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Abstract

This research compares matrix thermal residual strains measured in a continuous fiber reinforced SiC/Ti–6Al–4V titanium
matrix composite (TMC) using X-ray and neutron diffraction with finite element predictions. The strain dependence on the strains
for several reflections (105, 204, 300, 213 and 312) of the matrix were explored at the surface (X-ray) and in the bulk (neutron).
To determine the longitudinal surface strains from the X-ray measurements for comparison with the neutron values, the ofc versus
sin2c plots were extrapolated to c=90°. Continuum micro-mechanics based multi-ply finite element models (FEM) simulating
rectangular and hexagonal fiber distributions were explored for calculating average surface and bulk strains. For different
reflections, the experimentally determined surface measured strains ranged from +19049424 to +29749321 mo and the bulk
measurements ranged from +22699421 to +302291134 mo. These values contrast with the single valued FEM prediction
of+3200 mo which was the same for both the surface and the bulk. © 1999 Elsevier Science S.A. All rights reserved.
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1. Introduction

Residual strains in continuous fiber reinforced tita-
nium alloy metal matrix composites (TMCs) are in-
duced during the cooling from the consolidation
temperature of 900°C and are caused by the 2-fold
mismatch in the coefficient of thermal expansion (CTE)
between the SiC fiber reinforcement (3.2×10−6/°C)
and the titanium matrix alloy (8.78×10−6/°C). After
cooling, the strain parallel to the fibers (longitudinal) is
tensile in the matrix and compressive in the fiber. The
magnitude, distribution and stability in service of the
resulting residual strains and stresses influence the me-
chanical and physical properties of composites [1–4].
Despite extensive characterization [1–4] on TMC me-
chanical behavior, measurement and modeling of resid-
ual strains and stresses is a growing challenge. Models
that predict residual stresses and their effect on lifetime
predictions have to be validated [4,5]. Therefore, it is

important for residual strains and stresses to be experi-
mentally determined and accounted for to achieve reli-
able design parameters.

This research explores the range of strains that are
measurable depending on the selection of a particular
lattice reflection and whether surface or bulk penetrat-
ing techniques are used.

1.1. Re6iew of diffraction measurements of strain in
SiC/Ti TMCs

X-ray (XRD) [6–10] and neutron diffraction [10–16]
are commonly used to determine residual stresses in
continuous fiber reinforced TMCs. XRD is routinely
used to monitor residual stresses in the matrix of
TMCs, but because of the small penetration depth
exhibited by soft X-rays [17], is limited to the near
surface region (B50 mm). By contrast, neutron diffrac-
tion due to its deep penetration can determine the
strains in both the matrix and fiber simultaneously
[16]. In this paper we focus only on the matrix
strains.
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Fig. 1. Coordinate system used in the X-ray diffraction strain analy-
sis. S1, S2, and S3 are directions in the sample coordinate system
parallel, transverse and normal to the fiber orientation.

parison can be made with continuum mechanics based
model predictions [1,7,8,13,16]. Although this approach
is certainly valid for comparative measurements, care
must be taken for comparisons of absolute magnitudes
because of the range of elastic and plastic anisotropic
effects present at the microstructure level.

In the X-ray technique, because of the assumptions
of plane stress at the surface (generally satisfied for
TMCs [6–8]), stresses are determined directly using the
sin2c method, where the change in the interplanar
atomic spacing is related to the stress through an X-ray
elastic constant [17]. However, in a neutron measure-
ment (steady state [12] or pulsed [11]), strains are
calculated relative to a strain free standard. Since the
calculation of stress in any direction requires strain
measurements in at least three directions, this increases
the time for the measurements and potentially results in
compounding the errors.

Most XRD strain measurements use one reflection,
the selection of which is typically arbitrary, provided
that it is in the high angle (]120° 2u) region to
minimize the systematic errors associated with beam
optics and alignment with respect to the strain shifts
[17]. In this study, strains for several hkls present in the
high angle region are compared with similar hkls from
neutron measurements. Since the two techniques rely
on the same physics, the measurements should provide
a comparison of strains at the surface and bulk and
their sensitivity to choice of hkl [18].

In the past, there has been considerable focus on
comparisons of experimentally determined stresses with
finite element predictions [1,6–16]. Where comparisons
have been made, it is often convenient to assume that a
single measured reflection, with a suitable plane specific
elastic constant is representative of the stress (surface or
bulk) of the composite constituents, so a direct com-

Fig. 2. Photomicrographs at perpendicular and parallel cross-sections to the fibers. (a) Typical fiber array spacing; nf :0.37. Photograph at low
magnification of 50× . (b) Typical homogeneous, equiaxed a+b microstructure of the Ti–6Al–4V matrix alloy of the composite. Photograph at
high magnification of 500× .
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Fig. 3. X-ray diffraction spectra (CuKa) for the monolithic Ti–6Al–
4V showing the hkls 105, 204, 300, 213 and 302 used for strain
measurements.

pal strain axes are assumed, the sample coordinate
system (Si) shown in Fig. 1 can be matched with the
directions of the principal axes. The shear strain com-
ponents will be zero and the principal strains, o1, o2,
o3 will correspond to the strains o11 (parallel to the
fibers), o22 (in-plane perpendicular to the fibers), and
o33 (out of plane perpendicular to the fibers), respec-
tively, and can be determined by means of ofc at
(f,c) equal to 0,90; 90,90; and 0,0. The fundamental
equation now reduces to:

ofc=
dfc−d0

d0

= (o11 cos2f+o22 sin2f−o33)sin2c+o33

(2)

Since we are interested in the strains parallel to the
fibers (o11) where f=0°, Eq. (2) reduces to (Fig. 1):

ofc=
dfc−d0

d0

= (o11−o33) sin2c+o33 (3)

In practice, ofc versus sin2c is plotted by obtaining
ofc at c angles varying from 0 to 60° to obtain the
slope (o11−o33) [17]. If the variation of ofc versus
sin2c plot is linear, then it is an indication of a plane
stress condition at the surface, since the depth of pen-
etration is also very small (B12 microns at c=0°
using CuKa).

Using generalized Hooke’s law for stress measure-
ment, Eq. (3) is converted to stress s11 parallel to the
fibers by:

s11=
E

1+6
(o11−o33) (4)

Knowing the slope (o11−o33) from Eq. (3) and the
XRD elastic constant (E/1+6) for the hkl diffracting
plane used, in-plane stress (s11) is obtained by the
conventional practice of calculating stresses from
XRD technique [17].

However in this study we were interested in the
in-plane surface strains. After verifying that the ofc

versus sin2c plot is linear, we obtain this by extrapo-
lating the ofc versus sin2c plot to c=90°, such that

(f,c)= (0,90)

ofc=
dfc−d0

d0

=o11 (5)

where o11 is the in-plane strain (or surface strain) par-
allel to the fiber direction.

This approach is used because in X-ray diffraction
with soft X-rays, diffraction is possible only in reflec-
tion and measurements cannot be made at c=90°.
In contrast, because of the deep penetration and dif-
fraction taking place in both reflection and transmis-
sion geometry in a neutron diffraction experiment,
strain in any orientation can be obtained directly,
provided a diffraction peak can be found.

1.2. Diffraction for residual strain measurements

Diffraction based stress analysis techniques use dis-
tances between atomic planes of a crystalline speci-
men as an internal elastic strain gauge [17]. The
fundamental relation for determining a general strain
state with diffraction is [17]:

ofc=
dfc−d0

d0

=o11 cos2f sin2c+o12 sin 2f sin2c+o22 sin2f sin2c

+o33 cos2c+o13 cos f sin 2c+o23 sin f sin 2c

(1)

Here, ofc is the strain in the direction given by the
angles f and c and defined in Fig. 1. ofc is deter-
mined from the interplanar spacing between the
atomic planes (dfc) and the stress free spacing (d0).
The strain components on the right hand side of Eq.
(1) are referenced to the sample co-ordinate system,
Si, as shown in Fig. 1. The interplanar spacing dfc is
determined using Bragg’s law l=2d sin u, where l is
the wavelength, d is the interplanar spacing, and u is
the diffracting angle. Usually, in the conventional X-
ray technique, l is fixed and u is varied to determine
the spacing of diffracting plane (dhkl) (this also applies
at a monochromatic neutron source). At a pulsed
neutron source, u is fixed and l is varied to deter-
mine dfc. By measuring the strain ofc in at least six
independent directions, the six components of strain
in the sample coordinate system can be determined,
thus characterizing the strain tensor at the measure-
ment location.

In a fiber reinforced TMC system, the principal
strain axes are typically assumed to be parallel and
perpendicular to the fiber directions. Since the princi-



P. Rangaswamy et al. / Materials Science and Engineering A259 (1999) 209–219P. Rangaswamy et al. / Materials Science and Engineering A259 (1999) 209–219212

Fig. 4. Neutron diffraction spectra for the Ti–6Al–4V. (a) Monolithic matrix standard (b) and as-fabricated TMC-with scattering vector parallel
to the fiber direction.

2. Experimental

2.1. Sample preparation

Samples of unidirectional fiber reinforced SCS–6/
Ti–6Al–4V having ten fiber plies were fabricated at
Textron Speciality Materials by the foil fiber foil pro-
cess [19]. A metallographic cross-section, illustrating a

typical fiber array, is shown in Fig. 2(a). The spacing is
not completely regular and carbon cores can be seen at
the center of each fiber. Fig. 2(b) illustrates the typical
homogeneous equiaxed a+b microstructure of the tita-
nium matrix. The b phase shows up as the darker
etched lines. The matrix comprised �90% a (HCP)
and 10% b (BCC) as measured using X-ray diffraction.
The a phase of the matrix has a hexagonal close packed
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Fig. 5. Plots of d-spacing vs. sin2c for Ti–6Al–4V monolithic alloy and TMC (a) parallel (b) transverse to the fiber direction.

(HCP) crystal structure (space group P 6 3/m m c, lat-
tice parameter a:2.923 Å, c:4.667 Å). The fibers
were polycrystalline face centered cubic (FCC) crystal

structure (space group F −4 3 m, lattice parameter
a:4.360 Å) [20]. Fiber coating layers and the reaction
zone at the fiber/matrix interface can also be observed
(Fig. 2(b)). The fiber volume fraction (6f) was :37%.

Specimens measuring 100 mm long, 15 mm wide and
2 mm thick, with the fibers oriented in the long direc-
tion, were cut from the panels. The specimens were
electrochemically polished by a mixture of 6% perchlo-
ric acid, 10% butyl cellusolve and 84% methanol at
−50° at a potential of 50 V. The electropolishing
usually resulted in removal of �10–15 microns of the
matrix material from the surface of each side of the
coupon.

2.2. X-ray diffraction

X-ray measurements used the sin2c method with
CuKa radiation in the a (HCP) phase of the matrices.
The hkls 105, 204, 300, 213, and 302 which scatter at
:123°, 128°, 132°, 142° and 152° of 2u, respectively,
were examined (Fig. 3). Only hkls in the high 2u

(\120°) were used for the analysis because of the
greater sensitivity implicit at large angles [17,21]. Mea-
surements longitudinal and transverse to the fibers were
made.

Fig. 6. Plots of ofc vs. sin2c for hkls 105, 204, 213, 302 and 300,
parallel to the fiber direction. Values extrapolated to c=90° are as
open symbols.
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Fig. 7. Average surface X-ray and bulk average neutron elastic strains for hkls 105, 204, 213, 302 and 300.

2.3. Neutron diffraction

Neutron strains measurements were made using the
neutron powder diffractometer (NPD) at the Manuel
Lujan Neutron Scattering Center, as described by Ran-
gaswamy et al. [16]. Average bulk strains (ohkl) in the
composite matrix parallel to the fibers were determined
by comparison with stress-free samples of monolithic
alloy according to:

ohkl=
dhkl− (d0)hkl

(d0)hkl

(6)

where dhkl and (d0)hkl are the interplanar spacing ob-
tained by fitting individual Bragg reflections in the
composite and unstressed standard, respectively, and
hkl are the Miller indices of the diffracting planes in the
a (HCP) phase of the matrices. Despite the availability

of other hkl reflections, only the five matrix hkl reflec-
tions (105, 204, 300, 213 and 302) identical to those
considered for XRD are reported. Mild texture varia-
tions were observed between the titanium in the com-
posites and in the monolithics as seen in Fig. 4(a) and
(b). In the fibers the 220 and 440 reflection was used for
strain determination. Plane-specific-elastic-strains
(PSES) for both composites were calculated using Eq.
(6).

2.4. Results

2.4.1. X-ray diffraction and neutron diffraction on
titanium matrix

XRD dhkl versus sin2c plots were recorded for both
the monolithic and the composite matrices. If the
monolithic matrix is stress free, then the slopes of the
dhkl versus sin2c plot should be close to zero, this is
verified as shown in Fig. 5. Our primary intention was
comparison of neutron and X-ray longitudinal strains

Table 1
Comparison of X-ray and neutron matrix strains

NeutronErrorX-rayHkl Error

2396(105) 9318 3022 91134
94219539(204) 22692227
9859312(213) 26232640
910328339424(312) 1904

2974 9321 2617 999(300)

Table 2
Neutron fiber strains

Neutron ErrorHkl

919(220) −1273
−1220(440) 956
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Fig. 8. A schematic of the unit cell and multi-ply standard and cluster
FEM models for (a) rectangular (b) hexagonal arrangement of fibers.

424 to 29749321 mo, with the 302 plane showing the
lowest value and the 300 showing the highest value.
The error bars were determined from the standard
deviation of measurements at five different locations
on the surface and five measurements at the same
location.

In neutron diffraction measurements, lattice strains
are explicitly determined by measuring d spacings for
the composite and the stress-free samples. Since the
neutrons irradiate the entire cross-section of the speci-
men, these are bulk average measurements. The range
of neutron determined hkl strains are shown in Fig.
7. Similar to the XRD strains, there is disparity
among the hkl strains ranging from 22699421 to
302291134 mo, with the (204) plane showing the low-
est and the (105) showing the highest values. The
error bars in the neutron measurement are a combi-
nation of the peak fit error and the average of the
strain differences obtained in two consecutive mea-
surements. The large error bar on the 105 plane is
due to low peak intensity, resulting in a poor peak
fit. Strain values obtained by XRD and neutron dif-
fraction appear to be the same within experimental
error as shown in Fig. 7 and Table 1.

2.4.2. Neutron diffraction on silicon carbide fibers
The deep penetration of neutrons into the com-

posite sample provides simultaneous measurements of
bulk average strains for both the matrix and the
fibers. In Table 2 the strains measured in the fibers
for hkls 220 and 440 are shown. Since the strains are
measured from the same family of planes it is not
surprising that they are very similar and within 9
4%. Since the focus of the present research is on
comparing strains for the same hkls measured by X-
ray and neutrons we have used the fiber strains only
as a verification of the strain measurements between
the titanium matrix and silicon carbide fibers by
checking for stress balance (937 MPa) in the direc-
tion parallel to the fiber orientation.

but dhkl versus sin2c plots were also obtained for the
transverse direction. From these, using the approach
of Hauk et al. [22], ‘d0’ can be determined from both
neat and composite matrices. The values differed by
B0.01%.

Fig. 6 shows the ohkl versus sin2c plots for hkls
105, 204, 300, 213 and 312. The slopes correspond to
the difference between in-plane and out-of-plane
strains (o11−o33); o11 (in-plane strains) is obtained by
extrapolation to c=90°. The in-plane strains are
plotted in Fig. 7. The hkl strains range from 19049

Table 3
Fiber mechanical properties used in the model

Poisson ratio Coefficient of thermal expansion (10−6/°C)Temperature (°C) Young’s Modulus (GPa)

393 0.25 3.2025e-0621
0.25390 3.3403e-0693

3.5437e-060.25204 386
0.25 3.7369e-06316 382

378 0.25427 3.9197e-06
374 0.25538 4.0922e-06
370 0.25649 4.2543e-06

4.4061e-060.25760 365
361 0.25871 4.5477e-06
354 0.251093 4.7997e-06
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Table 4
Ti–6Al–4V mechanical properties used in the model

Yield stressPoisson ratioTemperature (°C) Coefficient of thermal expansionYoung’s Modulus Flow modulus
(10−6/°C)(GPa) (MPa) (GPa)

1000 0.723 125 0.31 8.7800e-06
9.8300e-062.26300.31260 110

630 2.2316 100 0.31 1.0140e-06
525 2.2427 100 0.31 1.0710e-05

1.9500 1.0970e-050.31482 80
1.1220e-051.9538 74 0.31 446
1.1680e-051.93000.31650 55

45 2800 27 0.31 1.2210e-05
25 2825 20 0.31 1.2290e-05

1.2370e-05250.31850 5

3. Finite element modeling

3.1. Model generation

Finite element (FEM) models were used to predict
the residual strains using a generalized plane strain
approach. Variations in TMC geometry were modeled
by considering hexagonal and rectangular arrays, both
uniformly spaced and clustered (Fig. 8). Multi-ply mod-
els were compared to unit cell models to examine
possible differences between bulk and surface strains.
For the temperatures and stresses considered in the
model, the SiC fibers were treated as elastic, whereas
time independent elastic-plastic behavior was used to

describe the TMC matrix (Tables 3 and 4). Because
creep material properties were not available viscoelas-
tic/viscoplastic behavior was not modeled, therefore, an
analysis starting from the processing temperature
would predict unrealistically large residual stresses and
strains. For this reason, the simulation was started
from a stress-free temperature of 700°C and cooled to
25°C following the work of Kroupa et al. [23]. They
showed that by using the Bodner–Partom model, a
bilinear elastic-plastic FEM analysis could predict simi-
lar residual stresses in a TMC as a viscoelastic/vis-
coplastic analysis if the stress-free temperature was
selected as :0.7–0.8 times the absolute processing
temperature.

Fig. 9. FEM residual elastic strain predictions for different fiber geometries.
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Fig. 10. Comparison of residual elastic strains between measurements and predictions.

3.2. Modeling results

The FEM results were post-processed to extract lon-
gitudinal matrix strains comparable to the diffraction
measurements. Residual strains were volumetrically av-
eraged over the appropriate elements using the elastic
strains and deformed shape volume of the elements.
Since the maximum penetration depth of X-rays is
�12 microns at c=0° and decreases with increasing
c to 4 microns at 60°, average surface strains were
obtained for elements to a depth of 4 microns. FEM
strains change negligibly between 4 and 12 microns,
so the exact choice of this depth has little influence on
the result. The bulk strains for comparison with neu-
tron results were determined using all of the matrix
elements in each model. The FEM residual strains for
the longitudinal direction in the matrix are shown in
Fig. 9.

Surprisingly, all the models showed similar strains of
about+3200 mo, and no difference is observed between
the surface and bulk. In the figure the exact volume
fractions of the fiber reinforcement is listed. Since there
are slight variations in the volume fractions, this causes
a strain difference between the predictions for the dif-
ferent models. However, the predicted strains are essen-
tially identical for all cases.

4. Discussion

4.1. Philosophy

Validation of a predictive model TMCs is often
performed through experimental determination of
stresses. However, this typically ignored the strain an-
isotropies that are usually apparent when comprehen-
sive diffraction measurements are made. Since
researchers involved in finite element modeling predict
stresses, they can also predict elastic strains, which are
perhaps a more valid comparison since no inferences
are made in converting the widely varying elastic strains
to stress.

Continuous fiber reinforced TMCs exemplify the
complimentary capabilities of XRD and neutron dif-
fraction in characterizing the surface and bulk. In XRD
measurements, the presence of a bi-axial stress distribu-
tion (supported by a linear d vs. sin2c plots) strain
measurements parallel to the fiber direction simplifies
the strain tensor to principal components only. When d
versus sin2c plots are used to convert strains to stresses,
a diffraction plane specific elastic constant is used in
Eq. (4) [17,21]. However, this may be sensitive to the
presence of texture which would effect the diffraction
elastic constants.
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In contrast, neutron diffraction determines the aver-
age mean phase strains in the matrix and fiber of the
TMCs. Since these strains are averaged over the entire
cross-section of the TMC, there is less ambiguity associ-
ated with surface effects. The other advantage of neu-
tron diffraction is that since measurements are available
for both matrix and fiber, a stress balance check can be
made since all hkl reflections are collected in a measure-
ment at a pulsed source. Since all hkl reflections are
collected in a measurement at a pulsed source it forces
one to deal with the implications of hkl dependent
elastic strain anisotropies. Previously, researchers have
simply averaged the strains (neglecting any outliers)
for comparison with the continuum FE calculation
[11,16]. This approach is fraught with assumptions but
is intimately coupled with the texture of the material.
Moreover, when strong texture is present, a simple
average of the strains is arguably not the correct proce-
dure.

4.2. Comparison of XRD and neutron diffraction

In Fig. 7, where XRD and neutron strains are com-
pared, there is good agreement between hkls 204 and
213, and reasonable agreement between hkls 105 and
300. However, there is disparity in hkl 302. Although
the errors are large enough to make it less than defini-
tive, the hkl strains for the X-ray and neutron measure-
ments show similar trends. This is not entirely
surprising, since similar results for other titanium alloy
(Ti–6242) composites [16,24] have previously been ob-
served [11].

4.3. Comparison of experimental 6ersus predictions

Fig. 10 compares the XRD, neutron and FEM
strains. Clearly, the continuum based FEM models
predict a single strain value that cannot capture the hkl
variations and the average measured elastic strains are
�500 mo less than the FEM for the stress free tempera-
ture of 700°C. From the FEM models it appears that
XRD and neutron diffraction should give identical
strains in the longitudinal direction. At least for the
700° start case which results in no plastic deformation
of the matrix with only elastic behavior, the predicted
residual longitudinal strains in all the models will agree
due to the constraints of thermal expansion and
equilibrium.

To explore the implications of partial matrix plastic-
ity, the analyses were repeated using a processing tem-
perature of 900°C. Although this overestimated the
predicted residual strains, it did result in variations
between bulk and surface strains for the different mod-
els. The differences were only 2–3% for a given
geometry.

5. Summary and conclusions

Matrix surface (XRD) and bulk (neutron) strains
were compared for 105, 204, 213, 302 and 300 hkls in a
SiC(SCS–6)/Ti–6Al–4V TMC.

In-plane surface strains were inferred for hkls by
extrapolating to c=90° and comparison with neat
material. Parallel to fiber strains were tensile, showing
peak to peak variation ranging from 19049424 to
29749321 mo (35%). Parallel to the fiber bulk strains
were also tensile, showing peak to peak variation rang-
ing from 22699421 to 302291134 mo. In contrast, the
FEM models predicted similar bulk and surface aver-
age strains of 3200 mo. The 10% differences between the
averaged bulk and averaged surface strains could not
be explained by the spatial variation in the finite ele-
ment predictions.
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