducible representations (irreps) except for the pairs 
(0,1), (1,0) and (0 ,1 ) ,  (1,0) which merge into larger irreps. With this exception, 
then, we label the irreps with a parity. The area is covered by ref. [14]. 

Mixing can occur if the same representation appears more than once in the 
decomposition. It was found in ref. [13] that the greatest multiplicity of any 
representation is two. Therefore the largest mixing matrices should be 2 x 2. Tables 
4 and 5 show that this is indeed the case. A simplification follows from the fact that 
the renormalization constants for 7A ® 4n and for YAY5 ® 4845 are the same. This is 
required only for doublet representations of U(1)~ (where these two structures are 
then transformed into one another) but proves to be the case for all spin-flavour 
structures. The U(1)~ transformation maps representation R of W 4 onto R ® ~ -. In 
addition the charge conjugation parity may be reversed. The subject is covered in 
ref. [13]. 

In case tables 4 and 5 appear to daunting, the representation content can be 
almost completely ignored. It is included only for comparison with ref. [13]. The 
column headed "spin-flavour structure" contains a typical normalized basis vector 
for that representation. The full representation space can be generated from it by 
the group action. 

To explain the use of the tables, consider a fairly complicated example which 
includes mixing: 7~® 4,. The anomalous dimension vanishes because this vector 
current is the lattice analogue of a conserved continuum vector current. For/~ = u, 
there is no mixing and 

tree[ g2Cf ] (7~ ® 4.)latt = (7. ® 4tt) 1 -t- ~ - ~ C ] ,  (41) 

where C = 14.7802 which for g -  1 amounts to a 10% enhancement of the lattice 
operator above the Pauli-ViUars operator. In fact, at zero external momentum, this 
operator has an additional symmetry - that of unit shifts - since it involves no link 
operators. This symmetry forbids mixing with operators such as y, ® 4, which do 
not have it. It does not, however prevent y, ® 4, mixing into it, so the mixing matrix 
must be lower triangular. For/~ ~ ~ there is mixing. Then 

g2c, ] -troer g2C, ,1 (7/~ ® 4~,)latt = (7. ® ~i,)tree 1 -I- ~--qT-~ C] qt- (7~t ® ~/z~ [ (--~)2 C J,  (42) 
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where C = -10.0407 and C ' - -  -5 .2679/v~-=  -3.0414. This follows by expressing 
¥~ ® ~, in terms of the basis vectors 

® - 

So these two link operators are suppressed by about 10% with respect to their 
continuum counterparts, as well as having a small mixing with the local operator 
~,~ ® ~ .  Suppression of multilink operators can be understood intuitively as being 
due to the fluctuations of the inserted gauge links. The major contribution comes 
from diagrams with gluon tadpoles. 

6. Four-quark operators 

In this section we follow the corresponding calculation for four-Fermi operators 
appropriate to the effective hamiltonians ~ s = - a  and ~ s = 2 .  The mixing is 
restricted by the same symmetries as in the two-quark case, but there are 164 rather 
than 162 spin-flavour structures. Thus, the mixing matrices will be much larger. The 
spin structure of interest is 7~L ® "/~L" Using discrete flavour ~s ® ~5 to make direct 
contact with the Ward identities [15] the overall symmetries are I ++s and I -+s. 
Alternatively, using discrete flavours ~L ® ~L to project out the spin structure [16] 
the symmetries used are I ++D and ~ - -o .  We are aiming to calculate the mixing 
matrices for these structures. 

To set the scene for the lattice calculation, first consider the calculation in the 
continuum. The presentation follows that of Altarelfi et al. [17] (who extended the 
calculation to two loops), but uses the simple cutoff regulator used throughout this 
paper. 

Consider the two-operators 

Or_L = E (qlYt~Lq2) ( tt3"J't~Lq4), 

OI, R = ~] (~/aT~t.q2)(q37~Rq4), (43) 

where  ~L,R = 1~/~( 1 ~ ~5)" ql ..... 4 may be different flavours or not. There are six 1PI 
one-loop diagrams which correct the operator. These fall in pairs into the three 
classes shown in fig. 4. In addition the four obvious self-energy diagrams have to be 
included. 

Figs. 4b and c lead to mixing with operators with a different colour structure: 

Y~ ( ~t13',J*q2 )( q3Y, i~,Rttq4 ) . 
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(a) (b) 
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Fig. 4. One-loop graphs contributing to four-quark operators in the continuum. 

The crucial difference between diagrams (b) and (c), and diagram (a) is the 
exchange of a gluon between the fermion lines. For this reason it is sensible to use a 
basis of Fierz symmetric operators. For OLL, the appropriate combinations are 

{ N c + l \  
0 += / @ / E  (Ch'r.Lq2)(q3~,.Lq4) + E(Ch'~.Lt'q2)(~3V.Lt'q4 ) , (44) 

ZI¥C ] p. ~ I  

which are Fierz symmetric in the sense that 

1234 . 1432 0± -- _+0+ 

under the joint  application of the Fierz identity and the colour algebra identities 

~U~t= l_~_ail~kj + 2Et i / t~ j ,  
Nc i 

1 N 2 - 1  ~i16kJ- 1 
Et~Jt~'= Nc ~ ~ Et~'t~ j. (45) 
I I 

Fig. 5. A penguin graph contributing to the operator (~/lq2)(~/3q3) at  one loop. 
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The superscripts 1234 and 1432 refer to the ordering of the quark fields qi in the 
four-quark operator. 

At zero external momenta the result of evaluating all diagrams (including self- 
energy ones) is 

~)cgnt= ~)tr:e 1 (4~r)2 vein , (46) 

where the anomalous dimensions are ~,+= _+ 6((N c -Y- 1 ) / N c ) .  

In this analysis penguin-type interactions have been neglected. These arise in 
operators of the form (~71qz)(q3q3) which at one loop get corrections from diagrams 
like that of fig. 5. Such diagrams have recently been studied both in the continuum 
and on the lattice using Wilson fermions by Bernard et al. [18]. 

The general four-quark operator is just the product of two-quark operators 

OSF, S'F' = OSFd)S'F '" (47) 

(a) 

(b) 

- I - ~  (c) 

Fig. 6. Diagrams of colour structure 1 ® 1 contributing at one loop to the staggered fermion four-quark 
operator OSF" S" F' . 
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Similarly the Feynman rules for four-quark operators are obtained as products of 
the two quark vertices of fig. 1 and eq. (14). 

Operators with the colour structure Zit}Jt kt arise on the lattice just as they did in 
the continuum. Their perturbative corrections are found easily from the results 
presented here by applying eq. (45). 

The one-loop corrections to four-quark operators fall into two groups, shown in 
figs. 6 and 7, the latter having colour structure arising from the exchange of a gluon 
between the fermion lines. There are 17 1PI diagrams shown, and an additional 8 
self-energy diagrams which contribute trivially. The diagrams fall into six classes 
which are considered separately. 

The diagrams in fig. 6 factorize into two two-quark diagrams, so there is no work 
to be done. The results are 

G(6a)  --- - -  

+ 

(4~r)2 C¢ 2Os(- ln  a 2~2 + Foooo - ~ ' E ) ( ~ F )  C D ( ~ ) C ' O '  

I~o~MN 

g2Cf 

G(6b) 2(4~r) 2 MN~,o 

S~+Sp 
× ( [ 1 + ( - )  I (S;+aF~' ) (yoSMSN®~.SMFU)(~  ) 

+ ( s .  + 2F.)[1 + ( - ) s ' s ; l  ® 

(48) 

(49) 

gZCf _ F)2 (4~r)ZZ0o0o] 

The colour structure is 1 ® 1. The multiplicative corrections for ~SF, S'F' are simply 
the sum of the two fermion values for ~)SF and Os,r,, tables 4 and 5. Mixing 
corrections from these graphs are easily found from the tables by a change of 
normalization. 
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(a) 

4.93 

(b) 

(c) 

Fig. 7. Diagrams of colour structure tt ® t I contributing at one loop to the staggered fermion four-quark 
operator OSF ' S'F'. 

T h e  colour  structure of  the diagrams in fig. 7 is t t ® ti. The d iagrams in class (a) 
m a y  be expressed in terms of the numerical  integrals v , ,  po but  those in classes (b) ~=MN 
and (c) require new types of finite lattice integral, U ] ~ s  and V~LMN defined by  

U~'i,t~ = i ( 4 ~ - ) 2 L  '~ d4(~ ~, (2~r) 4 B(q~) F ( * ) c ° s Z 1 % s i n  ¢ 

× E 
v:#/x i 

(51) 

*r v ~ , i  

X ~ , j  
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The results for these three classes are as follows: 

G(Ta) (4~r)Z MNp'p° MN [\tSMm~ ® -- 

(53) 

g2 
/x,# = Y'~ U{MN (54) G(Vb) (4~r)2 LMN~,o 

+(S~ +2F~')[(ySUO, ®~FN)--(y~oNS®~NF)](y~SLS,M®~,SLF,M)}, (56) 

g2 

= E G~V~) (4~r) 2 KLMNp~ 
V LMN(S. + • ( 5 7 )  

These results are not connected to the two-fermion results and require a separate 
calculation. 

7. Conclusion and discussion 

We have calculated the connection at one loop between staggered bilinear lattice 
operators and their continuum counterparts. Whilst the symmetries of these oper- 
ators are sufficient to ensure the correct meson states are excited in quenched 
LQCD mass calculations, where the discrete flavour is not interpreted as physical, 
for dynamical LQCD calculations we must identify the discrete flavours as physical 
so we need to know the rotation of discrete flavour between lattice and continuum. 
Further, multiplicative corrections will affect the matrix elements in which these 
operators are used to excite meson states. 

The connection is much more important for four-quark operators where the 
multiplicity of the representations is much greater. The dominant effect we find is 
the suppression of operators due to fluctuation of the link variables, arising from the 
tadpole diagrams, fig. 3c. There is a suppression of approximately 10% at g -  1 for 
each link variable involved. Four-quark operators invovle up to 8 link variables, 
giving a suppression of up to 57% at g -  1. However, the contributions from other 
graphs, and the mixing in particular produce less than 10% effects at one loop. This 
is encouraging, as we can sum the tadpole diagrams to all orders to effect only a 
suppression of the vertices in fig. 1. Then the remaining one-loop effects will be 
below 10% suggesting that higher order terms can be safely neglected. We have not 
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included penguin diagrams, fig. 5 which Bernard et al. found to be a small effect for 
Wilson fermion operators [19]. Nor have we included mixing of four quark oper- 
ators with two-quark operators. The subtraction of these by coupling expansion is 
delicate [20] and we chose instead to use chiral perturbation theory [15,16]. In either 
case such mixings do not affect the coefficients we are calculating. 

D.D. wishes to acknowledge the support of the SERC. S.N.S. is funded by the 
SERC and Fegs Ltd. 

Appendix 

SOME INTEGRALS IN LATTICE WEAK COUPLING PERTURBATION THEORY 

A typical integral arising in lattice perturbation theory at one loop is 

J(a{p},aK)= f d4q5 a{p},aJ¢), (A.1) 

where q~/a is the loop-momentum, so that q5 is dimensionless. The lattice spacing a 
regulates ultraviolet divergences and x is the gluon mass introduced to regulate 
infrared divergences. Two classes of integral occur in the text: those which are finite 
as ax ---, 0 and those which diverge logarithmically. 

The only finite integral needed is 

,~ d4~b 1 
f-, 

Zoooo Y-~r (2~') 4 • 21 ~2.4sln 7eO~ , = 0.154933(1) (A.2) 

which was introduced in ref. [21]. This arises from a closed gluon loop and is purely 
a lattice artifact. Characteristic of this fact is the absence of external momentum 
dependence. 

Logarithmic divergences can be conveniently isolated by Taylor expansion since 

J ( - ~ ) =  , , , , - - ,o l im(J(a{p} 'ax)-J(0 'a~:) )  (1.3) 

is finite and (ultraviolet) regulator-independent. Attention then centres on J (0 ,  a~) 
which can be parameterized as 

1 
J ( 0 ,  aK) (4~r)2 [71n a~ + C] + O(ax) ,  (A.4) 

where 7 and C are finite constants. "y is independent of the regularization scheme (it 
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contributes to a one-loop anomalous dimension). C, on the other hand, is specific to 
the lattice regularization being used. It is constants of this type which determine the 
relation between lattice and continuum operators. 

C is usually only calculable numerically. To do this the logarithmic divergence 
has to be subtracted off in some manner. This can be achieved by using a 
particularly simple class of divergent integrals [21]: 

f r  d4~b e iq''n 

J,,(ax) = j_~(~~)4  [ ( ax )2+  E,4sin2½ff~]2 

fo ~ e-~2~2Xe-8xr--r, ,,, x (A.5) = xdx  1 l~n, tzx) ,  

where n ~ Z 4. The second line uses a modified Bessel function representation (see 
ref. [22] sect. 8.431) which enables the logarithmic divergence to be isolated and 
integrated analytically (using the exponential integral function): 

1 
J n ( a x )  (4~r)2 [ - l n  a2K2- yE+ Fn] +(_P(ax). (A.6) 

Here "rE = 0.577216(1) is Euler's constant, and F n is a finite integral. Different F n 
can be related to F0o0o and Z0oo0 of eq. (2) using the Bessel function representation. 
The first few results are 

Foooo = 4.36923(1), 

Flooo = Foooo + (4qr)2(-~Zoooo), 

F2ooo = Foooo + (47r)2(-  ~ - Zoooo), 

Fl,oo = Foooo + (4qr)2(42ff - !~Zoooo ) • 

(A.7) 

In terms of a~,, eq. (4) becomes 

J ( 0 ,  a~) = y / 2 J n ( a K )  + J im ° [ J ( 0 ,  ax) + y /2J (ax)]  + (9(ax), (A.8) 

so that 

C = - y / 2 ( - T E + F n ) +  ~_, [J(O,a•)+y/2J(aK)] .  (A.9) 
a~.O 
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The limit in this equation may be taken, and the resulting integral evaluated 
numerically. In practice an adaptive Monte Carlo multi-dimensional integration 
package (NAGLIB D01 GBF) was used. This proved sufficiently sophisticated to 
cope with the integrable singularities present in all of these lattice integrals. 

There is an alternative way of calculating logarithmically divergent integrals to 
the Taylor expansion method outlined above. This is due to Karstan and Smit [23]. 
The idea is to split the integration region into two parts 1~1 < 3 and 10] > 3, so that 

J ( a  ( p } ,  a~) =JIc, l<a(a ( p} ,  aK) +J l¢ l>8 (a{  P},  a t ) .  

In the inner region (]~] < 8) for small 8 the integrand can be replaced by its 
continuum value with a spherical cutoff. In the outer region (]~] > 8) an expansion 
in a is permissible since the integrand is well-behaved, and so the external 
momentum dependence can be extracted leaving lattice integrals depending only 
o n  8.  

The specifically lattice contribution to the integral comes from the outer region 
where the 6 --+ 0 limit is desired. However it is apparent that the inner integral must 
diverge in this limit (J l , i  < n - - (1/(47r) 2) 3' In 32), and since I itself is independent 
of 6 there must be a similar divergence in "¢1~1 > ~" This divergence can be subtracted 
off using the exact result 

j lo l> ___(f_a+fs~)  d4ga 1 
( 2 ~ - )  4 ' 1 2 

- o  [Z.4s, 
1 

- (4~r)2 ln82 + ~ K +  O(8 ) ,  (A.IO) 

where K = 0.4855321(1) [24]. Thus 

= + [J , , ,>  + + 0 ( 8 ) .  

The two approaches are related by the equation 

1 ] [ 12 ]  
a~--,olim J o o o o ( a ~ ) + ~ ( l n a 2 r 2 + l )  =~im_ J l , t > ~ + ~ l n 8  , (A.11) 

so that ~r 2K = Foooo + 1 - "/E- 
A third method for extracting divergence has recently been proposed and used by 

Bernard et al. [18] in their studies of perturbative corrections to four-quark oper- 
ators in the Wilson formulation. 
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