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We present measurements of the matrix elements of certain 3-quark operators that govern the 
short-distance and light-cone properties of the proton wave function obtained on an 83× 16 
lattice at/3 = 5.7 with Wilson fermions. Using these measurements we find the proton lifetime in 
the minimal SU(5) grand unified theory to be incompatible with the current experimental limits, 
in accord with another recent lattice calculation. 

1. Introduction 

The successful application of perturbative QCD over recent years to many  hard 
processes has relied on the ability to absorb the "long-distance" non-perturbative 
effects into universal hadron distribution and fragmentation functions in the case of 

inclusive processes, and quark distribution amplitudes in the case of exclusive 
processes. The universality of these distributions allows different processes to be 
related to one another order by order in perturbation theory. The development of 
lattice gauge theories, however, has finally opened up the possibility of calculating 
these universal hadron distribution and fragmentation functions or quark distribu- 
tion amplitudes directly within the framework of QCD. Calculations have been 

made  of the weak interaction matrix elements [1], of the low moments  of the quark 
distribution amplitude of the pion [2] and recently of one of the operators relevant 
to proton decay [3]. In an earlier paper  [4], we developed the formalism for 

measuring the low moments of the quark distribution amplitude of the proton, 
expressed as matrix elements of the lowest twist 3-quark operators between the 
pro ton  and the vacuum, as well as two 3-quark operators, of lowest dimension, that 
are required for the calculation of the proton lifetime in grand unified theories. The 

a im of this paper  is to present measurements of the matrix elements of the operators 
of  lowest dimension, and of the matrix element of the operator of lowest twist that 
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sets the overall normalisation for the quark distribution amplitude in the proton. We 
begin with a brief review of the formalism developed in the earlier paper. 

The leading twist component of the quark distribution amplitude of the proton is 
described by three wave functions V(x l ,  x2, x3), A(x1, x2, x3) and T ( x l ,  x 2, x3) 
where the x~'s are the longitudinal momentum fractions of the quarks in the proton. 
These three functions are not independent, but are related through the identity of 
two of the quarks and through isospin. Rather than studying the wave functions 
directly it is convenient to look at their moments defined by 

f [dxlxf,x  x ,V(x. (1.1) 

with similar definitions for A (",' "~' .3) and T ("1' ,2.,3). These moments are related to 
the matrix elements of the leading twist contributions from the following local 
operators 

1~(",,"2.n3)(0)- [ ( iD . , )n lu (O) ] iCyX[ ( iD . , )n2u(O) ]J [ ( iD~, )n3(ysd)~ . (o ) lke iJ l~  , 

(1.2a) 

~(.i,.2,.3)(0 ) --[(iD~,)nlu(O)]icyXys[(iD.,)"2u(O)]J[(iDg,)n3d.:(o)]keiJk 

and 

7~(.1..2,.3)(0) - [(iD~',)"lu(O)] i • . ,,, C ( - t a ~ , x ) [ ( t D  )"2u(O)] / 

(1.2b) 

× [ ( iD ~, ) n3( y.ys d )~. (0)] kei jk, 

where C is the charge conjugation matrix, and 

( iD ~, ),1 = ( iD~l )( iDa2 ) . . .  ( iDiot ) .  

Note that symmetrisation over Lorentz indices and the 

(1.2c) 

(1.2d) 

removal of traces is 
understood in the above. The leading twist contributions to the moments are then 
given by 

(Of I~(""">"~)(O)lP) = --fN(P~")"~(P")~'(Pt')"~pXN," V("1)"2'"3), 

nl v n2" ~ x n 3  ~7" n3) ,  (OiA :l..2..3RO)lp)= ) (p,) re , )  p ,. 

= 2fr~(P"')"I(P")"~(P~')"3PXN~" 

where N, 

(1.3a) 

(1.3b) 

(1.3c) 

is the proton spinor. The normalisation is chosen such that V (°'°'°) = 
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a° b° 

Fig. 1. Diagrams contributing to the amplitude for the decay p ~ 0r°e + using the chiral lagrangian of 
refs. [5,6]. 

T (°'°'°) = 1. (A ~°'°'°) vanishes by symmetry.) In this paper we shall attempt to 
calculate the overall normalisation constant fN (analogous to f~ in the case of 
pions). 

Whereas the above explored the behaviour of the proton wave function at 
light-like separations, the process of proton decay is a short distance process, in that 
at least two of the quarks must be within a distance of O(1/Mx). Of course it is not 
necessary for all of the quarks to be at such separations, and often the third quark 
will be just a spectator. However the chiral lagrangian approach [5, 6] in the soft 
pion limit allows all decays of the form nucleon ~ anti-lepton + pseudoscalar, as 
illustrated in fig. 1, to be related to the matrix element of just two local operators 

<O; ( Oo) > =_ eJk<Ol ( ) UL,rlP) = aNL,~,, 0.4a) 

(01(o ),lp>  'Jk(01(u Ca ) k -= UL,vIp) ----- #NL, v . (lAb) 

Furthermore, if the decay is mediated purely by the exchange of superheavy gauge 
bosons, as is the case with minimal grand unified theories, then the operators must 
involve both left- and fight-handed fields so that the decay rate depends on the 
single parameter a. Thus, for example, in minimal SU(5) we have [6] 

2 ) 2  ~2 mp m,~ 
F(p ~ ~r°e +) = ¼~rlal2a~tJMA2(1 + gA, - ~  1 -- 

mp 
(1.5) 

where M x is the mass of the superheavy gauge boson, aOU M is the value of the 
coupling at the unification scale and A is the short-distance enhancement factor 
arising from QCD and weak interaction gauge boson exchange between some low 
energy hadronic scale Q and M x. Though we adopt the chiral lagrangian approach 
in this paper we must stress that the validity of taking the soft pion limit is 
questionable in that the pion typically carries of the order of half of the momentum 
of the decaying proton. 

The rest of this paper is laid out as follows. The next section will begin with the 
construction of the lattice operators whose matrix dements we wish to measure, and 
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a description of how the matrix elements, as measured in the lattice at a spacing a, 
are related to their continuum counterparts in some specified renormalisation 
scheme, such as the Pauli-ViUars(PV) scheme at a scale Q. We then list the 
correlators which we shall use to extract these matrix elements. Sect. 3 will contain 
details of the numerical simulation, followed by a presentation of our results and a 
discussion. We will focus in particular on the uncertainties in our results due to 
non-scaling effects, and in the Size of the corrections arising when relating the lattice 
measurements to the continuum values. We will then look at the implications for the 
proton decay rate. Finally, sect. 4 contains a summary and our conclusions. 

2. Construction and renormalisation of the lattice operators 

The measurement of matrix elements in lattice gauge theories is complicated by 
the fact that a continuum operator belonging to a particular irreducible representa- 
tion of the Lorentz group generally corresponds to an admixture of lattice operators 
lying in different representations of the hypercubic group of the lattice. The 
problem is particularly severe with the operators of eq. (1.3) possessing two or more 
derivatives where the construction of the continuum operators requires the subtrac- 
tion of lattice operators diverging as the lattice spacing vanishes. Though this 
problem does not arise for the operators we are considering it is still necessary to 
evaluate the one-loop corrections in order to relate the operators as measured on the 
lattice to those as measured in the continuum using some (continuum) renormalisa- 
tion scheme, which we choose to be the PV scheme at a scale Q. The changes in 
passing between different continuum schemes are small and will be neglected. 

Computing the one-loop corrections to the operators O, and O, of eq. (1.4) in 
both the lattice and PV schemes for Wilson fermions at r = 1 yields [4] 

o f v ( Q )  = o L ( 1 ) { 1  - 4--~ (~' lnQ2a2 + C1L)}- ~--~'-['~LoL/1) - -~-'~cLoL(1) 
4~r " 2  ~8 k 

(2.1a) 

offv(Q) = o~L(1){1 - 4--~('t In QZa2 + C L ) } -  -~cLoL(1 )  + - ~ c ( o L ( 1 ) ,  

where 

(2.1b) 

( 0~), ==- ( uiC~pysd j } ('tLVPu k),e q~ , (2.1c) 

"t= - 2 ,  

C L = 37.9, 

C L = - 3 . 2 ,  

C~ = - 0 . 8  (2.1d) 
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and 

./L = 1( 1 - ./5). (2.1e) 

Thus, although there is a substantial correction in passing from the lattice operator 
measured at a spacing a to the continuum operator measured using the P ¥  scheme 
at a scale 1/a, the mixing between the operators, reflecting the chiral symmetry 
breaking induced by the Wilson parameter r, is small. 

We have some freedom of choice as to which operator to use to measure fN, and 
we work with 

*' (2.2) #=- [ u'c:. / ,d'l  u, , 

which has isospin ½ and therefore should interpolate well between the proton and 
the vacuum. Use of the Fierz identity yields 

f (  = 1[ l~(0,0,0) + j(0,o,0) _ 7~0,o,0)] + operators of higher twist, (2.3) 

so that 

^~ - ~f N P Nv + higher twist terms. (0lf~ IP) -- 3 ~ (2.4) 

Computing the one-loop corrections to the leading twist part of f yields 

fPV(Q)=fL (1 ) [1 - -~ ( . / o lnQ2a2+d)] ,  (2.5a) 

where 
2 

Yo = ~ ,  

d = 34.28. (2.5b) 

Thus the corrections in passing from the lattice measurement to the continuum are 
again potentially quite large. 

The method employed in extracting the lattice matrix elements is the same as that 
used in measuring baryon masses; the time-sliced correlator of the operator of 
interest with some other interpolating operator is constructed. Thus for example, in 
determining a we construct 

c.(/)= ~.,(OlO,,(t,x_)~(O,,(O,Q)) o r,7rr,10). (2.6) 
x 

Inserting a complete set of states in eq. (2.6) and rotating into euclidean space yields 

C,,(T) = [a l2e -" r  + terms that full faster with T (2.7) 

for a lattice with Dirichlet boundary conditions in the time direction. In practice, we 
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found it necessary to include two resonances in the right-hand side of eq. (2.7). The 
correlators corresponding to Oa and O r are constructed analogously. 

In determining fN we construct the following correlator 

Cf ( t )  = E <OI ½ { fo(t, _x)Yo/o(O, 0_) } 
_x 

~ ~., [ fo(t,x_)~ji(O,O) + fi(t,x_)'/of~(O,O) + f~(t,x_)~i/o(O,O)]lO}. (2.8) 
i ~ : O  

The above combination of operators ensures that the non-leading twist compo- 
nents of the matrix element are removed. Inserting a complete set of states in eq. 
(2.8) and rotating into euclidean space yields 

C/(t) = 9m2lf~12e-mr+ terms that fall faster with T. (2.9) 

3. Results and discussion 

All measurements were made using gauge configurations generated in the 
quenched approximation in an 83 × 16 lattice at fl = 5.7. Wilson propagators were 
calculated in 4-byte real arithmetic on the Edinburgh DAPs at three different quark 
masses corresponding to values of the hopping parameter K = 0.1525, 0.1575 and 
0.1625, using periodic boundary conditions in the spatial directions, and Dirichlet 
boundary conditions in the time direction. The source was placed at the third 
time-slice. The critical value for the hopping parameter at this fl value was 
determined in an earlier study [8] to be K c = 0.1695(7). The results of the present 
study are based on an analysis of 32 configurations, with successive configurations 
separated by at least 1200 sweeps to ensure minimal correlations between measure- 
ments. The correlators were fitted to a sum of exponentials and the following 
function minimized 

[ C(n+) 
n 4 

(3.1) 

where A and C are the measured and fitted values of the correlator respectively, and 
the sum is over an appropriate range of time-slices. 

Errors were evaluated using the "jack-knife" procedure [7]; the parameters were 
calculated by fitting to the data averaged over all 32 configurations, the errors being 
estimated by performing fits to 32 ensembles of data, each obtained by averaging 
over 31 configurations. A n  indication of the quality of the fits was obtained by 
varying the range of time-slices to which the data were fitted. 

In tables 1-3 we tabulate the 32-configuration averages of the correlators C~(t), 
Ca(t ) and C/(t) respectively at time slices 5-15. 
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TABLE 1 
32-configuration averages of correlator C~ ( t )  
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Time-slice Bare quark mass 

n4 m I m 2 m 3 

5 (2.60 + 0.07) × 10 -4  (3.54 __. 0.10) × 10 -4  (4.64 + 0.14) × 10 - 4  
6 (1.77 ___ 0.07) × 10 -5  (2.80 + 0.12) × 10 -5  (4.18 + 0.18) × 10 -5  
7 (1.72 _ 0.10) × 10 -6  (3.39 + 0.21) x 10 -6  (6.26 + 0.46) × 10 -6  
8 (2.28 + 0.16) x 10 -7  (5.86 + 0.51) × 10 -7  (1.38 q- 0.15) × 10 -6  
9 (3.68 + 0.36) X 10 -8  (1.24 -4- 0.14) × 10 -7  (3.65 + 0.49) X 10 -7  

10 (6.53 q- 0.81) × 10 -9  (2.79 +__ 0.42) × 10 -8  (9.92 + 1.73) × 10 -8  
11 (1.16 _+ 0.17) × 10 -9  (6.25 + 1.15) × 10 -9  (2.63 + 0.67) × 10 -8  
12 (2.03 + 0.34) × 10 -1°  (1.40 ___ 0.31) × 10 -1°  (7.30 + 2.45) X 10 -9  
13 (3.78 _+ 0.74) X 10 -11 (3.28 + 0.88) X 10 -10 (1.81 + 0.92) × 10 - 9  
14 (7.67 + 1.91) × 10 -12 (9.08 + 3.18) X 10 -11 (7.85 + 5.31) × 10 -1°  
15 (1.68 + 0.64) × 10 -12 (2.98 ___ 1.50) × 10 -11 (3.99 _+ 3.53) × 10 -x°  

The protons contribution to C~(t) and Ca(t ) (eq. (2.7)) are well exposed, and 
measurements of [a[ and [/31 at each of the three-quark mass values are shown in 
fig. 2a and fig. 2b respectively. However the protons contribution to C/(t)  (eq. (2.9)) 
is less well exposed, particularly at the smallest value of the quark mass. This is best 
illustrated in fig. 3, where we show the "effective" mass M(n4) defined by 

C [ ( n 4 - 1 ) ]  
M(n4)  = In Cf(n4) " (3.2) 

TABLE 2 
32-configuration averages of correlator C~ ( t )  

Time-slice Bare quark mass 

n4 m 1 m 2 m 3 

5 (3.09 + 0.10) × 10 -4  (4.29 + 0.15) × 10 -4  (5.77 + 0.20 
6 (2.02 + 0.09) × 10 -5  (3.23 + 0.16) × 10 -5  (4.90 + 0.24 
7 (1.84 + 0.11) × 10 -6  (3.60 + 0.25) × 10 -6  (6.66 _+ 0.50 
8 (2.27 _+ 0.18) x 10 -7  (5.73 _+ 0.56) X 10 -7  (1.39 + 0.18 
9 (3.52 + 0.37) × 10 -8  (1.16 + 0.16) x 10 -7  (3.88 _+ 0.67 

10 (6.29 + 0.83) x 10 -9  (2.72 + 0.43) × 10 - 8  (1.22 + 0.25 
11 (1.14 + 0.17) × 10 - 9  (6.30 _ 1.07) × 10 - 9  (3.31 + 0.87 
12 (2.09 + 0.35) × 10 -1°  (1.50 + 0.31) x 10 - 9  (9.06 ___ 2.81 
13 (3.90 _+ 0.75) x 10 - n  (3.64 + 0.93) × 10 -1°  (3.34 + 1.43 
14 (7.65 + 1.94) × 10 -12 (8.75 + 3.17) × 10 -11 (8.65 + 8.01 
15 (1.47 + 0.50) × 10 -12 (2.31 + 1.09) × 10 -11 (3.62 + 4.25 

~X 10 -4 

~× i0  -5 

i X 10 -6 

,X 10 -6 

,XIO -7 

i)<10 -7 

,X 10 -8 

IX 10 -9 

, x l O  -9 
, X 10-i0 

, X i 0 - i 0  
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TABLE 3 
32-conf igurat ion averages of correlator  (7/(t) 

Time-s l ice  Bare quark  mass  

n 4 rn 1 m 2 m3 

5 (7.58 + 0.23) x 10 -4  (9.82 + 0.33) x 10 -4  (1.23 + 0.44) x 10 -3  
6 (4.37 + 0.21) × 10 -5  (6.26 + 0.33) x 10 -5  (8.33 + 0.46) X 10 -5  
7 (3.73 + 0.27) × 10 -6  (6.34 + 0.55) × 10 -6  (9.67 ___ 1.06) x 10 -6  
8 (4.39 + 0.41) x 10 -7  (9.34 + 1.14) x 10 -7  (1.75 + 0.29) x 10 -6  
9 (6.63 + 0.75) x 10 -8  (1.81 ___ 0.27) X 10 -7  (4.14 + 0.87) X 10 -7  

10 (1.15 + 0.16) x 10 -8  (3.98 + 0.71) x 10 -8  (1.05 + 0.27) X 10 -7  
11 (2.07 __. 0.30) x 10 -9  (9.14 + 1.74) x 10 - 9  (2.98 + 0.81) x 10 -8  
12 (3.57 + 0.59) X 10 -1°  (2.01 ___ 0.44) X 10 - 9  (9.97 + 3.75) x 10 - 9  
13 (6.66 + 1.29) x 10 -11 (5.13 + 1.40) x 10 -1°  (3.91 + 1.92) X 10 - 9  
14 (1.37 + 0.36) x 10 -11 (1.53 + 0.57) x 10 -1°  (1.87 _+ 1.05) x 10 -9  
15 (3.24 + 1.11) x 10 -12 (4.96 + 2.34) X 10 -11 (8.36 + 5.58) X 10 -1°  

4.0 

3 , 0  

0 
x 

m 

0 
m 2 . 0  

O3 
t~ 

1 . 0  

il 
o.o i = i i. i. 

2 . 9  3 . 0  3.1 3 . 2  3 3  3 4  3 . 5  

mq 

Fig. 2. M e a s u r e m e n t s  of Ja J, I fl I at the three different  values of  the quark  mass  are shown  in figs. 2a  
and  2b respectively.  Also  shown are the critical value of the quark  mass  (dashed  line) cor responding  to 

m,~ = 0, and  the ex t rapola t ion  of  the pa rame te r s  to the physical  value  of the quark  m a s s  (dot -dash  line). 
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Fig. 2 (continued). 

The contributions of the higher mass resonances in eq. (2.9) are substantially 
greater than those for Ca(t ) and CB(t), and furthermore edge effects at the temporal 
boundary of the lattice infiltrate to smaller values of t. Indeed it is difficult to 
discern the protons contribution to Cf(t) at the smallest value of the quark mass 
from fig. 3. Nevertheless in fig. 4, we show estimates of If N[ at each value of the 
quark mass, with the caveat that consistent fits at the  lowest quark mass are 
obtained only over a limited range of time-slices. Finally we have also measured @, 
introduced in eq. (2.1c), for a few configurations to ensure that it is not anomalously 
large. 

We have extrapolated the data linearly in the quark mass in order to obtain 
estimates of the parameters at the physical quark mass, yielding 

[a[a 3 = 2.6 × 10 -2 , 

I/3la 3 = 2.1 × 10 -2,  

IfN[a z = 1.5 x 10 -2. (3.3) 
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Fig. 3. A plot of the "effective" mass defined in eq. (3.2) versus the time slice for each value of the 
quark mass. 

Turning to the question of what choice to make for the lattice spacing in eq. (3.3), 
we remark that unfortunately there is no unique value of the lattice spacing at 
fl = 5.7 with Wilson fermions. In particular if the lattice spacing is chosen so as to 
ensure the correct value for the p-mass then the proton mass is overestimated [8]. 
We choose the lattice spacing so as to give the correct value for the proton mass, 
yielding 

a -1 = 0.85 + 0.08 GeV. (3.4) 

Using the central value of the lattice spacing yields 

l a L ( 1 ) I = I . 6 × 1 0 - 2 G e V  3, 

/3L(1) I = 1.3 × 10-2 OeV3, 

f L ( 1 )  = l . l × 1 0 - 2 O e V  2. (3.5) 
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Fig. 4. Measurements of IfN I at the three values of the quark mass. Also shown are the critical value of 
the quark mass (dashed line) corresponding to m,  = 0, and the extrapolation of the parameters to the 

physical value of the quark mass (dot-dash line). 

Other prescriptions for fixing the lattice spacing yield values for a -1 which are 
larger than that quoted in eq. (3.4) and will therefore tend to increase estimates of 
the proton decay rate. 

We now address the question of the corrections arising in passing to the 
continuum theory, and begin by considering the lowest dimension operators. We see 
from eq. (2.1) that the correction due to the mixing with O r is small, and so we shall 
neglect it. Measurements of the nucleon mass by Bowler et al. [8] found that the 
operator 

eiJ~( uiCd j) 75d k 

has a very small residue. Thus we expect a and/3 to have different signs so that 

O~e,~(Q) = oLp(al--)(1 + 4 -~(21nQ2a2-C) ) ,  (3.6) 
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where C is a number of order 40. The question as to what value to take for a/4~r 

can only be answered by performing a higher order calculation. However C arises 
purely from the lattice calculation, and hence it is natural to use the coupling 
constant that is renormalized on the lattice at a spacing a. Even at the value of the 
inverse lattice spacing given by eq. (3.4), a/4~r is only of the order of 1% since A L 
= ~ A  u°M [9]. Thus the value of a or fl measured in the continuum using the PV 
scheme at a scale 1 / a  is reduced from the value measured on the lattice at a spacing 
a by about 40%. Furthermore if we make the assumption that physics on the lattice 
corresponds to physics in the continuum at a scale 100 times higher (recall 
AL= 1--~A MOM) then we would take Qa = 100 in eq. (3.6) and the correction is 

reduced by one half. Thus we conclude 

[a[ = 1.3 × 10 -2 GeV 3 , 

1131 --  1 .0  × 10 - 2  GeV 3, (3.7) 

where both quantities are quoted using the PV scheme at a scale Q = 85 GeV. 
We now focus our attention on fN and note from eq. (2.5) that the correction in 

passing from the lattice measurement to the Pauli-Villars at a scale 1 / a  is of the 
order of 35%. However if we adhere to our assumption that physics on the lattice at 
the spacing given by eq. (3.4) is equivalent to physics in the continuum at 85 GeV 
we find that the correction actually increases to about 40% yielding 

IfNI = 6.6 × 10 -3 GeV 2 . (3.8) 

The values quoted in eq. (3.7) are within the range of many other estimates using 
QCD sum rules or bag models. However a recent calculation by Hara et al. [3] on a 
163× 48 lattice with spacing a - t =  1.8 GeV found a value somewhat larger than 
ours of a = 0.029 GeV 3, reduced by, say, 20% to yield the PV renormalised quantity 
at Q = 180 GeV. We should point out that our prescription for relating the lattice 
measurements to the continuum differs from the one that they have adopted, with 
which we disagree in principle. Though the discrepancy between our measurements 
and theirs seems quite large, we must point out that there is no unique value of the 
lattice spacing at/3 = 5.7, and our value is chosen so as to put a lower bound on the 
parameters. Our value of IfNI is actually rather larger than sum rule estimates [10] 
of IfNI =(5 .3  + 0 . 5 ) ×  10 -3 GeV 2, but a discrepancy of only 20% is perhaps 
encouraging in view of t h e  large systematic errors that also afflict sum rule 

calculations. 
We conclude this section with a look at the implications of our results for the 

proton decay rate. Setting a - - 1 . 3  × 10 -2 GeV 3, A Ms= 100 MeV and truncating 
the short distance enhancement factor A at Q = 85 GeV, we find from eq. (1.5) that 

( M x / 4  
z = (p ~ r ° e  +) = 5.4 × 1031 × k 1--~]  years. (3.9) 
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Recent experimental limits on the proton decay rate yield [11] 

~'(p ~ ~r°e +) > 3.1 × 1032 years, (3.10) 

from which we conclude that for the minimal SU(5) model in the soft pion limit to 
be consistent with the known limits on the proton lifetime, the mass of the 
superheavy gauge boson at A Ms = 100 MeV must satisfy 

M x > 1.5 X 1015 GeV, (3.11) 

whereas recent estimates suggest [12] 

M x = 1.3 X 10"X (1.5) -+' GeV. (3.12) 

4. Conclusions 

We have made measurements of the matrix elements of the 3-quark operators of 
lowest dimension relevant for proton decay, as well as of the 3-quark operator of 
lowest twist that determines the normalization of the proton wave function. At the 
value of fl at which our measurements are made, we are not yet fully into the scaling 
region. Nevertheless, our estimates of a, fl and fN are encouragingly close to those 
obtained from the bag model and sum rule calculations. Furthermore, our estimate 
of the proton lifetime is unable to rescue the minimal SU(5) grand unified theory, in 
agreement with another recent lattice calculation. 

Reliable numerical calculations will require simulations that are performed firstly 
at higher values of fl, and secondly with the inclusion of dynamical quarks. Finally 
we need an understanding of finite size scaling effects. 
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