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Abstract The uniaxial deformation of polycrystals are modelled using three
incremental rate-insensitive micro-mechanic models; the Taylor model, the Sachs
model and Hutchinson’s self-consistent model. The predictions of the two rigid
plastic upper- and lower-bound models (Taylor and Sachs) are compared with the
predictions of the elastic-plastic self-consistent model. As expected, the results of
the self-consistent model is about half-way between the upper- and lower-bound
models. The average number of active slip systems is about 3.6 compared to the
five active slip systems in the Taylor model and the one active slip system in the
Sachs model. The average m-factor is about 2.6 compared to the 3.06 in the Taylor
model and the 2.23 in the Sachs model. The predicted rotation pattern of the self-
consistent model is closest to the Taylor model, but the orientation distribution of
the m-factor is closest to the Sachs model. The influence of the elastic anisotropy
is investigated by comparing the self-consistent predictions for aluminium, copper
and a hypothetical material (hybrid) with the elastic anisotropy of copper and the
Young’s modulus and work hardening behaviour of aluminium. It is concluded,
that the effect of the elastic anisotropy is limited to the very early stages of
plasticity (εP < ∼0.1%), as the deformation pattern is almost identical for the
three materials at higher strains.

The predictions of the three models are evaluated by neutron diffraction mea-
surements of elastic lattice strains in grain sub-sets within the polycrystal. In
the evaluation of the rigid plastic Taylor and Sachs models, the ’elastic’ strain is
determined as the calculated stress divided by the diffraction elastic constants (cal-
culated as the Kröner elastic stiffnesses for the grain sub-sets). The comparison of
calculated and measured lattice strains are made for three different materials; alu-
minium, copper and austenitic stainless steel. The predictions of the self-consistent
model is more accurate and detailed than the predictions of the Taylor and Sachs
models, though some discrepancies are noted for some reflections.

The self-consistent model is used to determine the most suitable reflection for
technological applications of neutron diffraction, where focus is on the volume av-
erage stress state in engineering components. To be able to successfully convert the
measured elastic lattice strains for a specific reflection into overall volume average
stresses, there must be a linear relation between the lattice strain of the reflection
and the overall stress. According to the model predictions the 311-reflection is
the most suitable reflection, as it shows the smallest deviations from linearity and
thereby also the smallest build-up of residual lattice strains. Below 5% deforma-
tion the deviations from linearity and the residual strains are below the normal
strain resolution of a neutron diffraction measurement.

The model predictions have pinpointed, that the selection of the reflection is
crucial for the validity of stresses calculated from the measured elastic lattice
strains. The calculations are limited to uniaxial tension with an initially random
texture, and in normal measurements with unknown stress state and texture, the
complexity of the measurements increases. If the stress state is unknown, there
will not be a unique solution to the macroscopic stress state, and the introduction
of texture will inherently change the intergranular stresses and strains within the
material, and therefore it might not be the 311-reflections, that is the most suitable
reflection under all conditions.
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1 Introduction

When designing components engineers optimize the structure of the components
for strength and weight. An optimized component can reduce both economical
and environmental costs especially if it is utilised in transportation applications,
where the fuel efficiency is highly dependent of the total mass of the construction.

To be able to optimize the component, the engineer must know the internal
stress and strain state in the component. From the stress state it is possible to
determine where in the construction, the material is loaded close to the design
limit and where the material load is relatively low. Then the component can
be redesigned reducing cross sections with relatively low internal stresses and
increasing cross section or using other forms of local reinforcement in areas of
relatively high internal stress.

Using finite element model calculations (Zienkiewicz and Taylor 1988) it is pos-
sible to determine the stress and strain concentrations under load within a com-
ponent, with the assumption, that the material is stress-free, after production.
However, if the material have been plastically deformed during production, resid-
ual stresses and strains have been built up in the component. To get the correct
answer, these residual stresses and strains must be incorporated in the calcu-
lations. Residual stresses are self-equilibrating stresses existing within materials
without external loading. The residual stresses are produced by loading a elasti-
cally and/or plastically anisotropic material to a permanent deformation. Even if
the overall plastic deformation is homogeneous, there will be induced misfit strains
in the material, as the grains do not undergo the same plastic deformation due to
the crystallographic orientation. Residual stress are also induced in the material,
if it is subjected to inhomogeneous overall plastic deformation.

The residual stresses can be either beneficial or detrimental for a component
depending on the combination of the sign of the residual stress and the type of
loading. As an example the introduction of compressive residual stresses by shot
peening can increase the fracture load for a component loaded in tension.

If the designer wants to use the full capability of a material and still make a
safe component, the residual stresses in the component must be considered. The
residual stresses can be determined non-destructively using diffraction techniques.
In these techniques, the Bragg scattering of X-rays and neutrons in the crystal
structure of materials is utilised to measure the lattice spacing in grains within the
material (Noyan and Cohen 1987). The penetration depth of X-rays is in the order
of µm in normal structure materials limiting the measurements to the surface of
the materials, but the penetration depth of neutrons is in the order of cm in the



same materials making it possible to measure a bulk average of the elastic strains
within sub-sets of grains in a component.

In a diffraction measurement one elastic lattice strain component in one direc-
tion is determined for a specific grain sub-set. The grains, that participate in the
measurement, are the ones, that have a specific lattice plane normal in a given
direction. This selective nature of the diffraction techniques introduces difficulties
in the interpretation of the measurements. In technological applications the overall
stress state in the sample is of interest, and the conversion of the specific elastic
lattice strain components within the grain sub-sets to an overall stress state is not
trivial.

The simplest way to estimate the stress state is to multiply the determined
elastic lattice strain component with the Young’s modulus for the used reflection
(grain sub-set). The moduli for the specific reflections are known as the diffraction
elastic constants. By using this simple calculation, it is assumed, that the stress
state in the sample is one-dimensional. If elastic strain components are determined
in multiple directions, it is possible to use the generalised Hooke’s law in the
calculations of the stress state, and thereby compensating for a three-dimensional
stress state. But still this assumes isotropic material, and furthermore, the lattice
strains, that are determined in such measurements of a full strain tensor, are not
originating from the same set of grains, and therefore intergranular strains will
influence the results.

Another way to determine the overall stress state is available by numerical
modelling of polycrystal deformation. Using micro-mechanical polycrystal defor-
mation models, which are based on the deformation of the constituents (grains)
of the polycrystal, it is possible to predict the elastic and plastic deformation
of a polycrystal and thereby of specific grain sub-sets within the polycrystal. The
polycrystal deformation models can be used to determine the relation between the
elastic strain in given grain sub-sets and the overall stress, and the intergranular
stresses and strains between the grain sub-sets, as functions of the deformation.
The use of the model predictions of residual strains in technological applications
of neutron diffraction is illustrated in (Lorentzen et al. 1996), where the predicted
intergranular residual strains in a plastically deformed copper sample is used to
correlate neutron diffraction measurements and FEM calculations.

In the last seventy years several theories predicting the flow-stress and texture
development in polycrystals during plastic deformation have been proposed. The
models utilise different simplifications to describe the coupling between the grains
in the polycrystal. In the upper-bound models, e.g. Taylor and Bishop-Hill (Taylor
1938, Bishop and Hill 1951a, Bishop and Hill 1951b, Bishop 1953), all the grains
are subjected to the same strain and in the lower-bound models, e.g. Sachs and
Leffers (Sachs 1928, Leffers 1995), the grains are subjected to the same stress. The
coupling between the grains is very stiff in these rather simple models, and they are
the upper- and lower-bound polycrystal plasticity models as the Voigt and Reuss
(Voigt 1928, Reuss 1929) models are for the elastic stiffness of a polycrystal.

Based on Eshelby’s inclusion theory (Eshelby 1957) the self-consistent scheme
was introduced in the Kröner and Budiansky-Wu models (Kröner 1961, Budiansky
and Wu 1962). In the self-consistent models, the grains are regarded as inclusions
in an infinite homogeneous matrix. Eshelby has shown, that the stress and strain
state is uniform within the inclusion if, it has an ellipsoidal shape. The properties
of the matrix are determined as the overall average properties of the single crystal
agglomerate. In the Kröner and Budiansky-Wu models the coupling between a
grain and the polycrystal (matrix) is determined by the elastic stiffness of the
matrix and the constituents, which is a relatively stiff coupling in the plastic
regime. In the self-consistent models the interaction between the grains and the
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pseudo polycrystal is incorporated in the model, but the direct grain-to-grain
interaction is not taken into account. The elastic anisotropy of the model material
is inherently included in the self-consistent modelling schemes as opposed to the
Sachs and Taylor models, which do not include any material characteristics.

The Kröner and Budiansky-Wu self-consistent schemes uses a fully elastic cou-
pling between the grains and the matrix, and therefore it predicts a very low de-
formation heterogeneity in the polycrystal. The self-consistent modelling scheme
of Hill/Hutchinson (Hill 1965a, Hill 1965b, Hill 1966, Hutchinson 1970) introduces
the elastic-plastic coupling between the grains and the matrix, which predicts a
more realistic deformation heterogeneity in the polycrystal. In these models the
interaction between the grain and the matrix is determined by the instantaneous
grain- and matrix moduli.

In the present work, the Taylor model, the Sachs model and mainly the self-
consistent model of Hutchinson are investigated. The focus of the investigations
are on the different basic assumptions in the models and the implications on
the deformation properties in the constituents. Furthermore the development of
strains and stresses within grain sub-sets are of interest as a means of evaluating
the model predictions by neutron diffraction measurements.

The simple Taylor and Sachs models are rigid plastic models, which makes the
comparison with the measured elastic lattice strain components rather artificial,
as the calculated stress in the grain sub-sets must be converted into ’elastic’ strains
by division by the diffraction elastic constants. The diffraction elastic constants are
determined as the Kröner elastic stiffnesses of the grain sub-sets (Kröner 1958).
In the more sophisticated elastic-plastic self-consistent model, the specific elastic
properties of a given material is taken into account, and it is straight forward to
determine elastic strain components for specific grain sub-sets.

The predictions of the models are correlated with the results of neutron diffrac-
tion measurements. In the diffraction measurements elastic lattice strains are mea-
sured in specific grain sub-sets determined by Bragg’s law as described in section 4.
This correlation of calculated and measured elastic lattice strain serve as an eval-
uation of the modelling schemes on a grain size scale. This form of evaluation is
more specific than the normal evaluation of polycrystal deformation model, where
the predicted textures for large deformations are correlated with measured tex-
tures. Neutron diffraction measurements of residual and in-situ lattice strains in
aluminium, copper and austenitic stainless steel samples loaded in uniaxial tension
are used in the investigations.

Risø–R–985(EN) 3
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2 Modelling

The nomenclature used in the present work is mainly the one used in (Hutchinson
1970). Boldface lower case letters are used as symbols for second-order Cartesian
tensors and fourth-order Cartesian tensors are represented by boldface upper case
letters. The contracted product of two second-order tensors, aijbij, is written as
ab, and the inner product of two fourth-order tensors, AijmnBmnkl, is written as
AB.

The tensors are represented in an orthonormal dyadic base as described in
(Pedersen 1995): The symmetric second-order tensors are represented by an vector,
where the original off-diagonal components are multiplied with

√
2, as shown in

equation 2.1.

a =
[
a11 a22 a33

√
2a23

√
2a31

√
2a12

]
(2.1)

The symmetric fourth-order tensors are represented by a matrix, where the com-
ponents in the upper right quadrant and in the lower left quadrant are multiplied
with

√
2, and the components in the lower right quadrant is multiplied with 2, as

shown in equation 2.2.

A =



A1111 A1122 A1133

√
2A1123

√
2A1131

√
2A1112

A2211 A2222 A2233

√
2A2223

√
2A2231

√
2A2212

A3311 A3322 A3333

√
2A3323

√
2A3331

√
2A3312√

2A2311

√
2A2322

√
2A2333 2A2323 2A2331 2A2312√

2A3111

√
2A3122

√
2A3133 2A3123 2A3131 2A3112√

2A1211

√
2A1222

√
2A1233 2A1223 2A1231 2A1212

 (2.2)

This definition implies that the unity tensor satisfying I = A−1A, defined
as Iijkl = 1/2 (δikδjl + δilδjk), renders a matrix with one’s in all the diagonal
elements.

2.1 Taylor Model

Taylor (Taylor 1938) proposed a model for calculating the uniaxial stress-strain
relation for a polycrystal in which, the polycrystal is regarded as an agglomerate
of randomly oriented fcc single crystals, which are assumed to be rigid-plastic.

In a uniaxial tension test of a single crystal, the lateral dimensions can change
relatively freely, and the glide shear produced by slip on a single slip system is
sufficient to accommodate the tensile deformation. The active slip system is the



Slip direction

Slip plane
normal

F

A

Figure 2.1. The geometry of slip in crystalline materials.

one with the highest resolved shear stress according to the Schmid law (Hull and
Bacon 1984), see figure 2.1.

The tensile stress is σ = F/A, the force perpendicular to the slip plane is F cosα,
and the area of the slip plane is A/ cosβ. The resolved shear stress is found as
τ = σ cosα cos β, where the quantity cosα cos β is known as the Schmid factor.
The same criteria for the active slip system can be expressed by the m-factor (or
Taylor factor: m = σ/τ = γ/ε). This means, that the active slip system is the one
with the minimum m-factor.

If the crystal is embedded in a polycrystalline aggregate, it can not change its
shape freely due to constraints from the surrounding polycrystal. In this case, slip
from five independent slip systems is generally required to accommodate the five
independent strain components for plastic deformation (Von Mises 1928). Based
on the principle of virtual work, Taylor hypothesized that, among all combination
of five slip systems which are capable of accommodating the imposed strain, the
active combination is the one with the minimum accumulated slip. In analogy to
the single slip case, this is equivalent to the combination of slip with the minimum
m-factor value, where

m =
∑
i γ̇
i

ε̇P11

(2.3)

and i identifies the active slip systems. Based on visual observations of grains
in a drawn wire, Taylor assumed, that the plastic strain is homogeneous and
independent of the orientation of the grain, that is the strain in any grain equals the
average strain. The same assumption is made for the strain rate in the grains; ε̇pij =
˙̄εpij. This assumption of uniform strain in all the grains implies stress discontinuities
at the grain boundaries. However, the Taylor model have been used with success
for prediction of textures for large deformations.

In a fcc single crystal all slip occurs on one of the four close packed {111}
planes in one of the tree 〈110〉 directions. In each grain these twelve slip systems are
specified relative to an arbitrary set of cartesian axes by the unit vector ni normal
to the slip plane, and the unit vector mi in the slip direction (i = 1, 2, . . . , 12).
Furthermore Taylor assumed a uniform stress state σij and thereby stress rate σ̇ij
within each grain. The resolved shear stress rate on the ith slip system is (the
Schmid law)

τ̇ i = σ̇kln
i
km

i
l = σ̇klµ

i
kl (2.4)

where

µikl =
1
2
(
mi
kn

i
l +mi

ln
i
k

)
(2.5)
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The plastic strain rate in the grain due to the slip that have occurred along all
the slip systems, is

ε̇Pkl =
∑
i

γ̇iµikl (2.6)

where the summation is taken over all active slip systems. Choosing the sign of
mi so that γ̇i is never negative the number of possible slip systems increases to 24.
Finding the minimum virtual work for a given strain rate leads to the minimization
of the linear cost function, Ẇ = σ̇ε̇ =

∑
i τ̇
iγ̇i, with the criterion that all variables,

γ̇i, are non-negative.
This type of problem is easily solved with linear programming, e.g. the simplex

method (Arora 1989). Depending on the orientation of the grain, the number of
possible active slip systems with minimum work done reduces to six or eight (Chin
and Mammel 1967). Of all the combinations of choosing five slip systems out of six
or eight, there are only few, but more than one, solutions with the same minimum
m-factor. This leads to an ambiguity in choosing the active slip systems. Many
criteria have been suggested for the selection among the solutions with minimum
m-factor, all with a heuristic basis.

Taylor assumed, that the critical resolved shear stress rate is related to the slip
rates by

τ̇ i =
∑
j

hijγ̇
j (2.7)

where all components of the hardening matrix, hij, are identical (h). If Taylor
hardening (isotropic hardening) is used, the critical resolved shear stress rate is the
same for all slip systems, and the ambiguity will arise for every strain increment. If
Hill’s more general hardening law, where it is assumed that the self-hardening and
latent-hardening have different properties (hii = h1 and other hij = h2), is used,
the ambiguity only arises in the first iteration, where the initial critical resolved
shear stress, τ0, is assumed equal on all the slip systems.

In the present Taylor model, the active combination of slip systems is intuitively
chosen to the one, that has a maximum amount of slip on one slip system and
then the four other slip systems have a relative small amount of slip in order
to accommodate the prescribed deformation. In (Leffers et al. 1988) a series of
selection criteria for the active set of slip systems are discussed.

The stress rate in the grains can be determined using equation 2.4 for the active
slip systems

σ̇klµ
i
kl = τ̇ i (2.8)

Splitting the stress rate tensor in its deviatoric and spherical parts, it is found
that

σ̇ij = ṡij +
1
3
δij σ̇kk (2.9)

where δ is Kronecker’s delta, and since µikk ≡ 0 we get for the five active slip
systems

ṡklµ
i
kl = τ̇ i (2.10)

This provides five equations to find the five deviatoric stress rate components
from the hardening parameters. However, in terms of absolute stress rate values
the possible hydrostatic stress rate component σ̇kk is still undetermined.

2.1.1 Grain Rotations

Once the slip rates have been identified, it is possible to determine the lattice
rotation of the grains, and hence the model provides a means of following the

Risø–R–985(EN) 7



generation of texture by plastic deformation. The lattice rotation increment, Ω̇
L

,
is expressed in terms of the specific γ̇i,ni and mi values by

Ω̇Lkl = −
∑
i

{
1
2
(
mi
kn

i
l −mi

ln
i
k

)
γ̇i
}

(2.11)

The Euler angles, ϕ1, Φ and ϕ2 (Bunge 1982), are the mostly used orientation
parameters for quantitative texture analysis but in the following calculations of the
lattice rotations in the grains the definition of the Euler angles with two rotations
around the same axis will lead to, that some of the following equations will be
under determined. Instead it is chosen to use the Cardanic angles for calculation
of the lattice rotation increments, but still use the Euler angles to describe the
grain orientation for all external parameters.

The Cardanic angles θ1, θ2 and θ3 describe a rotation around the three Cartesian
axes respectively and do not have the singularities in the orientation space as the
Euler angles. The relations between the Euler angles and the Cardanic angles are
as follows

ϕ1 = θ3 − atantanϕ2
cos Φ θ1 = atan (cosϕ2 tan Φ)

Φ = atan tanθ1
cosϕ2

θ2 = −atan (tanϕ2 sinϕ1)

ϕ2 = −atan tan θ2
sin θ1

θ3 = ϕ1 + atan (tanϕ2 cos Φ)
(2.12)

Using the Cardanic angles the total rotation of the grain coordinate system
related to the specimen coordinate system is

Q = Q1Q2Q3 (2.13)

where

Q1 =

1 0 0
0 cos θ1 sin θ1

0 − sin θ1 cos θ1

 , Q2 =

cos θ2 0 − sin θ2

0 1 0
sin θ2 0 cos θ2

 and

Q3 =

 cos θ3 sin θ3 0
− sin θ3 cos θ3 0

0 0 1

 (2.14)

are a rotation around the 1st axis, around the rotated 2nd axis and around the
rotated 3rd axis respectively. Using only first order elements, a small increment in
the rotation is given by

Q̇ = Q̇1Q2Q3 +Q1Q̇2Q3 +Q1Q2Q̇3 (2.15)

where

Q̇1 =

0 0 0
0 − sin θ1 cos θ1

0 − cos θ1 − sin θ1

 θ̇1, Q̇2 =

− sin θ2 0 − cos θ2

0 0 0
cos θ2 0 − sin θ2

 θ̇2 and

Q̇3 =

− sin θ3 cos θ3 0
− cos θ3 − sin θ3 0

0 0 0

 θ̇3 (2.16)

To simplify the calculations we define the three rotation matrices

Ω̇1 = Q̇1Q
T
1 =

0 0 0
0 0 θ̇1

0 −θ̇1 0

 , Ω̇2 = Q̇2Q
T
2 =

 0 0 −θ̇2

0 0 0
θ̇2 0 0

and

Ω̇3 = Q̇3Q
T
3 =

 0 θ̇3 0
−θ̇3 0 0

0 0 0

 (2.17)
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Now we can rewrite 2.15 into

Q̇ = QΩ̇1 +Q1Ω̇2Q
T
1Q+Q1Q2Ω̇3Q

T
1Q

T
2Q (2.18)

The lattice rotation increment in the grain Ω̇
L

is found as

Ω̇
L

= Q̇QT = Ω̇1 +Q1Ω̇2Q
T
1 +Q1Q2Ω̇3Q

T
1Q

T
2 (2.19)

and denoting the three rotation matrices Ω̇1, Ω̇2 and Ω̇3 by their rotation vectors
ω̇1, ω̇2 and ω̇3

ω̇1 =

−θ̇1

0
0

 , ω̇2 =

 0
−θ̇2

0

 and ω̇3 =

 0
0
−θ̇3

 (2.20)

equation 2.19 simplifies to

ω̇L = ω̇1 +Q1ω̇2 +Q1Q2ω̇3 (2.21)

or written out in components

ω̇L =

ω̇L1ω̇L2
ω̇L3

 =

 −θ̇1 + sin θ2 θ̇3

− cos θ1 θ̇2 − sin θ1 cos θ2 θ̇3

sin θ1 θ̇2 − cos θ1 cos θ2 θ̇3

 (2.22)

where ω̇L is the lattice rotation increment vector. This renders three equations
for the calculation of the angle increments

θ̇1 = −ω̇L1 − tanθ2 sin θ1ω̇
L
2 − tan θ2 cos θ1ω̇

L
3

θ̇2 = − cos θ1ω̇
L
2 + sin θ1ω̇

L
3

θ̇3 = − sin θ1
cos θ2

ω̇L2 − cos θ1
cos θ2

ω̇L3

(2.23)

and it is now possible to determine the rotation increment of the grain for a given
strain rate by solving the equations 2.11 and 2.23.

2.1.2 Model Predictions

The present Taylor model is implemented in an ANSI C program, that can de-
termine the deformation of a agglomerate of rigid plastic single crystals. The flow
chart for taylor.c is shown in figure 2.2.

The initialization consists of a number of parameters defining values such as;
the number of grains, the strain rate, the number of iterations, the initial critical
resolved shear stress, the hardening law (Taylor or Hill) and the hardening coeffi-
cients. For every iteration, the stresses, strains and m-factors are calculated, and
the output of the program is the average values of σ, ε and the m-factor for the
polycrystal and for selected grain sub-sets. The orientations of all the grains are
updated for each iteration, and the orientation of selected grains are determined
as a function of the deformation.

In the present calculations the polycrystal is represented by a set of 5000 single
crystals with initially random orientations, represented by their Euler angles (ϕ1,
Φ and ϕ2). As shown in Table 2.1, the average m-factor value is calculated for
four grain sub-sets: grains with a 〈100〉, 〈110〉 or 〈111〉 lattice plane normal within
10◦ of the tensile direction, and grains with a 〈123〉 lattice plane normal within 5◦

of the tension direction. Additionally the m-factor is determined for three single
orientations: 〈100〉, 〈110〉 and 〈111〉.

The results of the calculations with the present Taylor model are in agreement
with previous reported calculations (Chin and Mammel 1967) as seen in table 2.1.

Risø–R–985(EN) 9



Figure 2.2. Flow chart for taylor.c

Direction Present model (Chin and Mammel 1967)
[100] 2.449 2.449
[100], 0 to 10◦ 2.392 2.394
[110] 3.674 3.674
[110], 0 to 10◦ 3.594 3.591
[111] 3.674 3.674
[111], 0 to 10◦ 3.591 3.591
[123], 0 to 5◦ 3.144 3.199
Average 3.063 3.067

Table 2.1. Calculated m-factors for specific orientations and as average.

The minor differences in the results can be caused by different ways of representing
the random orientations.

The predictions of the used polycrystal deformation models are compared with
neutron diffraction measurements described in section 5.1. In the diffraction mea-
surements the elastic lattice strain within specific grain sub-sets are determined
as a function of the applied load in a tension test. The calculated stresses must be
converted to ’elastic’ strain components before a comparison with the measured
elastic lattice strains is possible. The average stress within a grain sub-set, repre-
senting the reflections in the measurements, are determined as well as the overall
stress-strain response of the model. The following parameters are used in the cal-
culations: ε̇P11 = 0.01%, τ0 = 10.9MPa and h = 40MPa. The result are presented
in figure 2.3(a).

The grains within the sub-sets all have a specific lattice plane normal parallel to
the tension axis as in a diffraction measurement. The grain sub-sets (reflections)
are denoted by the hkl plane normal, that is parallel to the tensile axis; 〈111〉, 〈200〉
and 〈220〉. The latter two are used instead of 〈100〉 and 〈110〉, as the extinction
rules for diffraction in the fcc lattice only allows diffraction for planes where hkl
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(a) The stress strain response of the poly-
crystal and of the three grain sub-sets.

(b) The lattice rotations in 15 specific

grains for uniaxial tension to 70% defor-
mation.

Figure 2.3. Stress-strain response and lattice rotations in the Taylor model.

are all odd or all even (Barrett and Massalski 1980).
The Taylor model does not include any material parameters, such as the elastic

anisotropy, in the calculations. Thereby the stress-strain response is practically
identical for the 111- and 220-reflections, see figure 2.3(a), as the average m-factor
values are practically identical for these two reflections. Likewise the m-factor is
identical for the 〈111〉 and 〈220〉 directions, see table 2.1.

The lattice rotations of 15 specific grains have been calculated for uniaxial
tension to a total strain of 70%. The results for the present calculation are shown
in figure 2.3(b) in an inverse pole plot; the starting orientations are indicated by
circles, the end orientations by crosses. The lattice rotations calculated with the
present Taylor model is very similar to the lattice rotations presented in (Leffers
1988) for different polycrystal deformation models.

The model calculations show, that the present implementation of the Taylor
model predicts the same m-factors and lattice rotations as reported for other
implementations in the literature (Chin and Mammel 1967, Leffers 1988). With
relation to the neutron diffraction measurements the rigid plastic Taylor model
is rather simple as no material parameters, such as the elastic anisotropy, are
included in the model. The fact, that the model is rigid plastic, makes the com-
parison with the determined elastic lattice strains complicated, as the calculated
stresses must be converted to elastic lattice strain components before they are
comparable with the experimental results (as shown in section 5).

The predictions of the present Taylor model will be compared with the predic-
tions of the Sachs model and the self-consistent model in section 2.3.

2.2 Sachs Model

In the Sachs model (Sachs 1928) the polycrystal is regarded as an agglomerate
of rigid plastic single crystals as in the Taylor model. But instead of prescribing
the same strain in all the constituents, Sachs proposed to let all the grains be
prescribed the same stress, which leads to the so-called extreme lower-bound for
the polycrystal models.

The present Sachs model is an incremental rigid plastic model, where only the
stress state is assumed to be identical in all the grains, which is the more realistic
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lower-bound for the polycrystal models (this model is, in fact, a multi-slip model).
In uniaxial tension the only non-zero stress component is σ11. The resolved shear
stress rate on the ith slip system, τ̇ i, and the plastic strain rate, ε̇Pc , are determined
as described in section 2.1

τ̇ i = σ̇µi and ε̇Pc =
∑
i

γ̇iµi (2.24)

The active slip system in the Sachs model is the one with the highest resolved
shear stress rate. If the grain is oriented along a symmetry line, there will be two
slip systems with identical resolved shear stress rate, and if the grain is oriented
in a corner of the basic crystallographic triangle, there will be up to four, six or
eight slip systems with the same resolved shear stress rate. In such cases, all the
slip systems with the highest resolved shear stress rate is active, and it is assumed,
that the amount of slip is identical on all the active slip systems.

All the grains in the agglomerate are prescribed the same strain increment in
the tension direction, ε̇p11, and thereby the slip on the active slip systems in the
grains can be determined from

ε̇P11 =
∑
i

γ̇iµi11 (2.25)

The resolved shear stress rate is assumed to be related to the shear rates by
the hardening matrix, hij , using the linear isotropic hardening law described in
section 2.1. Knowing that σ11 is the only non-zero stress component, the stress
rate in the grain can be determined using the Schmid law (equation 2.24)

σ̇11µ
i
11 = τ̇ i =

∑
j

hij γ̇j (2.26)

As only the strain rate component in the tensile direction is the same in all the
grains, the Sachs model introduces both stress and strain discontinuities at the
grain boundaries. The lattice rotations in the grains are calculated from the slip
in the grains as described in section 2.1.1.

2.2.1 Model Predictions

The present Sachs model has been implemented in an ANSI C program, that can
calculate the overall stress-strain response of the model, and the relation between
the average stress in specific grain sub-sets, representing reflections in a neutron
diffraction measurement, and the overall strain. The flow chart for sachs.c is
shown in figure 2.4.

The results of a calculation, using the same parameters as in the Taylor model
calculations in section 2.1, are shown in figure 2.5(a). The m-factor (

∑
i γ̇
i/ε̇P11)

is also determined as an overall average and as average within the grain sub-sets
representing the 111-, 200- and 220-reflections. The results are listed in table 2.2
together with the corresponding results for the Taylor model presented in sec-
tion 2.1.

As the Taylor model, the Sachs model does not include any material parameters
in the calculations, and thereby the stress-strain response is identical for the 200-
and 220-reflections as seen in figure 2.5(a). The m-factor calculations also show
the same value for these two orientations, and the average m-factor is very similar
for the 200- and 220-reflections, see table 2.2. Notice that it is the 111- and 220-
reflections, that are identical in the Taylor model.

The lattice rotations of the same 15 grains as used in the Taylor model calcu-
lations have been calculated for uniaxial tension to a total strain of 70%. As seen
in figure 2.5(b), the grains oriented along symmetry lines rotate parallel to the
symmetry lines, as they have two or more active slip systems, and the grains in
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Figure 2.4. Flow chart for sachs.c.
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(a) The stress strain response of the poly-
crystal and of the three grain sub-sets.

(b) The lattice rotations in 15 specific

grains for uniaxial tension to 70% defor-
mation.

Figure 2.5. Stress-strain response and lattice rotations in the Sachs model.

the ’interior’ of the unit triangle rotates in ’straight lines’, as only one slip system
is active at a time. Again the starting orientations are indicated by circles and
end orientations by crosses.

As mentioned in section 2.1.2 the predictions of the present Taylor and Sachs
models will be compared with the predictions of the self-consistent model in sec-
tion 2.3.
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Direction Taylor model Sachs Model
[100] 2.449 2.449
[100], 0 to 10◦ 2.392 2.242
[110] 3.674 2.449
[110], 0 to 10◦ 3.594 2.238
[111] 3.674 3.674
[111], 0 to 10◦ 3.591 2.944
[123], 0 to 5◦ 3.144 2.155
Average 3.063 2.230

Table 2.2. Calculated m-factors for specific orientations and as average.

2.3 Self-consistent Model

In the simple polycrystal models such as the Sachs and Taylor models described
earlier, it is assumed, that elastic anisotropy is negligible during plastic deforma-
tion. It is obvious, however, that elastic anisotropy must play a dominant role at
the very early stage of plastic deformation (in the elastic-plastic transition range).
In this section, the effects of elastic anisotropy in the elastic-plastic transition
range and the possible remaining effects within the fully plastic range is investi-
gated using the more sophisticated self-consistent polycrystal deformation model.
The model, presented by Hutchinson (Hutchinson 1970), is using elastic-plastic
interaction between the inclusions and the continuum matrix, and it is placed
somewhere between the upper-bound Taylor type models and the lower-bound
Sachs-type models. The present work provides systematic comparisons between
the self-consistent model and the upper/lower-bound models.

The present model calculations refer to aluminium, copper and to a hypothetical
material with the high elastic anisotropy of copper, and the Young’s modulus and
work hardening behavior of aluminium. The later hypothetical material (called
hybrid) is included in order to make a distinction between the effects of the elastic
anisotropy and the work hardening.

The present model is an incremental model with {111} 〈110〉 slip as the mecha-
nism for plastic deformation. The self-consistent scheme includes the elastic-plastic
interaction between the grains, that are regarded as spherical inclusions in an in-
finite homogeneous matrix with the overall moduli of the polycrystal. The grains
(constituents) are regarded as single crystals with specific orientations represented
by the Euler angles (ϕ1, Φ and ϕ2). The model is restricted to low strains, as the
strain definition does not include second order terms, and the model does not
include localisation, which can lead to instabilities such as necking. As a rule, a
small strain model is valid as long, as the tangent modulus is much larger than
any of the stress components.

The model is governed by the single crystal slip mechanisms, in which the
controlling parameters are the critical resolved shear stress and the hardening
law. The initial critical resolved shear stress, τ0, is assumed to be the same on the
12 well known slip systems in the fcc single crystals. The number of slip systems are
in fact doubled, as the shear rates are assumed not to be negative. The constituent
plastic strain rate, ε̇pc , is the sum of the shear rate contributions of all the active
slip systems as described in section 2.1

ε̇Pc =
∑
i

γ̇iµi (2.27)

The total strain rate is the sum of the elastic and plastic part as given by

ε̇c =Mcσ̇c + ε̇Pc or σ̇c = Lc
(
ε̇c − ε̇Pc

)
(2.28)
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where Lc and Mc are the elastic stiffness and compliance tensors for the single
crystals.

The current critical resolved shear stress of the ith slip system is denoted τ i,
and its rate is assumed to be related to the shear rates by a hardening matrix hij

(Hill 1966)

τ̇ i =
∑
j

hijγ̇j (2.29)

The components of the hardening matrix is defined as

hij = hγ
(
q + (1− q)δij

)
(2.30)

where δij is Kronecker’s delta. The factor q determines the degree of latent hard-
ening, e.g. q = 0 provides only self hardening, q = 1 provides Taylor hardening
and q > 1 provides stronger latent hardening than self hardening. The instan-
taneous hardening coefficient, hγ , depends on the previous deformation history.
In the present model, the relation between the accumulated slip in the grain,
γacc, and the instantaneous hardening coefficient is described by an exponentially
decreasing function

hγ = hfinal
(

1 + (hratio − 1) e(−hexpγacc)
)

(2.31)

where hfinal is the final hardening coefficient, hratio is the ratio between the
initial and the final hardening coefficient, and hexp is a parameter determining the
strength of the exponential part. This formulation of the hardening law includes
the simple linear hardening, that is obtained by choosing hratio = 1. Similar
formulations of decreasing hardening using sech2 and tanh functions are reported
in (Asaro 1983, Harren 1991a and Harren 1991b).

The active slip systems have the resolved shear stress equal to τ , and the resolved
shear stress rate equal to τ̇

σcµ
i = τ i and σ̇cµ

i = τ̇ i (2.32)

The elastic-plastic instantaneous stiffness tensor for the grain, Lc, is determined
by combining equations 2.27, 2.28, 2.29 and 2.32. For the N active slip systems∑

j

γ̇jXij = µiLcε̇c , Xij = hij + µiLcµj (2.33)

where Xij and its inverse (Y ij) are N×N matrices. The slip on the active systems
are found as

γ̇i = f iε̇ , f i =
∑
k

Y ikLcµk (2.34)

where f i is an N vector. Lc is then found as

Lc = Lc

(
I −

∑
m

µmfm

)
(2.35)

where the sum stems from the uncontracted products µmij f
m
kl . If all slip systems are

inactive, the instantaneous stiffness tensor reduces to the elastic stiffness tensor,
Lc = Lc.

Selection of τ0 and the hardening coefficients is not trivial. As a rule, τ0 is as-
sumed be equal to half of the largest principal stress difference at yield, where
yield is defined as the point where the first grain becomes plastic; a point that is
difficult to determine from a stress-strain curve. In the present calculations, τ0 and
the hardening coefficients (hfinal, hratio and hexp) are used as fitting parameters
to make the macroscopic stress-strain response of the model resemble the actual
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Figure 2.6. The macroscopic stress-strain curves for aluminium, copper, hybrid
and stainless steel.

material behavior. The calculated macroscopic stress-strain response for alumi-
nium, copper, hybrid and stainless steel∗ is shown in figure 2.6 (the stainless steel
calculations are used in section 3).

The fitting parameters used in the present calculations are listed in table 2.3
(including the stainless steel parameters). Taylor hardening (q = 1) is avoided, as
it causes numerical problems in the slip rate calculation, where the set of equations
to be solved are no longer independent. It should be underlined, that the marginal
latent hardening implied in the q value of 1.01 is nothing but a mathematical trick
to avoid ambiguity (the well known Taylor ambiguity problem).

C11
† C12 C44

2C44
C11−C12

τ0 q hfinal hratio hexp
GPa GPa GPa — MPa — MPa — —

Aluminium 108.2 61.3 28.5 1.22 10.9 1.01 40.0 5.0 61.0
Copper 168.4 121.4 75.4 3.21 15.0 1.01 120.0 17.0 200.0
Hybrid 92.2 66.5 41.2 3.21 10.9 1.01 40.0 5.0 61.0
St. steel 204.6 137.7 126.2 3.77 65.0 1.01 140.0 50.0 205.0

Table 2.3. Single crystal stiffnesses (Dieter 1988, Ledbetter 1984) and fitting pa-
rameters for the used materials.

The constituent stress and strain rate calculations are done via fourth order
concentration tensors as proposed by Hill (Hill 1965a, Hill 1965b). The grains are
approximated by spherical single crystals embedded in an infinite homogeneous
matrix, whose moduli are the overall instantaneous polycrystal moduli. In this way,
the interaction between the grain in consideration and the matrix/polycrystal is
taken into account, but the direct grain-to-grain interaction is not incorporated
in the model. The stress and strain rates in the spherical inclusions are uniform
(Eshelby 1957) and related to the stress and strain rates at infinity by fourth order
concentration tensors, Ac, according to

ε̇c = Ac ˙̄ε , Ac = (L∗ +Lc)−1(L∗ +L) (2.36)

where L∗ is Hill’s ’constraint’ tensor, that relates to the Eshelby tensor, S, as

L∗S = L(I −S) (2.37)

∗The measured macroscopic stress-strain response for aluminium, copper and austenitic stain-
less steel is shown in section 5.2
†In these well known expressions for the single crystal stiffnesses the normal contracted tensor

notation is used, rendering C11 = C1111, C12 = C1122 and C44 = C2323
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The relationship between the Eshelby tensor, S, and the overall stiffness tensor,
L, is given by Kneer’s fourth order tensor Λ (Kneer 1965) and using equation 2.37,
Hill’s ’constraint’ tensor can be found as

L∗ = Λ−1 − L (2.38)

Λ is determined from the double integral

Λijmn =
1

16π

π∫
θ=0

2π∫
φ=0

(
Ûimknkj + Ûjmknki + Ûinkmkj + Ûjnkmki

)
sin θdθdφ

(2.39)

where Û is found from

LijklÛkmkjkl = δim (2.40)

and k1 = sin θ cos φ, k2 = sin θ sinφ and k3 = cos θ.
The stress and strain rates at infinity in the matrix are identified with the

polycrystal quantities ˙̄σ and ˙̄ε. Thus, the constituent stress and strain rates are
estimated by the solution to a problem in linear anisotropic elasticity. The elastic-
plastic interaction between the inclusions and the matrix is incorporated, as the
concentration tensor and the constraint tensor are determined from the instanta-
neous elastic-plastic stiffness tensor.

The polycrystal stress and strain rates are equal to the weighted stress and
strain rate average of all the grains, and denoting the average of all the grains by
{ }, it follows that

{σ̇c} = ˙̄σ ⇒ L = {LcAc} (2.41)

At a certain stage of deformation the stress, and thereby the potentially active
slip systems in the constituents of the polycrystal are known. The polycrystal is
prescribed an additional strain rate, ˙̄ε, and using the present model, it is possible
to determine the stress and strain rates, σ̇c and ε̇c, as well as the instantaneous
constituent moduli, Lc, for all the grains, and the polycrystalline quantities, ˙̄σ
and L, are determined as the appropriate average of all the grains.

In the present calculations the initial texture is described with a set of 5000
grains representing a random texture. The lattice orientations are described using
the Euler angles, ϕ1, Φ and ϕ2 (Bunge 1982). The relatively high grain number
is necessarily, as the material response of several grain sub-sets are needed in the
investigation of intergranular strains in section 3.

The present self-consistent polycrystal deformation model is implemented in an
ANSI C program, sc model.c. A thorough description of the implementation is
given in (Clausen and Lorentzen 1997a).

2.3.1 Model Predictions

In the following the development of relevant polycrystal deformation parameters
are described. It is chosen to concentrate on parameters, that relate closely to the
crystallographic slip, as this is the basis of the model. Furthermore, focus is on the
elastic anisotropy and its bearing on polycrystal deformation in the elastic-plastic
transition range as well as in the fully plastic regime.

2.3.1.1 Elastic Moduli There is great difference in the degree of the elastic
anisotropy of the materials considerated in the present work (aluminium, copper
and hybrid). The stiffness of a grain in the tension direction, in this case calculated
as the Kröner stiffnesses (Kröner 1958), shows strong orientation dependence. This
is described in figure 2.7 for aluminium and copper, whereas the hypothetical
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(a) Aluminium. (b) Copper.

Figure 2.7. The normalised Young’s modulus as a function of the orientation.

material, hybrid, is omitted, as its elastic anisotropy is identical to the one in
copper. The figure shows the modulus normalised with respect to the maximum
value for the 〈111〉 orientation, 75.4 GPa and 184.3 GPa for aluminium and copper
respectively. For Kröner stiffness values of specific orientations see table 3.3 in
section 3.2.1.

The variation is identical for all fcc materials, but the numerical values are dic-
tated by the elastic anisotropy. The variation in copper is much more pronounced
than in aluminium, as shown in figure 2.7, where the minimum values are 0.86
and 0.41 for aluminium and copper respectively.

2.3.1.2 Number of Active Slip Systems In the present model the number
of active slip systems in the grains (constituents) are determined by the stress
state in the grain. In a Taylor model, which is based on the assumption, that all
grains experience the same strain, the number of active slip systems will always be
five in order to accommodate the five independent strain components. In a Sachs
model, which is based on the assumption that the stress state in all the grains are
the same, only the grains that are oriented along symmetry lines have more than
one active slip system. The number of active slip systems in a grain calculated
with the present self-consistent model varies according to the deformation and the
grain orientation. In figure 2.8 the percentages of grains with a given number of
active slip systems are shown as a function of the macroscopic strain for all three
materials.

Initially, only one slip system is active, then more systems follow as it appears
from the large percentage of grains with one and two active slip systems at on-
set of yield. After only 0.5% strain approximately 50% of the grains have three
active slip systems and only approximately 10% of the grains have five, or more,
active slip systems. For the present model, where the grains interact with the ma-
trix/polycrystal, it is interesting to note that 90% of the grains do not need five
active slip systems to accommodate the applied strain. In spite of the fact that
it is never necessary with more than five active slip systems, some of the grains
do, however, have up to eight active slip systems due to the high symmetry in
the fcc lattice. The average number of active slip systems is almost the same for
all the materials as shown in figure 2.8(d) (note the scale). In the early stages of
plastic deformation, the average number of active slip systems for the hypothet-
ical material (hybrid) follows the one for aluminium, but at approximately 2.5%
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(a) Aluminium.
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(b) Copper.
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(c) Hybrid.
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(d) Average number of active slip sys-
tems.

Figure 2.8. The number of active slip systems as a function of the deformation.

deformation it increases to she same level as in copper.
The general trend is the same for all three materials, indicating that the number

of active slip systems is determined by the crystallographic structure. The main
difference between aluminium and copper is the relatively small deviations in the
percentage of grains with five and six active slip systems at zero to one percent
deformation and the percentage of grains with three and four active slip systems
over two percent deformation. In the hypothetical material the percentages in
these areas resemble the ones in copper indicating that the elastic anisotropy has
a larger effect on the number of active slip systems than does the work hardening.

The orientation dependence of the number of active slip systems in the grains
is shown as inverse pole figures in figure 2.9 for plastic strain values of 0.1 and
1 in all three materials. As for the average number of active slip systems, the
orientation dependence is similar in aluminium and copper indicating that this is
mainly dictated by the fcc-structure and is only marginally effected by the elastic
anisotropy and the work hardening.

At the 〈110〉 orientation the grains have four active slip systems, at the 〈111〉
orientation the grains have up to six active slip systems and at the 〈100〉 orientation
the grains have up to eight active slip systems. This is in agreement with the two-,
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(a) Aluminium at εP = 0.1%. (b) Aluminium at εP = 1%.

(c) Copper at εP = 0.1%. (d) Copper at εP = 1%.

(e) Hybrid at εP = 0.1%. (f ) Hybrid at εP = 1%.

Figure 2.9. The number of active slip systems as a function of the orientation at
εP = 0.1% and at εP = 1%.

three- and four-fold rotation symmetries in the fcc lattice.
The pole figures are very similar in aluminium and copper; at 0.1% plastic de-

formation there are some differences in the upper third of the unit triangle, where
copper has relatively large regions with three active slip systems and aluminium
mainly has two active systems. The pole figure for hybrid is closest to the one
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(a) Aluminium at εP = 0.001%. (b) Hybrid at εP = 0.001%.

(c) Alumnium at εP = 0.005%. (d) Hybrid at εP = 0.005%.

(e) Aluminum at εP = 0.011%. (f ) Hybrid at εP = 0.011%.

Figure 2.10. The number of active slip systems as a function of the orientation at
the early stages of plasticity.

for copper, but there are no major differences between the three materials. At 1%
plastic deformation it is not possible to determine which of the two pole figures the
one for the hypothetical material resembles the most. In the fully plastic region
(above 1% deformation) the orientation distribution is practically the same in all
three materials.
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The influence of the elastic anisotropy is only observed in the very early stages
of plasticity. The orientation dependence of the number of active slip systems is
determined at very low plastic strains for aluminium and hybrid (at these levels
of plastic deformation hybrid and copper are identical). The inverse pole plots for
0.001%, 0.005% and 0.011% plastic deformation are shown in figure 2.10.

As seen in figure 2.10(a) and 2.10(b), the region where slip starts to occur is
different in the two materials. In figure 2.10(c) and 2.10(d) about 75% of the grains
have one or two active slip systems, and it is seen that the areas with active slip
systems are very different in the two materials. At 0.011% plastic deformation
(figure 2.10(e) and 2.10(f)) aluminium, without pronounced elastic anisotropy
and hence without pronounced stress repartition in the elastic regime, slip has
started in the regions next to 〈100〉 and 〈110〉 which have the same m-factor (and
the same Schmid factor, e.g. section 2.3.1.3), whereas slip has not started in the
region next to 〈111〉 which has a higher m-factor. In the hybrid material, with its
rather strong elastic anisotropy, there is stress repartition in the elastic regime:
load is transferred from the region next to 〈100〉 to the region next to 〈111〉 (e.g.
figure 2.7(b)). The result is that slip has started next to 〈111〉 and next to 〈110〉
in spite of the high m-factor, whereas slip has not started next to 〈100〉 - with a
m-factor much lower than that for 〈111〉 and equal to that for 〈110〉.

2.3.1.3 The m-factor The m-factor, m =
∑
i γ̇
i/ε̇P11, has been determined

for a rigid plastic Taylor model and a rigid plastic Sachs model as described in
sections 2.1 and 2.2. The average m-factor for these models is found to be 3.063
and 2.230 respectively. In the present model the average m-factor in the elastic-
plastic transition range increases from a value of two as more and more grains
become plastic. As seen in figure 2.11(a) the average m-factor is approximately
2.6 in the plastic regime for all the materials. The average m-factor is very similar
in aluminium and copper (note the scale). After about 1% deformation the average
m-factor for the hypothetical material is almost identical to the one for aluminium.

The orientation dependence of the m-factor is shown as inverse pole figures in
the figures 2.11(b) to 2.11(d) for the three materials and the corresponding inverse
pole figures for the Taylor and Sachs models are shown in the figures 2.11(e)
and 2.11(f).

The m-factor orientation distribution calculated according to the present model
is quite similar for all three materials, but comparing the average m-factor for the
three materials it is seen that after approximately 1% deformation the hypothetical
material is very close to aluminium. This indicates that the work hardening has a
very small effect on the amount of slip in the grains.

According to figure 2.11, the m-factor orientation dependence in the present
model lies somewhere between the ones for the Taylor model and the Sachs model.
The m-factor values near the 〈100〉 and 〈111〉 orientations are similar to the ones
for the Taylor model but in the rest of the pole figure the contour lines differ
greatly from the ones in the Taylor model. The m-factor for the present model at
the three corners of the unit triangle (〈100〉, 〈110〉 and 〈111〉) are identical to the
values in the Sachs model, and the area along the 〈100〉 – 〈110〉 symmetry line
with a rather low m-factor is also similar to the Sachs model, although the area is
much larger in the Sachs model and that it stretches further up toward the 〈111〉
orientation than in the present model.

2.3.1.4 Lattice Rotations As the polycrystal is deformed plastically, the lat-
tice orientation in the grains change due to the crystallographic slip. The lattice
rotations in the grains can be determined as described in section 2.1.1. The lattice
rotation variation in all three materials is shown in figure 2.12 together with the
corresponding inverse pole figure for calculations with the Taylor and the Sachs
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Figure 2.11. The calculated m-factor as a function of the orientation.

models. The arrows indicate the direction of the orientation change but the arrow
length is chosen arbitrarily and does not indicate the amount of rotation, as the
rotations are very small for the deformations considered here.

The general orientation flow-line pattern is quite similar for the three materials,
as seen in figure 2.12(a) to 2.12(c). All three materials have two regions: one with
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(a) Aluminium. (b) Copper.

(c) Hybrid.

(d) Taylor model. (e) Sachs model.

Figure 2.12. The lattice rotations from 3 to 5% deformation as a function of the
orientation.

a general trend to rotate towards 〈111〉 and one with a general trend to rotate
towards 〈100〉 in agreement with all experimental observations on the texture of
uniaxially deformed fcc materials (similar rotation patterns are reported for sev-
eral different models in Leffers 1988). The respective areas of these two regions are
quite similar for the three materials. In order to detect a difference between the
three materials one has to focus on the ’chaotic’ region in the vicinity of 〈100〉. The
extent of this region is similar for aluminium and hybrid and somewhat different
for copper. The orientation flow-line pattern for the Taylor and the Sachs models,
figure 2.12(d) and 2.12(e), deviate from those derived from the present model:
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the region with a general trend to rotate towards 〈100〉 is somewhat smaller for
the Taylor model and much smaller for the Sachs model, and the chaotic region
(only observed for the Taylor model) is quite small. For the Sachs model it is
noteworthy that the lattice rotations do follow the general pattern of rotation ei-
ther towards 〈100〉 or towards 〈111〉 (even though rather few grains rotate towards
〈100〉). Normally a different rotation pattern is quoted for the Sachs model, viz.
initial rotation towards the 〈100〉-〈111〉 side of the triangle and then rotation along
the side towards 〈211〉. This difference stems from the use of different rules for
the lattice rotation (Hosford 1977, Leffers and Lebensohn 1996). In the present
calculations, the ’mathematical analysis’ (as expressed in equation 2.11) is used,
which is the best choice for equiaxed grains. The rotation towards 〈211〉 (which is
the lattice rotation observed in single crystal strained in tension) is derived from
’Schmid tension analysis’ (Hosford 1977).
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2.4 Summary

The present elastic-plastic self-consistent model includes the elastic and plastic
anisotropy of the materials, and it is straight forward to calculate the elastic strain
components in grain sub-sets, which facilitates the correlation with the neutron
diffraction measurements.

The model predictions for aluminium, copper and a hypothetical material, hy-
brid, with the anisotropy of copper and the Young’s modulus and hardening prop-
erties of aluminium have been used to determine the influence of elastic anisotropy
and work hardening in the plastic regime.

The numerical predictions by the self-consistent model imply that the domi-
nating deformation mode in the present self-consistent polycrystal model is one,
in which grains have three active slip systems. Approximately 50% of the grains
accommodate the deformation by three active slip systems, while less than 10%
of the grains utilise the general five active slip systems used in the Taylor model.
The average number of active slip systems is about 3.55 for the three materials,
which is between the numbers for the Taylor and Sachs models (actually closest to
the Sachs model). The average m-factor is about 2.6 for the three materials, which
again lies between the values for the Taylor and the Sachs models. The general
trends in the orientation dependence of the m-factor mostly resembles the one in
the Sachs model.

The calculations for the hypothetical material, hybrid, indicates that the elastic
anisotropy only has an effect in the very early stages of plasticity. After few tenth
of a percent plastic deformation, the number of active slip systems and the m-
factor is very similar for the three materials. This indicates that these parameters
are mainly dictated by the fcc crystal structure, and only marginally effected by
the elastic anisotropy and the work hardening.

The lattice rotation pattern for the three materials calculated with the self-
consistent model resembles the one for the Taylor model the most, as the lattice
rotation pattern calculated with the Sachs model are almost unidirectional. The
rotation pattern in all three models are leading to the well known 〈111〉-〈100〉 fiber
texture for uniaxial tension of fcc metals.

Comparing the self-consistent modelling scheme with the Taylor and the Sachs
models, the m-factor orientation distribution indicates that the self-consistent
model resembles the Sachs model, whereas the lattice rotations show that the
self-consistent model predicts a rotation pattern that mainly resembles the one
for the Taylor model. These observations logically places the self-consistent model
somewhere between the upper- and lower-bound models.

The investigated parameters; slip, active systems and m-factors, do not easily
lend themselves to experimental verification, and as the lattice rotations are so
small that they do not result in a measurable texture for the used deformation
degrees, other quantities must be selected for a rigorous experimental verifica-
tion of the micro-mechanics behind the modelling schemes. The micro-mechanical
quantities that do lend themselves to experimental evaluation are the stress and
strains in the grains. A method of directly measuring these quantities is the novel
technique of lattice strain characterisation by neutron diffraction that allows prob-
ing of the elastic lattice strain evolution in selected grain sub-sets. This type of
model evaluation is presented in section 5. Additionally the predictions of the
self-consistent modelling scheme can be used to determine the reflections that are
suitable for technological applications of neutron diffraction. This aspects of the
modelling scheme will be presented in section 3.
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3 Implications for Diffraction
Measurements

The macroscopic residual stresses/internal stresses measurement, type-1 stresses
(Macherauch and Kloos 1986), by diffraction methods is based on the measurement
of deviations in lattice spacing for specific crystallographic planes (deviations from
the lattice spacings in stress-free material). In an ideal world, there would be
one linear relation between the lattice spacing deviation and the macroscopic
stress. However, introduction of elastic anisotropy, with the resulting intergranular
stresses or type-2 stresses (Macherauch and Kloos 1986), implies that there is not
only one but several linear relations, depending on the selected lattice plane. The
measurement of interest, macroscopic stresses, are in most cases associated with
plastic deformation. Because of the plastic anisotropy this again implies that there
are several relations, but it also implies that the relations are not necessarily linear.

In this section the present self-consistent polycrystal deformation model is used
to select the best suitable reflections for stress and strain measurements. The ideal
reflection, is one, that has a linear relationship between the applied stress and
the elastic strain. In this investigation, the reflection with the smallest linearity
deviation in the relation between the applied stress and the elastic strain is selected
as the best suitable reflection for technological applications of neutron diffraction.
Furthermore, the reflection must have a relative small build-up of residual lattice
strains due to previous plastic deformation, as these residual strains will influence
the measurements and thereby make the overall stress and strain determination
more difficult.

The non-linearities of the reflections are compared with the normal strain res-
olution in a neutron diffraction measurement, discussed in section 4.1.1 and in
appendix A. In both the fixed wavelength and the time-of-flight measurements,
the normal strain resolution is about ±50 × 10−6 and linearities less than the
strain resolution will be difficult to detect in a diffraction measurement.

In the present calculations the lattice spacing deviations or the lattice strains
for a number of lattice planes parallel to and perpendicular to the tensile axis for
uniaxially loaded aluminium, copper and austenitic stainless steel, are determined
using the present self-consistent polycrystal model. The results are relevant for
lattice-strain measurements by diffraction methods in general, but they are viewed
with particular reference to neutron diffraction measurements, which monitor bulk
stresses as opposed to conventional X-ray measurements of the stresses in thin
surface layers.

As outlined above, the basic aim of this work is to provide a rational theoretical
background for the macroscopic stress measurements, or type-1 stress measure-



ments. As also outlined above, such measurements are made via measurements of
lattice strains in grains with specific lattice orientations. The lattice strains deter-
mined by such measurements are influenced by both type-1 and type-2 stresses,
and therefore the type-2 stresses must be subtracted from the results.

3.1 Calculations

The information to be presented is obtained through modelling as described in
section 2.3 (with 5000 grains of initially random orientation). The input parame-
ters for all three materials (aluminium, copper and austenitic steel) were presented
in table 2.3 and the calculated uniaxial stress-strain curves for the three materials
were shown in figure 2.6. For steel, the macroscopic tensile data come from an
austenitic steel, and the single crystal stifnesses come from a FeCrNi alloy with a
slightly different main composition. The two compositions are given in table 3.1.

Cr Ni Mo Mn Si C
Single crystal (Ledbetter 1984) 19.0 10.0 — — — —
Polycrystal 18.25 13.42 3.66 1.48 0.44 0.02

Table 3.1. Chemical composition of the stainless steel in weight percent.

In normal experimental practice grains within±0.5◦ from the specified direction
contribute to the registered intensity. In order to get acceptable statistics grains
up to ±5◦ from the specified main direction are included in the calculations as
discussed in section 5.2. It is assumed that this increased tolerance does not have
any major effect on the results other than improve the statistics of the numerical
results.

1 2 3 4 5 6
hkl 111 200 220 311 331 531
Multiplicity 8 6 12 24 24 48

Table 3.2. Reflections and their multiplicity.

The lattice strains have been calculated for all crystallographic planes with
Miller indices up to {531}, which is the unsymmetrical fcc reflection with the low-
est indices (forbidden reflections in the fcc lattice, higher-order lattice planes and
lattice planes corresponding to two families of lattice planes are ignored). Only re-
sults for the lattice planes listed in table 3.2 are quoted (420 and 422 are excluded
to reduce the amount of data in the illustrations). The crystallographic multiplic-
ities of the lattice planes, which is a factor of practical importance, is also given
in table 3.2. The reflected intensity in polycrystal diffraction experiments depends
on the multiplicity as the fraction of grains participating in the measurement is
proportional to the multiplicity, see appendix A.1. Other parameters, such as the
structure factor and the absorption factor also influences the diffracted intensity
(Noyan and Cohen 1987).

3.2 Results

The results of the calculations are presented in the following sub-sections: the elas-
tic Kröner stiffness (diffraction elastic constants) of the reflections are determined
in section 3.2.1; the (elastic) lattice strains versus the applied load is discussed
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in section 3.2.2; the relative standard deviation and the linearity deviation of the
results in section 3.2.2 are determined in sections 3.2.3 and 3.2.4; the general de-
formation pattern is determined in terms of the normalised stresses within the
reflections in section 3.2.5; and the residual lattice strain after unloading from dif-
ferent stress levels are discussed in section 3.2.6. In section 3.2.4, 3.2.5 and 3.2.6 the
results are presented in the conventional way with the predetermined parameter
(the strain) along the x axis and the results along the y axis. In section 3.2.2, 3.2.3
and 3.2.4 the results are presented differently - with the predetermined parameter
(the applied stress) along the y axis and the results (the elastic lattice strains
and their relative standard deviations) along the x axis - in order to approach the
presentation in a conventional stress-strain curve.

The results should be evaluated in terms of the ideal requirement of finding a
reflection with a linear relation between the measured lattice strains and the actual
state of macroscopic internal/residual stress. In this connection it is relevant to
remember the difference in elastic anisotropy of all three materials dealt with as
expressed by 2C44/(C11 − C12)‡; for aluminium it is 1.22, for copper it is 3.21,
and for austenitic steel it is 3.77. In the presentation of the calculations for the
six reflections, symbols are superimposed at various stress levels to aid the eye
separating the lines.

3.2.1 Diffraction Elastic Constants

When determining the stresses in a component from the measured elastic lattice
strains the so-called diffraction elastic constants are utilised. In the present model
calculations these diffraction elastic constants for specific reflections are deter-
mined as the Kröner stiffnesses (Kröner 1958) in the elastic region. The diffraction
elastic constants for random texture are shown in table 3.3 for aluminium, copper
and austenitic stainless steel. In samples with texture the values will change due
to the change in the macroscopic properties.

E111 E200 E220 E311 E331 E531

Aluminium 75.4 64.9 72.6 69.6 73.4 71.4
Copper 184.3 76.8 147.4 116.1 157.1 133.0
Stainless steel 291.5 109.7 227.9 173.8 243.5 202.2

Table 3.3. Diffraction elastic constants of specific reflections.

The validity of using the Kröner stiffnesses as the diffraction elastic constants
are investigated in section 5.

3.2.2 Elastic Lattice Strains

The build-up of intergranular strains during load is shown in figure 3.1 for the three
materials. The applied stress is shown as a function of the elastic lattice strains
parallel and perpendicular to the tensile axis for the six reflections. The lattice
strain for a given reflection is determined by the stress state in the corresponding
grains. Load redistribution between the grains therefore leads to changes in the
lattice strains.

As seen in figure 3.1, the degree of redistribution of the load between the re-
flections increases as the elastic anisotropy increases, where aluminium has the
weakest elastic anisotropy and stainless steel the strongest. One should note the
‡Using the normal contracted tensor notation as in table 2.3

Risø–R–985(EN) 29



0

10

20

30

40

50

0 200 400 600 800 1000

 111
 200
 220
 311
 331
 531

Elastic lattice strain   [10-6]

A
pp

lie
d 

st
re

ss
  

 [
M

P
a]

(a) Aluminium, parallel to the tensile
axis.
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(b) Aluminium, perpendicular to the ten-
sile axis.
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(c) Copper, parallel to the tensile axis.
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(d) Copper, perpendicular to the tensile
axis.
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(e) Stainless steel, parallel to the tensile
axis.
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(f) Stainless steel, perpendicular to the
tensile axis.

Figure 3.1. The applied stress versus the elastic lattice strain.
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scale difference in the figures. This redistribution of the load is determined by a
combination of the elastic and the plastic anisotropy of the material.

The strain redistribution is quite similar in stainless steel and copper, which
both have a relatively high anisotropy and thereby relatively large differences in
the stiffnesses of the reflections, see figure 2.7 and table 3.3. Parallel to the tensile
axis, the two elastically softest reflections, 200 and 311, remain the softest in the
plastic region, and the 331- and 220-reflections become the stiffest. Perpendicular
to the tensile axis the 220-reflection becomes the softest reflection.

In aluminium, the strain redistribution is different from the one in the other
two materials due to the relatively low anisotropy. Parallel to the tensile axis, the
elastically stiffest reflection, 111, experiences the highest strain in the plastic region
for a given applied load, as it becomes the softest reflection in the plastic region
and the elastically softest reflection, 200, becomes one of the stiffest in the plastic
region. Perpendicular to the tensile axis, the redistribution is almost the same, as
the 111-reflection become the softest reflection in the plastic regime and the 200-
reflection becomes the stiffest. The strain value differences in aluminium are rather
small compared with the strain resolution in a neutron diffraction measurement
(±50 × 10−6) which makes them difficult to observe in measured data.

In all three materials the 200-reflection perpendicular to the tensile axis is show-
ing a radical change from the onset of plasticity. This behaviour is discussed in
section 3.2.3

3.2.3 Elastic Lattice Strain Variations

When focusing on specific sub-sets of grains all having the same hkl-lattice plane
normal in a direction parallel to the tensile axis, all grains in this family shows
nearly the same elastic lattice strain as the deformation is rotationally symmetric.
When focusing on specific grain sub-sets all having the same hkl-lattice plane
normal in a direction perpendicular to the tensile axis the elastic lattice strain show
a much greater variation. A rotation of a grain around a direction perpendicular
to the tensile axis drastically changes the stiffness in the tensile direction, and
thereby the stress and strain state in the grain.

In the elastic region the elastic lattice strain variation is caused by the orien-
tation differences between the grains, but in the plastic region the relationship
between the elastic and plastic properties also influences the elastic lattice strain
variation. In the plastic region the load carried by the grains are determined by
the plastic anisotropy, but the elastic lattice strains are determined by the elastic
anisotropy. In figures 3.2 the strain variation is presented as the relative stan-
dard deviation of the elastic lattice strain within the grain sub-sets (the relative
standard deviation is the standard deviation divided by the strain).

Parallel to the tensile axis, the relative standard deviation is within 5 – 6%, but
perpendicular to the tensile axis the relative standard deviation is much higher,
see figure 3.2. The generally high relative standard deviation perpendicular to the
tensile axis is caused by the larger difference in stiffness of the grains and by the
lower strain level (the Poisson effect).

For all three materials the 200-reflection perpendicular to the tensile axis expe-
riences a radical change in the stress-strain curve (figure 3.1) and the determined
relative standard deviation is likewise very high. This rather surprising behaviour
of the 200-reflection, is due to the combination of grains that constitute the reflec-
tion. All the grains that have a 〈200〉 lattice plane normal in a direction perpen-
dicular to the tensile axis, at the same time has a 〈hk0〉 (or 〈h00〉) lattice plane
normal in the tensile direction. In an inverse pole figure of the fcc lattice structure
all the grains that constitute the 200-reflection is within the region shown by the
dotted line in figure 3.3(a).
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(a) Aluminium, parallel to the tensile
axis.
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(b) Aluminium, perpendicular to the ten-
sile axis.
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(c) Copper, parallel to the tensile axis.
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(d) Copper, perpendicular to the tensile
axis.
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(e) Stainless steel, parallel to the tensile
axis.
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(f) Stainless steel, perpendicular to the
tensile axis.

Figure 3.2. The applied stress versus the relative standard deviation of the elastic
lattice strain.

32 Risø–R–985(EN)



100

100 310 210 110

110

111

(a) Grain sub-sub-sets within the 200-
reflection perpendicular to the tensile
axis.

001

111

111
101 011

100 010

110
110

111

111

011101
111

001

111

110

(b) The (110) pole figure for the cubic
crystal structure.

Figure 3.3. Grain sub-sub-sets and slip systems for the 200 reflection perpendicular
to the tensile axis.

In the area close to the 〈110〉 direction (200〈110〉 in figure 3.4) the grains have
four active slip systems, see figure 2.9, and this combination of four slip systems
results in a very asymmetric lateral deformation. For the ideal 〈110〉 the active
systems are: [111](101), [111](011), [111](101) and [111](101), see the 〈110〉 pole
figure for the cubic crystal structure in figure 3.3(b). If the grain is subjected to
symmetric load and the amount of slip is the same on the four active slip systems,
the resulting lateral contraction have a very large component in the (001) – (001)
direction, the direction perpendicular to the tensile axis, and a very small compo-
nent in the (100) – (010) direction, see figure 3.3(b). Grains that are oriented close
to this specific orientation will have the same asymmetric lateral contraction. This
means that the plastic contraction perpendicular to the tensile axis, in the (001)
– (001) direction, is much larger than the contraction in the continuum matrix,
which will introduce a tensile stress in the (001) – (001) direction counteracting
the Poisson contraction and thereby introduce the dramatic change in the devel-
opment of the lattice strain for the 200-reflection perpendicular to the tensile axis
at the onset of plastic deformation. This behaviour will result in ’curling’ which is
a well known experimental manifestation of the special behaviour in the direction
perpendicular to the tensile (or compression) axis in grains subjected to tension
or compression in the 〈110〉 direction, e.g. (Hosford 1964).

For the orientations close to the 〈210〉 and 〈310〉 directions (200〈210〉 and
200〈310〉 in figure 3.4) the grains have mainly two active slip systems, and again
these systems results in a deformation mode with a very uneven lateral contrac-
tion. Close to the 〈100〉 direction (200〈100〉 in figure 3.4) the grain have at least
six active slip systems, and then the deformation mode is more symmetric.

The elastic lattice strain response and the relative standard deviation for the
four sub-regions of the 200-reflection, represented by the circles in figure 3.3(a),
are shown in figure 3.4 for aluminium and stainless steel. The plots for copper are
omitted as they are similar to the ones for stainless steel. As seen in figure 3.4,
the stress-strain response of the grain sub-sub-sets are very different in both alu-
minium and stainless steel. Although the standard deviation for the four grain
sub-sub-sets are relatively small, the very different behaviour of the grain within
the grain sub-set causes the the standard deviation of the whole 200-reflection to
be much larger.
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(a) Stress-strain curves for grain sub-sub-
sets of the 200-reflection in aluminium.
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(b) Standard deviation of the elastic
strain for grain sub-sub-sets of the 200-
reflection in aluminium.
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(c) Stress-strain curves for the grain sub-
sub-sets of the 200-reflection in stainless
steel.
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(d) Standard deviation of the elastic
strain for grain sub-sub-sets of the 200-
reflection in stainless steel.

Figure 3.4. Stress-strain curves and relative standard deviation for the grain sub-
sub-sets of the 200-reflection in aluminium and stainless steel.

3.2.4 Deviation from Linearity

In section 3.2.2 the elastic lattice strain response of the three materials is in-
vestigated, and great differences between the longitudinal and transverse lattice
response are observed. The perfect hkl-reflection for technological strain determi-
nation would be one that is rather in-sensitive to the deformation history and
one that retains a linear response even when exceeding yield. In evaluating this
aspect it is chosen to present the results of figure 3.1 in terms of the amount the
elastic lattice strain response deviates from the initial elastic behavior, following
the Kröner stiffnesses. This deviation is shown in figure 3.5.

Again, it is observed that the linearity deviation is largest for austenitic stainless
steel and smallest for aluminium; note the scale difference in the figures. The
linearity deviation for all six reflections are quite similar in copper and austenitic
stainless steel. In these two materials, the 200-reflection shows the largest linearity
deviation in the plastic region, both parallel and perpendicular to the tensile axis.
The 311-reflection shows the smallest linearity deviation, except in stainless steel
parallel to the tensile axis, where the 111-reflection is a bit closer to zero. In
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(a) Aluminium, parallel to the tensile
axis.
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(b) Aluminium, perpendicular to the ten-
sile axis.
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(c) Copper, parallel to the tensile axis.
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(d) Copper, perpendicular to the tensile
axis.
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(e) Stainless steel, parallel to the tensile
axis.
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(f) Stainless steel, perpendicular to the
tensile axis.

Figure 3.5. Elastic strain deviation from linearity as a function of the plastic
strain.
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aluminium none of the reflections show as large linearity deviation as the 200-
reflection in copper and austenitic stainless steel, but still all the reflections show
non-linearity in the plastic region. The 111- and 200-reflections show the largest
deviation and the 311- and 531-reflections the smallest deviation.

The normal standard deviation in a neutron diffraction measurement is about
±50× 10−6. A suitable reflection for stress and strain measurement would be one
that does not deviate more than ±50× 10−6 from linearity. In all three materials,
the 311-reflection always has a linearity deviation less than ±50 × 10−6 up to
5% equivalent plastic strain for the two directions, and thus the 311-reflection is
a quite suitable hkl-reflection for neutron diffraction strain measurements in fcc
materials.

3.2.5 Normalised Stresses

The results reported in section 3.2.2 show the difference in elastic anisotropy,
strength and hardening in the three materials. The underlying deformation pattern
is illustrated in the figures 3.6(a) to 3.6(c), where the average stress within the
reflections, normalised by the overall average stress, is shown as a function of the
strain for the three materials. The corresponding plots for the Taylor and the
Sachs models are shown in the figures 3.6(d) and 3.6(e), calculated as the average
m-factor for the reflections divided by the overall average m-factor.

As seen in the figures 3.6(a) to 3.6(c) the normalised stresses for the selected
reflections are almost identical in the three materials after only ∼0.5% strain. In
aluminium, with relatively low elastic anisotropy, there is relatively small differ-
ences between the reflections at the on-set of plasticity, and then the normalised
stresses spread out in the plastic region. In copper and stainless steel the larger
elastic anisotropy causes relatively large differences in the elastic region, but in
the plastic region the range of the normalised stresses decreases, and they become
very close to the values in aluminium. This behaviour agrees well with the findings
in section 2.3 that the deformation pattern is basically the same in aluminium and
copper. By comparing with the figures 3.6(d) and 3.6(e) it is seen that the results
of the present self-consistent model is about half-way between the Taylor and the
Sachs model, as also concluded in section 2.3.

3.2.6 Residual Strain

In the sections 3.2.2 to 3.2.4 the non-linear lattice strain response of different hkl-
reflections under uniaxial loading is presented. Most technological applications
of neutron diffraction involve residual lattice strain measurements in unloaded
components. A rather perfect internal strain gauge would in this case be an hkl-
reflection with negligible intergranular lattice strains, where the measured resid-
ual lattice strains are dominated by the macroscopic residual stress state, which
is the aim of the investigation. Hence, it is of interest to focus on the residual
lattice strain development as a function of the plastic deformation. The numeri-
cal simulation of these intergranular residual lattice strains upon unloading from
different degrees of plastic deformation is presented in figure 3.7 for the range of
hkl-reflections in question.

As the unloading to zero stress in the model calculations does not activate any
slip systems, the unloading is fully elastic, and the calculated residual strains are
practically identical to the deviation from linearity. This is shown for aluminium in
figure 3.7 for eight unloads (0.25%, 0.5%, 0.75%, 1%, 2%, 3%, 4% and 5% plastic
strain).

As seen in figure 3.7, the deviation from linearity is practically identical to
the residual lattice strain for all the reflections. When no slip systems are active
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(a) Aluminium.
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(b) Copper.

0 1 2 3 4 5 6 7
0,7

0,8

0,9

1,0

1,1

1,2

1,3

1,4

 111
 200
 220
 311
 331
 531

N
o

rm
a

lis
e

d
 s

tr
e

ss

Strain   [%]

(c) Stainless steel.
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(d) Taylor model.
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(e) Sachs model.

Figure 3.6. The normalised stress as a function of the strain.

during unloading, only the texture development between the unloads can change
the residual strains, as a change in the texture will change the Kröner stiffness
for the reflections. But at the low degrees of deformation used in the present
calculations there is only very little texture development between the unloads.
The calculated residual strains in the direction parallel to the tensile axis for the
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(a) Parallel to the tensile axis.
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(b) Perpendicular to the tensile axis.

Figure 3.7. Residual strain in aluminium calculated directly (symbols) and derived
from the deviation from linearity (lines).

eight unloads are shown in appendix B for the three materials.

3.3 Discussion

To find the best suitable reflections for stress and strain measurements with neu-
tron diffraction, the relation between the applied stress and the elastic lattice
strain in the reflections has been investigated. The calculations show that the
degree of plastic anisotropy follows the degree of elastic anisotropy for the reflec-
tions parallel to the tensile axis, but that the plastic anisotropy for the reflections
perpendicular to the tensile axis is of the same size in the three materials.

The elastic strain variation within the reflections is relatively small in the elastic
region in both directions in the three materials. In the plastic region the variation
increases rapidly, especially in the direction perpendicular to the tensile axis, and
the relative standard deviation of the elastic lattice strain are in some cases about
50% (200% for the 200-reflection). The large variations of the elastic strain within
the grain sub-sets perpendicular to the tensile axis in the plastic region can be
caused by the differences in the elastic and plastic anisotropy as described in
section 3.2.3.

The redistribution of the lattice strains perpendicular to the tensile axis at the
onset of plastic deformation is particularly dramatic for the 200-reflection. The
lattice strain may even decrease with increasing applied stress. As described in
section 3.2.3 the sub-set of grains with 〈200〉 perpendicular to the tensile axis
is composed of sub-sub-sets of grains with the tensile axis distributed along the
〈100〉-〈110〉 side of the unit triangle. A close investigation of the grains in these
sub-sub-sets (with the exception of those close to 〈100〉) in terms of the numbers
of active slip systems and the m-factors shows that their plastic contraction (per-
pendicular to the tensile axis) is very uneven. This will, for some of the grains
that constitute the 200-reflection perpendicular to the tensile axis, introduce high
tensile stresses in the direction perpendicular to the tensile axis counteracting the
Poisson contraction. Hence, the development of the lattice strain for the sub-sets
of the 200-reflection perpendicular to the tensile axis are very different at the onset
of plastic deformation.

As discussed above the special deformation modes are activated as the con-
ditions for each grain is rather symmetric, including the choosen hardening law
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which is practically isotropic. Recently, another type of hardening has been pro-
posed by (Bassani 1994), where a diagonal hardening matrix (hii) is used. This
ensures that the hardening matrix is positive definite and that the slip rates are
unique (Hill 1966). The components of the proposed hardening matrix are indi-
vidual functions of the accumulated slip on all the systems. The components are
defined as

hii = F
(
γi
)
G
(
γj ; j = 1, N j 6= i

)
(3.1)

F
(
γi
)

is a function of the accumulated slip on the slip system under consideration,
and G

(
γj ; j = 1, N j 6= i

)
is a function of the ratio of the primary slip and the

secondary slip, and the type of dislocation junction the primary slip system and
the secondary slip system produces. In this formulation strong latent hardening
is replaced by strong increase of hardening moduli in latent systems, see (Bassani
1994) for further description.

The 311-reflection shows the smallest linearity deviation, and thereby residual
strain, both parallel and perpendicular to the tensile axis in all the materials, as
described in section 3.2.4, and thus it is a suitable reflection to use for stress/strain
characterisation. The calculations show that the 111, 200 and 220 reflections are
deviating from linearity with more than the normal strain resolution in a neutron
diffraction measurement, and that the residual lattice strain build-up thereby is
relatively high for these reflections. This indicates that if these reflections are used
in stress and strain measurements, the non-linearities must be taken into account
and the intergranular residual stresses must be separated from those originating
from the macroscopical plastic deformation.
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4 Neutron Diffraction

Neutron diffraction is widely used in materials science, where a main advantages
is to be found in the penetration power of neutrons, allowing bulk measurements
to penetrate centimeters into common elements like aluminum, copper or iron.
Neutron diffraction applications of primary interest in the present work is deter-
mination of lattice strains and the determination of the initial sample texture. The
actual texture in the samples are used in the model evaluation in section 5. In this
work two different types of neutron diffraction is utilised; fixed wavelength mea-
surements and time-of-flight (TOF) measurements. The fixed wavelength method
is used at the steady state reactor DR3 at Risø National Laboratory (Denmark),
and the TOF method are used at the Manuel Lujan Neutron Scattering Center
(MLNSC) at Los Alamos National Laboratory (USA).

In normal overall stress and strain characterisation by neutron diffraction only
one reflection is required. The intensity of the monocromated neutron beam at
reactor sources used for fixed wavelength measurements is relatively high, and
the measurement of a single reflection is relatively fast. The integrated neutron
intensity at a pulsed source is much lower than on a reactor and the time scale
for a measurement of a single reflection by the TOF method is much larger than
for a fixed wavelength measurement. However, the TOF measurement provides
information for multiple reflections at the same time as all the neutrons with the
appropriate energies contribute to the measured spectrum. If information for many
reflections are required at the same time, the time scale for TOF measurements
is comparable with fixed wavelength measurements.

4.1 Lattice Strain Determination

The neutron diffraction technique for lattice strain characterisation in crystalline
materials is based on Bragg’s law given by:

λ = 2dhkl sin θ (4.1)

where λ is the neutron wavelength, dhkl is the lattice plane spacing of a selected
hkl reflection and θ is half the diffraction angle. A variety of experimental config-
urations can be used; see for instance (Allen et al. 1985, Lorentzen 1990, Bourke
et al. 1992).

4.1.1 Fixed Wavelength Method

Neutrons with a wide energy spectrum are produced continuously by the fission
processes in a thermal nuclear reactor. In a fixed wavelength measurement, the



incident beam is monochromated by inserting a monochromator in the ’white’
beam from the reactor. The incident beam is diffracted in the sample and by
scanning a single detector over an appropriate angle range the Bragg angle of the
specific crystallites sub-set, fulfilling the Bragg relation is determined. This merely
involves those crystallites having a specific lattice plane spacing, and their lattice
plane normal aligned along the scattering vector, see figure 4.1(a).

The lattice plane spacing, dhkl, is determined from Bragg’s law, equation 4.1,
and then the elastic lattice strain is determined by relating the measured lattice
plane spacing to a stress-free reference value, d0

hkl, following the relation:

εhkl =
∆dhkl
dhkl

=
dhkl − d0

hkl

d0
hkl

=
sin θ0

sin θ
− 1 (4.2)

4.1.1.1 Measurements The present experimental work is based on a single
detector set-up at the steady state research reactor, DR-3, at RisøNational Labo-
ratory (Denmark). The experimental set-up is shown in figure 4.1(a), which indi-
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(a) Experimental setup at TAS-8. C:
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(b) Typical intensity versus 2θ plot from
the TAS-8 spectrometer.

Figure 4.1. The experimental set-up and a typical intensity peak for the TAS-8
spectrometer at Risø National Laboratory (Denmark).

cates that a specific neutron wavelength is selected from the ’white’ beam of the
reactor using a monochromator (M); in this case a large single crystal of Germa-
nium. Both incident and diffracted beams, that define the scattering vector (Q),
are collimated (C), and the gauge volume is defined by slit systems (S) made from
a neutron absorbing material; in this case Cadmium. A typical intensity curve is
shown in figure 4.1(b).

As an example of a measurement with this technique commercially pure alumi-
nium samples (Al2S) are loaded in uniaxial tension using a stress-rig developed
for the spectrometer (Lorentzen and Sørensen 1991). By aligning the tensile axis
parallel to the scattering vector, only the lattice strain along this axis is deter-
mined. The reference value, d0

hkl, is here selected as the lattice plane spacing at
zero load rather than a true stress-free value.

The neutron diffraction measurements were made at fixed macroscopic strain
levels and in the plastic region some room temperature relaxation was noted.
For each reflection, measurements on two identical samples were completed, and
the results are presented as an average of these two. The average macroscopic
stress-strain curve for the tests is shown in figure 4.2(a) and the measured elastic
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lattice strains are shown in figure 4.2(b) as a function of the macroscopic strain
component in the tension direction. The error bar in figure 4.2(b) represent the
sample-to-sample variation as described in appendix A.2.
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(a) The macroscopic stress-strain re-
sponse. The symbols indicate the diffrac-
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(b) The measured elastic lattice strain as
a function of the applied strain.

Figure 4.2. The measured macroscopic stress-strain response and the elastic lattice
strain response for aluminium. The lines are meant as a ’guide to the eye’.

It is evident that the reflections display differences in the measured lattice
strains, with the 111-reflection displaying the highest lattice strains, while the
220-reflection is displaying the smallest lattice strains. Furthermore it is observed
that the general trend in all three curves resemble the macroscopic stress-strain
curve as shown in figure 4.2(a).

The results of the experiments will be compared with the predictions of the
present self-consistent polycrystal deformation model in section 5.2.1.

4.1.2 Time-of-flight Method

In a time-of-flight (TOF) measurement, a target of a heavy element is bombarded
by protons pulses accelerated to large energies and thereby nuclei in the target
emits pulses of neutrons produced by a process called spallation which occurs when
the energetic protons interact with the target. As the neutrons are created when
the proton pulse interacts with the target the wavelength of the neutrons can be
determined from the time difference between the creation and the detection, and
the distance to the detector. Contrary to the fixed wavelength method, the incident
beam is the ’white’ beam directly from the target, and each neutron pulse contains
a continuous spectrum of energies with a spectrum determined by the moderator.
The diffracted intensity from the samples are measured and the wavelengths are
determined from the time-of-flight. The geometry of the setup then determines the
scattering vector and the TOF, t is determining the wavelength of the neutrons.

t =
L

v
=
λm

h
L (4.3)

where L is the path length, v and m are the velocity and the mass of the neutron,
λ is the wavelength and h is Planck’s constant. Multiple detectors can be used
to determine elastic lattice strains in different directions at the same time. The
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elastic lattice strain is determined from the TOF as

εhkl =
∆d
d

=
∆λ
λ

=
∆t
t

(4.4)

4.1.2.1 Measurements The present experimental work is based on the NPD
instrument at MLNSC (USA), using the stress-rig developed for the instrument
(Bourke et al. 1993). A schematic set-up of the NPD instrument is shown in
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D -90

(a) The experimental set-
up for the NPD instru-
ment.

(b) Typical diffraction pattern from the NPD instru-
ment.

Figure 4.3. The experimental set-up and a typical diffraction pattern for the NPD
instrument at MLNSC.

figure 4.3(a) and a typical measured diffraction pattern is shown in figure 4.3(b).
The incident beam (defined by slits, S) is 10 mm wide. No collimation is used
on either incident or diffracted beam, and there is not used slits to define the
diffracted beam. The NPD sample chamber is located 32 meters from the target
and the moderator is chilled water (10◦ C). The elastic lattice strain components
parallel and perpendicular to the tensile axis are determined for 15 hkl-reflections
at the same time by the detector banks at plus and minus 90◦. Due to the size of
the detector banks the angular resolution is about ±5.5◦. Only the results for the
six reflections used in section 2.3 is quoted to reduce the amount of data in the
illustrations.

Samples of austenitic stainless steel and copper were used in the experiments,
and both in-situ strains and residual strains were measured at various load levels.
The macroscopical stress-strain response for stainless steel is shown in figure 4.4(a)
where the in-situ diffraction measurements are represented by the symbols. The
macroscopical stress-strain response for copper is shown in figure 4.4(b) where the
residual strain measurements are represented by the symbols. The strain resolu-
tion of the TOF measurements is approximately 50 × 10−6 (Bourke et al. 1992)
depending on the reflection.

The samples were cut from rolled sheets and unfortunately the copper samples
were not fully recrystallised after manufaction, and as a result the overall stress
strain response show a very sharp corner at yield and a very low and almost
linear hardening in the plastic region, see figure 4.4(b). The residual strains were
measured for the unloads shown in figure 4.4(b), but the in-situ measurements are
limited to the elastic region and the transition zone as the sample started to creep
during the neutron diffraction measurement at loads in the plastic region.
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(a) Stainless steel. The line is meant as a
’guide to the eye’.
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(b) Copper.

Figure 4.4. The macroscopic stress-strain response for stainless steel and copper.
The symbols indicate a diffraction measurement.

Austenitic stainless steel The elastic lattice strains in in-situ uniaxial tension
tests of austenitic stainless steel have been measured for reflections parallel and
perpendicular to the tensile axis. The diffraction measurements were made at
selected stress levels and the applied stress component in the tensile direction is
shown versus the measured elastic lattice strains in figure 4.5.
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(a) Parallel to the tensile axis.
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(b) Perpendicular to the tensile axis.

Figure 4.5. The applied stress versus the measured elastic lattice strain for stainless
steel.

The results of the measurements on stainless steel and copper, that both have a
high anisotropy, is plotted as applied stress versus measured elastic lattice strain
to approach the presentation in a conventional stress-strain curve. This way of
plotting the data was not used for the measurements on aluminium as the aniso-
tropy is relatively small and the difference between the reflections are difficult to
observe in this type of plots.

As seen in figure 4.5(a) the reflections parallel to the tensile axis are subjected to
different elastic strain in the elastic regime due to the elastic anisotropy. The 331-
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reflection reaches yield first and starts to bend upwards as it can not be strained
further elastically. As a result of this, the other grains must carry a larger part of
the load, which is best seen for the 200-reflection as it is the weakest reflection. The
200-reflection starts to bend downwards as it is subjected to higher load. When
the 200-reflection itself becomes plastic, it starts to bends upwards again as it can
not be strained further elastically, and when all the reflection, and the polycrystal
itself, has become fully plastic, the elastic strain response becomes almost linear
again, but with different moduli than in the elastic region. Then the strains are
dictated by the plastic anisotropy of the material. The ’double bend’ behavior is
not so obvious for the other reflection as they are relative stiff.

Perpendicular to the tensile axis, figure 4.5(b), the rearranging of load in the
transition zone is not so pronounced, but it is obvious that the modulus of the
reflections change in the plastic region.

In addition to the in-situ diffraction measurements, the residual lattice strains
were measured at selected plastic strain levels (0.2%, 0.7%, 1.2% and 2.0%) and
the results are shown in figure 4.6. As seen in figure 4.6, the residual strains
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(a) Parallel to the tensile axis.
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(b) Perpendicular to the tensile axis.

Figure 4.6. The residual lattice strain of the reflections as a function of the equiv-
alent plastic strain for stainless steel.

build up in the transition zone and becomes almost constant in the fully plastic
region. This also indicates that the rearranging of the load is restricted to the
transition zone, which is in agreement with the ’double bend’ elastic strain curves
found in the in-situ measurements. Parallel to the tensile axis, figure 4.6(a), the
200-reflection shows the highest positive residual strain and the 331-reflection the
highest negative residual strain. Perpendicular to the tensile axis, figure 4.6(b),
most of the reflections are in compression and only the 200-reflection is slightly in
tension. Due to equilibrium conditions the overall average stress in the sample must
be zero, but this do not mean that the average of a single strain component in one
direction must be averaged to zero. The level of the residual strains are not much
larger than the normal strain resolution of a neutron diffraction measurement
(±50 × 10−6).

Copper The elastic lattice strains in in-situ uniaxial tension tests have also been
measured for pure copper (99.999%) using reflections parallel and perpendicular
to the tensile axis, see figure 4.7.

In figure 4.7 the relatively strong elastic anisotropy of copper are shown by
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(a) Parallel to the tensile axis.
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(b) Perpendicular to the tensile axis.

Figure 4.7. The applied stress versus the measured elastic lattice strain for copper.
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(a) Parallel to the tensile axis.
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(b) Perpendicular to the tensile axis.

Figure 4.8. The residual lattice strain of the reflections as a function of the plastic
strain for copper.

the difference in modulus for the different reflections. The 200-reflection is the
weakest and the 111-reflection is the strongest. In the transition zone the 200-
reflection starts to bend downwards as for the stainless steel, but the ’double
bend’ behavior is not observed as the measurements are restricted to the elastic
regime and the transition zone.

Perpendicular to the tension axis, figure 4.7, the 200-reflection is again the softer
and the 111-reflection is the strongest. The relative scatter in the measurements
is larger than for the measurements parallel to the tensile axis due to the Poisson
ratio and due to the differences in the grains that constitutes the reflections, as
discussed in section 3.2.3.

The residual lattice strains in copper were measured at selected plastic strain
levels (0.2%, 0.5%, 1.0%, 2.0%, 3.0%, 4.0% and 5.0%). The results are shown in
figure 4.8. The residual strains in copper resembles the ones measured in stainless
steel. Parallel to the tension axis, figure 4.8(a), the 200-reflection show the highest
positive residual strain and the 331 the highest negative residual strain. Note the
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scale difference in figure 4.6 and figure 4.8. Perpendicular to the tensile axis, the
200-reflection is in tension and most of the other reflections are in compression as
also observed in stainless steel.

The results of the experiments with copper and stainless steel samples will be
compared to the predictions of the present self-consistent polycrystal deformation
model in section 5.2.

4.2 Texture Measurement

The numerical calculations presented in the model evaluation, section 5.2, are
made with a set of ∼5700 grains representing the experimentally determined tex-
ture of the materials. The initial grain orientations are determined from the mea-
sured orientation distribution function (ODF) for the actual samples using the
procedure described in (Leffers and Juul Jensen 1986).

Texture characterisation is also based on Bragg scattering, although the spec-
trometer set-up differs from the ones used in lattice strain determination, see
(Juul Jensen and Leffers 1989, Von Dreele 1997). Using the fixed wavelength tech-
nique the ODF is determined by recording the intensity distribution of three hkl-
reflections over an appropriate part of Euler space. If the TOF technique is used,
all the reflections in the spectra are used in the calculation of the ODF. The ori-
entation distribution function determined for the materials considered here are
shown in figure 4.9.

All the uniaxial tension test samples are cut from rolled sheets with the tension
axis in the rolling direction. The ODF for the aluminium samples shows that the
material has a weak shear texture from the cold rolling during the sample prepa-
ration, see figure 4.9(a). The highest level in the ODF plot is three times random.
To get an acceptably small grain size for the neutron diffraction measurements,
the aluminium was cold rolled and heat treated to obtain a grain size of ∼100µm.
The ODF for copper show that the samples have a very weak cube texture, fig-
ure 4.9(b), where the highest level in the plot is two times random. The grain size
in the copper samples is ∼81µm, but the size distribution is very broad due to
the fact that the samples were not fully recrystallised. The stainless steel sheet is
almost texture free as seen in figure 4.9(c). The highest level in the plot is two
times random. The grain size in the stainless steel samples is ∼28µm.
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(a) ODF for the aluminium samples. (b) ODF for the copper samples.

(c) ODF for the stainless steel samples.

Figure 4.9. Orientation distribution functions for the aluminium, copper and stain-
less steel samples.
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5 Model Evaluation

The uniaxial behavior of aluminium, copper and stainless steel polycrystals is sim-
ulated using the three models described in section 2 and the results are evaluated
by neutron diffraction.

Polycrystal models are typically evaluated by their capability to simulate texture
development. For large deformations and strong textures, model predictions are
readily compared to textures determined experimentally i.e. by neutron diffrac-
tion, as shown in (Juul Jensen and Leffers 1989). In the case of small deformations,
however, the texture development is minimal and cannot serve as a means of eval-
uating the model predictions. However, the model can be evaluated on a much
more specific micro-mechanical level using the novel technique of lattice strain
characterisation by neutron diffraction. Neutron diffraction provides a possibility
of in-situ determining the elastic lattice strain in selected grain sub-sets within
the polycrystal, as a function of the applied load. For the Taylor and Sachs models
the calculated stress components must be converted to ’elastic’ strain components
as the models are rigid plastic. For the self-consistent model, the measured elastic
lattice strain components can be directly compared to model predictions of volume
average of elastic lattice strain in selected grain sub-sets resembling the family of
grains participating in the particular diffraction experiments.

In all three models, the exponentially decreasing hardening law, described in
section 2.3, is used:

hγ = hfinal
(

1 + (hratio − 1) e(−hexpγacc)
)

(5.1)

where hfinal is the final hardening coefficient, hratio is the ratio between the initial
and the final hardening coefficient and hexp is a parameter that determines the
strength of the exponential part. This definition of the hardening law also includes
the simple linear hardening that is obtained by choosing hratio = 1. Selecting
τ0 and the hardening law, and thus the hardening coefficients, is not trivial. In
the present calculations these parameters have been used to fit the macroscopic
response of the models to the measured macroscopic stress-strain curves. Thereby
it is possible to compare the measured and calculated polycrystal behaviour on a
micro-structural scale.

5.1 Taylor and Sachs Models

The experimental results for the stainless steel sample, discussed in section 4.1.2,
are used to evaluate the Taylor and Sachs models. To be able to compare the
results of the models with the measured elastic lattice strains, the calculated



stresses for the grain sub-sets are divided by the Kröner stiffnesses (diffraction
elastic constants) for the stainless steel reflections, determined in section 3.2.1.
The exponentially decreasing hardening law is used for both models, and the used

τ0 q hfinal hratio hexp
MPa — MPa — —

Taylor 87.0 1.0 470.0 19.0 275.0
Sachs 87.0 1.0 600.0 19.0 200.0

Table 5.1. Fitting parameters used in the Taylor and Sachs models.

parameters are shown in table 5.1. The macroscopic stress-strain curves are shown
in figure 5.1.
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(b) Sachs model.

Figure 5.1. Macroscopic stress-strain curves for the Taylor and Sachs models.

As seen in figure 5.1, the two models do not have an elastic region, and in both
models the initial critical resolved shear stress value have been selected as half of
the apparent yield strength of the material, found from the measured stress-strain
curve.

The results of the Taylor model calculations are compared with the measured
elastic lattice strain in the reflections parallel to the tensile axis in figure 5.2.
The initial ’elastic’ part of the model calculations are determined by the Kröner
stiffnesses. The model calculation are almost linear for all reflections, which is not
the case for the measured data. The observed load redistribution in the measured
data in the elastic-plastic transition zone is not incorporated in the rigid plastic
Taylor model.

The results of the Sachs model calculations are compared with the measured
data in figure 5.3. As for the Taylor model, the initial ’elastic’ part of the model
calculations are determined by the Kröner stiffnesses. As seen in figure 5.3(b), at
least the 111-reflection show significant non-linearity, but most of the reflections
are almost linear, as for the Taylor model.

The predictions of the two rigid plastic models are mostly used for large defor-
mations. As seen in figure 5.1, the overall stress strain response of both models are
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Figure 5.2. Comparison of the Taylor model results and the measured elastic lattice
strain parallel to the tensile axis.
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(a) Symbols are measured data and lines
are model calculations.
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are model calculations.

Figure 5.3. Comparison of the Sachs model results and the measured elastic lattice
strain parallel to the tensile axis.

relatively close to the measured data above ∼250MPa, corresponding to ∼0.25%
deformation. Comparing the model calculations for loads larger than ∼250MPa,
it is clear that the Sachs model predictions are closest to the measured data, as
the Taylor predictions for the 200- and 220-reflections are rather different than
the experimental results.

5.2 Self-consistent Model

In the present section the results of the elastic-plastic self-consistent polycrystal
deformation model described in section 2.3 are compared with neutron diffrac-
tion measurements in three different materials, aluminium, copper and austenitic
stainless steel. The hardening parameters used in the calculations are shown in
table 5.2 and the macroscopic stress-strain response for all three materials are
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shown in figure 5.4.

τ0 q hfinal hratio hexp
MPa — MPa — —

Aluminium 10.9 1.01 40.0 5.0 61.0
Aluminium 12.7 1.01 50.0 1.0 1.0
Copper 50.0 1.01 20.0 900 1250
Steel 87.0 1.01 300 5.0 120

Table 5.2. Fitting parameters for the present calculations.

As seen in table 5.2 and in figure 5.4, both the linear hardening law and the
exponentially decreasing hardening law have been used in the aluminium calcula-
tions to pinpoint the differences in the two assumptions. In the stainless steel and
copper calculations only the exponentially decreasing hardening law have been
used. The copper samples were unintentionally not fully recrystallised, and there-
fore show a very sharp transition from elasticity to plasticity. Hence, both hratio
and hexp are relatively high. This behavior also limited the in-situ diffraction
measurements to the initial elastic regime and transition zone as the sample crept
during the diffraction measurements in the plastic regime. As discussed in sec-
tion 4.2 the initial texture in the samples has been measured. In the calculations
the measured texture is represented by grain sets of approximately 5700 grains.

Even though the macroscopic model predictions can predict the experiments
macroscopically, this does not provide verification of the model at a microstruc-
tural level, i.e. whether stresses and strains in the grains are handled appropriately.
As described in section 2.1.2, the average elastic strain of selected grain sub-sets
representing the reflections in a neutron diffraction measurement are determined
in the model calculations. The elastic strain rate components are calculated as
ε̇Ec =Mcσ̇c and these results form the basis of the model evaluation by compar-
ison with the experimentally determined elastic lattice strain response.

For this comparison only the grain sub-sets fulfilling the Bragg condition should
be considered. In the fixed wavelength measurements the experimental resolution
of the spectrometer is about 0.5◦. However, in a set of ∼5700 grains, as used
in the present calculations, this would correspond to very few grains, and the
deduced elastic strains would be prone to poor statistics. In practice, an average
is taken over the grains with the specific lattice plane normal within ±5◦ of the
main direction. This angular resolution is very much like the ±5.5◦ for the NPD
instrument used in the TOF measurements.

5.2.1 Aluminium

The in-situ neutron diffraction measurements on aluminium were made with the
TAS-8 spectrometer at Risø National Laboratory (Denmark). Samples were loaded
to specific strain levels while focusing on the 111-, 200- and the 220-reflections. For
each reflection, measurements were made on two identical samples, and the results
are presented as an average of these two. The model prediction of the macroscopic
stress-strain response for aluminium calculated with the linear hardening law de-
viates from the experimental observed stress-strain curve by showing a too sharp
curvature at the on-set of yield, as seen in figure 5.4(a). The exponential decreas-
ing hardening law, however, can fit the macroscopic stress-strain curve with an
acceptable accuracy.

The experimental results of figure 4.2 are compared with the model predictions
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(a) Aluminium. Symbols are measured
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are calculated with exponential hardening
law.
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Figure 5.4. Macroscopic stress-strain curves for all the materials.

using either of the two selected hardening laws in figure 5.5. It is evident from
these results, that the exponential hardening law, which provides a good agree-
ment with the macroscopic stress-strain curve, also provides the closest agreement
with experimental observations on a grain size scale. For all three reflections the ex-
perimental data show a smooth transition from the elastic region to the essentially
linear plastic region. None of the measurements follow the relatively sharp transi-
tion predicted when using the linear hardening law, and hence it is concluded from
the present data that the linear hardening law is a rather poor choice. Comparing
the model predictions and the individual lattice strain responses observations, it
is evident that the model predicts the elastic strains evolution for the 111- and the
220-reflection fairly accurately. For the 200-reflection, however, the discrepancy is
noticeable. For this reflection, all experimental results past the onset of yielding
show higher elastic strains than predicted by the model, and at 1% total deforma-
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(a) Elastic lattice strain curve for the
111-reflection.
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(b) Elastic lattice strain curve for the
220-reflection.
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(c) Elastic lattice strain curve for the
200-reflection.

Figure 5.5. Comparison of neutron diffraction measurements and model calcula-
tions for aluminium. Symbols are measured data, ( ) are calculated with expo-
nential hardening and ( ) are calculated with linear hardening.

tion the model is underestimating the elastic strain level by approximately 20%.
In comparing the results from all three grain sub-sets it is furthermore noticed,
that the model predicts the 200-reflection to experience numerically lower elastic
strains than the 220-reflection. This is in contradiction to the experimental obser-
vations, see the figures 4.2(b) and 5.5. On the other hand, the model successfully
predicts the numerical level of elastic strains in the 111- and 220-reflections.
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5.2.2 Stainless Steel

The neutron diffraction measurements on stainless steel were made with the NPD
instrument at MLNSC (USA), and using the TOF technique all the reflections
were measured for one sample at the same time. The steel sample were loaded
to specific stress levels as the in-situ diffraction measurements were made, see
figure 4.4(a). The measured in-situ data from figure 4.5 is compared with the
predictions of the present self-consistent model in figure 5.6.
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(b) Parallel to the tensile axis.
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(c) Perpendicular to the tensile axis.
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(d) Perpendicular to the tensile axis.

Figure 5.6. The applied stress versus the measured elastic lattice strain for stainless
steel.

As seen in figure 5.6, the model accurately predicts the ’double bend’ of the 200-
reflection described in section 4.1.2, and the predictions for the other reflections
parallel to the tensile axis are also very accurate, except for the 331-reflection that
show some discrepancies for stress levels above 250 MPa.

Perpendicular to the tensile axis the model predictions of the 111-, 200- and
220-reflections are also very accurate, figure 5.6(c), but the predictions for 311-,
331- and 531-reflections deviates from the measured data in the plastic region,
where the calculations generally show a smaller elastic lattice strain than the
measurements, at a given stress level.
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(a) Parallel to the tensile axis.
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(b) Parallel to the tensile axis.
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(c) Perpendicular to the tensile axis.
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(d) Perpendicular to the tensile axis.

Figure 5.7. The residual lattice strain of the reflections as a function of the plastic
strain for stainless steel.

It is interesting to note, that the surprising behaviour of the 200-reflection per-
pendicular to the tension axis described in section 3 does not occur when a non-
random texture is used in the calculations. In this case the overall stiffness tensor,
and thereby the continuum matrix in the calculations, is no longer transverse
isotropic, which supports the earlier explanation of the behaviour in the trans-
versely isotropic case (see section 3.2.3). The changed symmetry has changed the
sets of active slip systems in the grains, and the unrealistic deformation modes
are not utilised.

Generally, the elastic modulus of the reflections are very accurately predicted
by the model, which indicates that the Kröner stiffnesses are good approximations
for the diffraction elastic constants.

The residual lattice strains have been measured in the stainless steel sample
at four unloads, 0.2%, 0.7%, 1.2% and 2% plastic deformation, and the results
are compared with model calculations in figure 5.7 for the reflections parallel and
perpendicular to the tensile axis. The predicted residual strains are determined
from the deviations from linearity as discussed in section 3.

As seen in figure 5.7 the model predictions of the residual strains parallel to the
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tensile axis is fairly accurate, with the 200-reflection showing the poorest fit to the
measured data. Perpendicular to the tensile axis, the predictions for the 111-, 200-
and 220-reflections are again fairly accurate, but the other three reflections (311,
331 and 531) are all predicted to be slightly in tension, but the measurements show
that they are all slightly in compression. As seen in figure 5.6(d) the predictions
of in-situ strains for these three reflections also show very poor comparison with
the measured data in the plastic regime.

5.2.3 Copper

The neutron diffraction measurements in copper were likewise made with the NPD
instrument at MLNSC (USA). The copper sample was loaded to specific stress
levels in the elastic regime as the in-situ diffraction measurements were made, and
the residual strain were measured at the seven unloads shown in figure 5.4(b).
The measured in-situ data from figure 4.7 is compared with the predictions of the
present self-consistent model in figure 5.8.
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(a) Parallel to the tensile axis.
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(b) Parallel to the tensile axis.
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(c) Perpendicular to the tensile axis.
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(d) Perpendicular to the tensile axis.

Figure 5.8. The applied stress as a function of the measured elastic lattice strain
for copper.

As seen in the figures 5.8(a) and 5.8(b) the model predictions are very accurate
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for all the reflections parallel to the tensile axis. This again shows that the Kröner
elastic moduli of the reflections are a very good approximation of the diffraction
elastic constants. As the measurements are limited to the elastic regime and the
elastic-plastic transition zone only a small load redistribution is seen, but it is
correctly predicted by the self-consistent modelling scheme. Perpendicular to the
tensile axis, the figures 5.8(c) and 5.8(d), the model predictions are almost as
accurate. Taking the relative larger experimental scatter in this direction into
account the predictions of the diffraction elastic constants in this direction is also
accurately predicted by the model. In the transition zone some discrepancies are
noted, especially for the 111-, 311- and 531-reflections.

The residual lattice strains have been measured in the copper sample at seven
unloads, 0.2%, 0.5%, 1%, 2%, 3%, 4% and 5% plastic deformation, and the results
are compared with model calculations in figure 5.9 for the reflections parallel and
perpendicular to the tensile axis.
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(a) Parallel to the tensile axis.
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(b) Parallel to the tensile axis.
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(c) Perpendicular to the tensile axis.
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(d) Perpendicular to the tensile axis.

Figure 5.9. The residual lattice strain of the reflections as a function of the plastic
strain for copper.

As seen in figure 5.9, the model predictions of the residual strains in copper
are not as accurate as the predictions for stainless steel. Parallel to the tension
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axis, only the 111-reflection is within ±100 × 10−6 of the measured data, and
perpendicular to the tension axis the 111-, 311- and 531-reflections all deviate by
∼100× 10−6. It is interesting to note that the 200-reflection both parallel to and
perpendicular to the tensile axis show good agreement with the measured in-situ
data, but only in the direction perpendicular to the tensile axis the predictions of
the residual strains are accurate.

Generally the in-situ model predictions for the copper sample are as accurate as
for the stainless steel sample, but the residual strain measurements are not as ac-
curate as for the stainless steel sample. This could be explained by the fact that the
copper sample was not fully recrystalised before it was used for the measurements.
Residual strain from the cold rolling may have influenced the measurements.

5.3 Summary

The comparison of the predictions of the Taylor and Sachs models with the neutron
diffraction measurements show that these models are not suitable for this type of
correlation. The lack of material parameters in the models are compensated by
the use of the Kröner stiffnesses, but still the rigid plastic models cannot predict
the elastic lattice strains with acceptable accuracy. However, these models have
successfully been used to predict deformation textures for large strains, where the
elastic deformation is negligible.

The neutron diffraction measurements are suitable for evaluation of the self-
consistent modelling scheme. The degree of detail in the model is practically the
same as observed in a neutron diffraction measurement. The stresses and strains
are assumed constant within the grains and the predicted average elastic strain
values for a specific grain sub-set is comparable to the measured average lattice
strains for a corresponding set of grains. In the self-consistent scheme the grains
are regarded as inclusions in a homogeneous continuum matrix and in the neutron
diffraction measurements the average of many grains with different surroundings
is measured at the same time, making the ’average surroundings’ similar to the
continuum matrix used in the model calculations.
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6 Conclusion

In the following a summation of the previous discussions will be made, and the
most important conclusions will be highlighted.

6.1 Modelling

In the present work, three polycrystal deformation models have been investigated
(Taylor 1938, Sachs 1928 and Hutchinson 1970). The models have been imple-
mented, and the results of calculations of all the models have successfully been
correlated with results reported in the literature and with the results of neutron
diffraction measurements.

6.1.1 Taylor and Sachs Models

These basic upper- and lower-bound models have been used as a reference of
what is possible to estimate using the simplest assumptions for the polycrystal
(i.e. uniform strain or stress). Both the models are rigid plastic and they do not
include material properties such as elastic anisotropy. The calculated average m-
factors are 3.06 and 2.23 for the Taylor model and the Sachs model, respectively,
which is in agreement with reported values (Chin and Mammel 1967, Leffers 1995).

The calculated lattice rotations for both models leads to the well known 〈111〉-
〈100〉 fiber texture for uniaxial deformation of fcc metals. The number of active
slip systems in the grains are five in the Taylor model, to accommodate the five
independent strain components, and one in the Sachs model (for symmetric ori-
entations the present Sachs model is a multi slip model), making the rotation
pattern for the two models, shown in figure 2.12(d) and 2.12(e), quite different.

Neither of the models is practical with respect to the correlation with neu-
tron diffraction measurement of elastic lattice strains. For a possible comparison,
the calculated stress components for the reflections must be converted to ’elastic’
strains by the diffraction elastic constants (here the Kröner stiffness for the re-
flections) before comparison with the measured elastic lattice strains are possible.
This conversion is inherently an estimate as only a single component of the strain
tensor is used. The correlation with the neutron diffraction measurements show a
rather poor agreement but the models have in many cases been successfully used
to predict deformation textures for large strains. The texture development is an
overall parameter that does not directly reflect the underlying micro-mechanics,
and at large strains the influence of the elastic anisotropy is negligible.



6.1.2 Self-consistent Model

The numerical predictions imply that the dominating deformation mode in the
present self-consistent polycrystal model is one, in which grains have three active
slip systems. Approximately 50% of the grains accommodate the deformation by
three active slip systems, while less than 10% of the grains utilise the general five
active slip systems used in the Taylor model.

The hybrid material, with the elastic anisotropy of copper and the strength
properties of aluminium, is included to pinpoint the effect of elastic anisotropy
on polycrystal deformation as modelled by the present self-consistent model. As
expected elastic anisotropy has a very significant effect at the earliest stage of
the elastic-plastic transition, but already at 0.1% plastic strain the deformation
pattern is practically identical in aluminium, copper and hybrid. The difference
in yield point and work hardening between aluminium and copper has practically
no effect on the deformation pattern either.

Thus, for tensile deformation of texture-free fcc materials with (practically) no
difference between the hardening rates for different slip systems (as determined
by the hardening law in equation 2.31) the model predicts one single deformation
pattern, practically independent of the mechanical parameters of the materials.
Of course this ’universal’ deformation pattern will be translated into different
mechanical responses via the different mechanical properties of different materials.

By introducing an initial non-random texture the predicted deformation pat-
tern will change. The average number of slip systems and the average m-factor will
change as the average is taken for a different population of grains. The deforma-
tion pattern for a specific grain with a given orientation will also change because
it is now interacting with a different continuum matrix. Thus, the universal defor-
mation pattern is only universal for initially texture-free materials. For materials
with a significant initial texture new calculations should be made, starting with
a population of grains representative of the actual initial texture, as shown in
section 5.

It is obvious that a self-consistent model like the present model with plastic
interaction with the continuum matrix is a better model than the Taylor and the
Sachs models. There are no physical reasons why the individual grains should
interact with a matrix which is stronger than the average grain. In the Taylor
model, which is equivalent to an infinitely stiff matrix, the stress continuity is
neglected and in the Kröner self-consistent model (Kröner 1961) the continuum
matrix has the ’elastic stiffness’ of the polycrystal even in the plastic regime. The
Sachs model is equally unrealistic as it almost completely neglects intergranular
strain continuity. The weakest point in the self-consistent scheme is the lack of
direct grain-to-grain interaction. By using an N -site model (Molinari et al. 1987)
the direct interaction between N grains with their different crystallographic ori-
entations can be included. The limit of the degree of detail is the representation
of a polycrystal with a finite element model (Dawson et al. 1994). However, for
a 1-site model, it is difficult to imagine anything better than the self-consistent
concept.

6.2 Implications for Diffraction Measurements

The present self-consistent polycrystal deformation model has been used to find
the best suitable reflections for stress and strain measurements with neutron
diffraction. Such a reflection must have linear relation between the applied stress
and the elastic lattice strain.

The degree of plastic anisotropy follows the degree of elastic anisotropy for
the reflections parallel to the tensile axis, but perpendicular to the tensile axis
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the plastic anisotropy is of the same size in the three materials. The elastic strain
variation (the relative standard deviation) within the reflections is relatively small
in the elastic region in both directions in all the materials. In the plastic region the
variation increases rapidly, especially in the direction perpendicular to the tensile
axis, and the relative standard deviation of the elastic lattice strain are in most
of the reflections about 50%. As discussed in section 5.2 the very large variations
for the 200-reflection perpendicular to the tensile axis is caused by the selection
of the active slip systems, which for some orientations within this reflection only
allow deformation modes with unrealistic lateral contractions.

One explanation of this property in the model can be the imposed constraint
on the grains. In the model, all grains are embedded in the same homogeneous
matrix, and as such, the extreme lateral contractions observed for some grains will
not encounter more resistance in the pseudo matrix as a more normal contraction
mode. An additional indication of that this might be the reason, is the calculation
with an initial non-random texture in section 5.2. In this case the properties of
the pseudo matrix is no longer symmetric and the unrealistic behaviour of the
200-reflection perpendicular to the tensile axis is not observed.

The problem might be avoided by using a more specific interaction between
the grains as in an N -site model (Molinari et al. 1987). In an N -site model the
direct interaction between N grains is included in the calculations, and thereby the
loads applied to a specific grain would not be as highly symmetric as in the 1-site
model with random texture. The extent of the calculations increase rapidly with
increasing N , and within the present work, this model approach is not utilised.

The 311-reflection shows the smallest linearity deviation both parallel and per-
pendicular to the tensile axis in all the materials (aluminium, copper and stainless
steel), and it also shows the smallest residual strain build-up when loaded plasti-
cally. Thus, it is a suitable reflection to use for stress/strain characterisation.

The calculations show that the 111, 200 and 220 reflections are deviating from
linearity with more than the normal strain resolution in a neutron diffraction
measurement, and that the residual lattice strain build-up is also high in these
reflections. This indicates that if these reflections are used in stress and strain mea-
surements, the non-linearities must be taken into account and the intergranular
residual stresses must be separated from those originating from the macroscopic
plastic deformation.

When studying lattice strains in structural components the precise deformation
history is seldom known and it may furthermore differ greatly from simple uniaxial
tension as simulated in the present calculations. The present simulations indicate
that the orientation dependency will result in some variation in measured elastic
lattice strains even within regions of a structure which has experienced a nearly
homogeneous plastic deformation. The best way to obtain qualified information of
the intergranular strains in a sample that has been subjected to a given deforma-
tion history, is to make calculations similar to the ones in section 3, that simulates
the given deformation history.

6.3 Model Evaluation

In the present work a well known self-consistent scheme for describing polycrystal
deformation has been used to simulate uniaxial deformation of aluminium, copper
and austenitic stainless steel. It is selectively chosen to calculate the evolution
of elastic strains in various grain sub-sets as these numerical results are directly
comparable to actual experimental observations when using neutron diffraction.
As such, the aim has been to evaluate the model predictions at a grain size scale,
rather than the usual evaluations based on texture developments. The elastic lat-
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tice strain evolution has been followed by diffraction measurements while straining
the samples to 2 – 5% total strain.

Aluminium The lattice strains for the 111-, 200- and 220-reflections were mea-
sured using the fixed wavelength technique on the TAS-8 spectrometer at the
DR-3 reactor at Risø National Laboratory (Denmark). For each reflection, mea-
surements on two identical samples were completed, and the results are presented
as an average of these two.

Comparing the model predictions and the measurements, it was found that
calculations based on a linear hardening law did not successfully predict the onset
of yielding. All the experimental results show a gradual transition from elasticity
to plasticity that is more accurately predicted by the numerical results based on
an exponential hardening law.

The calculations with the exponential decreasing hardening law accurately pre-
dicts the elastic strain evolution in the 111- and 220-reflections. For the 200-
reflection, however, great discrepancy is observed, and from 1 to 3% total strain
the model under estimates the elastic strain level by approximately 20%.

It is clear that the model is lacking some micro-mechanical mechanism ex-
plaining this discrepancy in the elastic strains of the 200-reflection. This could be
explained by different dislocation pile-up properties on the crystallographic planes
which may point towards an inappropriate hardening law, as these properties are
in fact set to be identical for all orientations in the calculations.

Stainless steel The complete diffraction pattern for 15 reflections were mea-
sured using the TOF technique on the NPD instrument at Manuel Lujan Neutron
Scattering Center (USA).

The numerical prediction of the macroscopic stress-strain response using the
exponential decreasing hardening law can be fitted very closely to the measured
macroscopic stress-strain response of stainless steel. The comparison between the
in-situ diffraction measurements and the model predictions show good agreement
for the reflections parallel to the tensile axis, but perpendicular to the tensile axis
discrepancies are noted for some of the reflections.

The calculations for the 200-reflection perpendicular to the tensile axis are pre-
dicting the measured data very accurately, in contradiction to the calculations
with initially random texture discussed in section 6.3. As explained in section 5,
the introduction of a non-random initial texture causes the overall stiffness tensor
and thereby the continuum matrix in the Eshelby calculations not to be transverse
isotropic. The changed symmetry will change the set of active slip systems, and
thereby the unrealistic deformation modes might be avoided.

The predicted residual strains are fairly accurate for most of the reflections
parallel to the tensile axis, but perpendicular to the tensile axis only the 200-
and 220-reflections are predicted with acceptable accuracy and some of the other
reflections are wrong in sign.

Copper The measurements on copper were, likewise made with the TOF tech-
nique on the NPD instrument at Manuel Lujan Neutron Scattering Center (USA).

The measured macroscopic stress-strain response of copper show a rather small
transition zone and an almost linear hardening, and the hardening parameters,
hratio and hexp, used in the numerical calculations are relatively high. The com-
parison between the in-situ diffraction measurements in the elastic region and the
model predictions show good agreement for all the reflections both parallel and
perpendicular to the tensile axis.

The predicted residual strains for copper are not as accurate as for stainless
steel. Only the residual strain for one or two of the reflections in each direction
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are predicted with acceptable accuracy. This might be caused by the fact that the
copper sample was not fully recrystallised after manufacture, and thereby residual
strains from the cold rolling could have influenced the measurements.

6.4 General Conclusions

In the present work the self-consistent polycrystal deformation model of Hutchin-
son has been investigated. The predictions of the model have been evaluated on a
grain size scale by comparison with elastic lattice strains measured in grain sub-
sets by neutron diffraction. The correlation shows that the model predictions for
the reflections parallel to the tensile axis in a uniaxial tension test are generally
very accurate. Perpendicular to the tensile axis (and for a few reflection parallel
to the tensile axis) some discrepancies are noted. One way to investigate the ob-
served discrepancies would be to introduce specific hardening laws for particular
orientations, although not without increasing the amount of empiric assumptions
in the model. As a numerical exercise, the hypothesis of a range of hardening laws
for various orientations may be tested, however, it is envisaged that the diffrac-
tion study may lead to a more qualified selection of hardening laws based on
experimental observations.

In combination with the neutron diffraction measurements the model predic-
tions of the relation between the lattice stains in specific grain sub-sets and the
overall stress can facilitate the interpretation of technological applications of neu-
tron diffraction, where the volume average stress state is of interest. The model
calculations have pinpointed that the reflections used in the characterisation of
volume average stresses must be chosen carefully. The nonlinear behaviour of some
reflections would have a devastating effect on the calculated stresses. One way of
selecting the most suitable reflection (the one with a linear response even above
yield and a minimum build-up of residual strains) is shown in section 3. For a
given texture and deformation history the stress-elastic strain responses of the
reflections can be determined using the present model.
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Appendix A
Appropriate Gauge Volume

The following is an investigation of the influence of the gauge volume on the repro-
ducibility and sample-to-sample variations of a typically fixed wavelength neutron
diffraction measurement. The grain size in the sample must also be considered as it
determines the grain number within a specific gauge volume. The reproducibility
of a measurement is simulated by measuring the lattice spacing five consecutive
times without changing the set-up. The sample-to-sample variation is simulated
by measuring the elastic lattice spacing at five different locations in the sample.
The samples are commercially pure aluminium (Al-2S, 99.5%) with two different
grain sizes, 80µm and 400µm.

The theoretical number of diffracting grains in a specified gauge volume is de-
pending on the grain size, the multiplicity of the given reflection and the resolution
of the spectrometer. The multiplicity of all possible reflections are shown in ta-
ble A.1.

hkl a00 aaa aa0 ab0 abb abc
Multiplicity 6 8 12 24 24 48

Table A.1. Possible reflections and their multiplicity.

Assuming random texture in the samples, the grain number that actually par-
ticipates in the measurements can be estimated as the total grain number in the
gauge volume multiplied by the multiplicity of the reflection and divided by the
fraction of orientation space the detector covers. For the present neutron diffrac-
tion set-up using the 〈111〉 reflection, this means that only approximately 1 out of
4700 grains in the gauge volume participates in the measurements, see section A.1.

The gauge volume, V , is determined by the slit width of the incident beam, wI ,
the slit width of the diffracted beam, wD, the slit height, h, and by the diffraction
angle 2θ, see figure A.1

wI

Insident beam

Diffracted beam

x

z

y
Scattering vector

2

wD

k1

k2

Q

Figure A.1. Horizontal section of the gauge volume.

From figure A.1 the gauge volume can be determined as

V =
wIwDh

2 sin θ cos θ
=
wIwDh

sin 2θ
(A.1)

and it is seen that the gauge volume is proportional to the two slit widths and the
slit height, and inverse proportional to the sine of the scattering angle (2θ).
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In the present measurements we are using the 111-reflection in the aluminium
samples and a wavelength of 3.307Å making the scattering angle (2θ) approxi-
mately 90◦. This means that the denominator in equation A.1 is approximately 1
and the expression reduces to V = wIwDh.

To obtain the highest possible intensity in the incident beam a pyrolitic graphite
(PG) monochromator is used. The advantage of using a PG monochromator is
that it can be focused perpendicular to the scattering plane but it has a relative
high lattice spacing in the used 〈200〉 reflection compared to the aluminium 〈111〉
reflection. This makes the monochromator diffraction angle relatively small (20 –
30◦) for the used wavelength of 3.307Å which has a negative influence on the set-up
resolution. The spectrometer is aligned and optimized for the selected wavelength.

80µm grain size

The diffraction angle has been determined in an aluminium sample with a grain
size of 80µm for four different gauge volume sizes. The following four combinations
of the available fixed slits were used; 5× 10 and 5× 10 defining a gauge volume of
5×5×10 = 250mm3, 5×5 and 5×5 defining a gauge volume of 5×5×5 = 125mm3,
5×2 and 5×2 defining a gauge volume of 5×5×2 = 50mm3, and 2×10 and 1×10
defining a gauge volume of 2 × 1× 10 = 20mm3. Using the grain size, the gauge
volume and the percentage of grains participating in the diffraction measurement
described earlier, the corresponding theoretical number of grains that participates
in the measurements are approximately; 200, 100, 40 and 15, respectively.
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Figure A.2. The measured scattering angle for the eight sets of measurements in
the aluminium with 80µm grain size.

The results of the eight sets of measurements are shown in figure A.2. The
average diffraction angle and the standard deviation for all the gauge volume
sizes are shown in table A.2. The standard deviations for the sample-to-sample
measurements are almost as low as the reproducibility measurements indicating
that the used gauge volume size is adequate for neutron diffraction measurements
in materials with 80µm grain size.

400µm grain size

In the investigations of the aluminium with a grain size of 400µm the following
two combinations of the available fixed slits are used; 20× 5 and 20× 5 defining a
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Reproducibility Sample-to-sample
Gauge volume Average 2θ Standard Average 2θ Standard

mm3 deviation deviation
20 90.024 0.002 90.023 0.012
50 90.019 0.008 90.009 0.014
100 90.019 0.004 90.012 0.010
250 90.016 0.007 90.007 0.009

Table A.2. Test results from the sample with 80µm grain size.

gauge volume of 20× 20× 5 = 2000mm3, and 20× 2 and 20× 2 defining a gauge
volume of 20× 20× 2 = 800mm3. This means that the corresponding theoretical
number of grains that participates in the measurements are approximately 13 and
5, which is lower than all the in all the measurements on the sample with 80µm
grain size.
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Figure A.3. The measured scattering angle for the two sets of measurements in
the aluminium with 400µm grain size. Note the scale difference.

Reproducibility Sample-to-sample
Gauge volume Average 2θ Standard Average 2θ Standard

mm3 deviation deviation
800 89.976 0.003 89.910 0.191
2000 89.972 0.003 89.963 0.196

Table A.3. Test results from the sample with 400µm grain size.

The results of the two sets of measurements are shown in figure A.3. The stan-
dard deviation of the scattering angle is very small for the five consecutive mea-
surements at the same location with both the gauge volume sizes. The average
diffraction angle and the standard deviation for the two gauge volume sizes are
shown in table A.3. The very large differences in the scattering angle in the mea-
surements at different locations are caused by the large grain size and the low
number of grains within the gauge volume. As the number of grains in the gauge
volume decreases the measured diffraction angle are an average of fewer and fewer
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grains, and changing the position even a very small amount change the position of
the diffracting grains within the gauge volume and thereby change the measured
diffraction intensities. In addition to the fewer grains, the relative large gauge
volume size introduces other effects, such as different path lengths and thereby
different absorption. In opposition to the measurements on the material with 80µm
grain size, the present measurements show that the sample-to-sample variation is
unacceptably large for the larger grain sizes (400µm).

These measurements indicates that the grain size must be about 100µm to
obtain an acceptable accuracy using the neutron diffraction technique.

Strain Variations

The described measurements indicates that the reproducibility of a 2θ measure-
ment is very good and almost independent of the grain size, but the sample-to-
sample variations depend strongly on the grain size.

The highest value of the standard deviation of 2θ in the measurements of the re-
producibility for both grain sizes is 0.008◦. Including the sample-to-sample scatter
measurements the highest standard deviation for the 80µm grain size is 0.014◦. The
neutron diffraction measurements in the present work are all with scattering angles
that are very close to 90◦ and using equation A.8, described in appendix A.2, the
maximum relative standard deviation in the elastic lattice strain measurements
are approximately 0.01. The highest level of measured lattice strain in the present
work is about 3000×10−6 (200-reflection in stainless steel) rendering a maximum
standard deviation of a strain measurement of 30× 10−6.
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A.1
Diffracting Grains Within the Gauge Volume

In a neutron diffraction measurement the fraction of grains that participates in a
measurement is determined by the grain size, the gauge volume and the fraction
of the entire orientation space that the detector covers. The following calculations
determine the later parameter for the used single detector set-up at the TAS-8
spectrometer at the DR3 reactor at Risø National Laboratory.

2
A1

(a) The area of a spherical cap.

2

2

A2

(b) The additional area.

Figure A.4. The area covered by the detector.

If the detector was circular the covered area would be a spherical cap as seen in
figure A.4(a). But the detector is a line detector and the additional area covered
by the detector is shown in figure A.4(b). The lateral span of the detector, 2α, is
approximately 1◦ and the vertical span, 2β, of the detector is approximately 8◦.
The total area of the sphere is 4πr2 and the fraction of the orientation space that
is covered by the detector is found as

Fdet =
A1 +A2

Atot
=

2πr2 (1− cosα) + 4πr2 cos (90− α) 2β
360

4πr2
≈ 1

4700 (A.2)
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A.2
Standard Deviation of a Strain Measurement

In a fixed wavelength neutron diffraction measurements the scattering angle is
determined by measuring the diffracted intensity as a function of the angle and
the elastic lattice strain can be determined from the measured scattering angle as
described in section 4.1.1

εhkl =
d− d0

d0
=

sin θ0

sinθ
− 1 (A.3)

The relative standard deviation of the strain can then be determined as

σ(ε)
ε

=

√(
σ(sin θ0)

sin θ0

)2

+
(
σ(sin θ)

sin θ

)2

(A.4)

The standard deviation of the sine to an angle can be expressed in terms of the
standard deviation of the angle as

σ(sin θ) = sin (θ + σ(θ)) − sinθ = sin θ cos (σ(θ)) + cos θ sin (σ(θ)) − sin θ
(A.5)

Since σ(θ) is small cos(σ(θ)) ≈ 1 and sin(σ(θ)) ≈ σ(θ) and thereby

σ(sin θ) ≈ cos θσ(θ) (A.6)

Then the relative standard deviation of the strain becomes

σ(ε)
ε

=

√(
σ(θ0)
tan θ0

)2

+
(
σ(θ)
tan θ

)2

(A.7)

As the difference between θ0 and θ is generally very small in a neutron diffraction
strain measurement tan θ0 and tan θ are assumed to be the same, and the standard
deviation for θ0 and θ are assumed to be the same. Then the relative standard
deviation of the strain is found as

σ(ε)
ε

=
√

2 σ(θ)
tan θ

(A.8)
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Appendix B
Calculated Residual Strains

The residual strains for the reflections parallel to the tensile axis calculated at the
eight unloads described in section 3.2.6 for the six reflections in the three materials
are shown in the tables B.1 to B.3.

εP11 111 200 220 311 331 531
0.25% 98.3 −37.4 17.2 −23.7 10.6 −17.9
0.50% 106.1 −46.1 24.5 −27.5 14.5 −20.4
0.75% 111.8 −50.8 28.4 −29.6 16.2 −22.2
1.0% 116.1 −54.2 31.6 −31.3 17.2 −23.8
2.0% 128.8 −64.3 41.4 −35.6 20.5 −28.2
3.0% 140.1 −71.3 48.4 −38.6 22.6 −33.1
4.0% 152.0 −77.1 53.4 −41.4 24.3 −37.3
5.0% 163.2 −83.0 57.5 −43.7 25.7 −42.1

Table B.1. Calculated residual strains in aluminium (×10−6).

εP11 111 200 220 311 331 531
0.25% 15.9 165.1 −61.9 −3.8 −77.9 −62.9
0.50% 13.3 195.3 −71.4 −4.1 −88.9 −70.7
0.75% 12.2 208.5 −74.9 −4.3 −94.0 −74.3
1.0% 12.7 217.1 −77.9 −4.7 −97.6 −77.1
2.0% 17.2 246.7 −90.5 −5.5 −109.7 −86.5
3.0% 21.9 276.6 −102.7 −5.7 −121.3 −95.4
4.0% 26.5 306.5 −114.1 −5.6 −132.8 −104.0
5.0% 31.0 336.9 −125.4 −5.4 −144.3 −112.6

Table B.2. Calculated residual strains in copper (×10−6).

εP11 111 200 220 311 331 531
0.25% 28.2 386.9 −102.0 15.9 −159.5 −127.3
0.50% 16.7 541.9 −165.4 23.4 −224.0 −168.6
0.75% 2.1 613.1 −186.8 26.1 −243.9 −180.9
1.0% −4.8 642.9 −196.4 25.8 −253.4 −187.7
2.0% −6.8 671.8 −224.3 16.9 −271.1 −209.1
3.0% −3.5 696.3 −248.2 12.4 −281.4 −226.4
4.0% 0.6 720.4 −269.9 10.1 −290.0 −243.3
5.0% 5.0 745.3 −288.9 9.0 −298.1 −260.2

Table B.3. Calculated residual strains in stainless steel (×10−6).
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