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Abstract

The performance of ferroelectric ceramics is governed by the ability of domains to switch. A decrease in the switching ability can lead
to degradation of the materials and failure of ferroelectric devices. In this work the dynamic properties of domain reorientation are stud-
ied. In situ time-of-flight neutron diffraction is used to probe the evolution of ferroelastic domain texture under mechanical cyclic loading
in bulk lead zirconate titanate ceramics. The high sensitivity of neutron diffraction to lattice strain is exploited to precisely analyze the
change of domain texture and strain through a full-pattern Rietveld method. These results are then used to construct a viscoelastic
model, which explains the correlation between macroscopic phenomena (i.e. creep and recovered deformation) and microscopic dynamic

behavior (i.e. ferroelastic switching, lattice strain).

© 2009 Acta Materialia Inc. Published by Elsevier Ltd. All rights reserved.
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1. Introduction

Ferroelectric ceramics, including lead zirconate titanate
(PZT), are commonly used in many sensor and actuator
applications, including pressure sensors, acceleration sen-
sors, ultrasonic motors and piezo linear motors. Ferroelec-
tric materials have been used in these applications because
of their ability to convert applied electrical energy to
mechanical strain, and applied mechanical energy to elec-
trical charge. This unique property is known as the “piezo-
electric effect”. Theoretically, the piezoelectric effect is
caused by the relative movement of ions in the ferroelectric
crystals due to electrical or mechanical energy which leads
to a reoriented state of polarization in the crystals. In fer-
roelectric materials with a tetragonal phase, the polariza-
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tion direction is always parallel to the longer (¢) axis of
the unit cell. When crystals with the same polarization
align, a domain is formed in ferroelectric materials.
Domains that possess different polarization orientations
are separated by domain walls. The domains in a tetrago-
nal ferroelectric can be reoriented 180° or 90° from the ori-
ginal direction by an electric field; this is termed 180° and
90° domain switching, respectively. On the other hand,
domains can be reoriented only 90° by a mechanical stress,
a so-called 90° or ferroelastic switching. In most sensor and
actuator devices, ferroelectric materials are prone to fatigue
due to cyclic electrical or mechanical loading. The fatigue
manifests its effect as a reduction in domain switching or
domain wall movement and subsequent premature failure
of the device.

In the case of ferroelastic switching in tetragonal ferro-
electric materials, domains with the c-axis parallel to the
loading direction are reoriented to the direction that was
once the a- or b-axis. The change of domain orientation
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(90° domain switching) can be detected by quantifying the
intensity changes of certain peaks in the diffraction pattern,
e.g. the “c” (00 /) and “a” (h 0 0) peaks in tetragonal perov-
skite ceramics [1-3]. To probe ferroelastic switching behav-
ior of bulk ferroelectric ceramics, neutron diffraction is an
excellent technique compared with conventional X-ray
diffraction because it provides good grain statistics of a
sample (i.e. there is a sufficient number of grains of the
sample in the gauge volume of the diffracted neutron beam)
due to the relatively low absorption and high penetration
of neutrons. Recent works have provided valuable infor-
mation on ferroelastic behavior [4-12]. However, these
investigations did not specify dynamic behavior of ferro-
elastic switching. Knowledge of dynamic ferroelastic
behavior is essential in order to develop a failure analysis
model for fatigue behavior. Therefore, this work aims to
explain the evolution of ferroelastic switching behavior
under mechanical cyclic loading by employing two state-
of-the-art time-of-flight (TOF) neutron diffractometers at
the Manuel Lujan Jr. Neutron Scattering Center, LAN-
SCE, Los Alamos National Laboratory, USA. The HIPPO
(HIgh Pressure-Preferred Orientation) neutron diffractom-
eter was used to probe the change of complete domain tex-
ture before and after mechanical loading ex situ. The
SMARTS (Spectrometer for Materials Research at Tem-
perature and Stress) neutron diffractometer was used to
investigate the dynamic behavior of domain switching
and lattice strain. The diffraction patterns obtained from
the SMARTS diffractometer were collected in situ during
cyclic loading and used to present the trend of domain ori-
entations reflecting ferroelastic dynamic behavior. More-
over, a successful viscoelastic model was developed to
explain the linkage between macroscopic (i.e. creep and
recovered deformation), and microscopic behavior (i.e. lat-
tice strain, domain switching) during cyclic loading.

2. Materials and methods

A commercial soft PZT sample with tetragonal phase
was prepared by Thales Underwater Systems Pty Ltd.
(Australia). The samples were cut into cylinders of
6.67 mm diameter and 20 mm length and poled along the
axial direction at 24 kV at 120 °C. The piezoelectric con-
stant (ds3) of the sample after poling was 595 pC N~'. All
samples were rounded at the edges to prevent chipping
and cracking during cyclic loading experiments.

In this experiment, two sub-procedures are used to detect
domain-switching behavior due to mechanical loading.
First, the HIPPO diffractometer, a very powerful instrument
for bulk texture analysis, was used to investigate domain tex-
ture change ex situ before and after loading. Second, the
SMARTS diffractometer was applied to detect dynamic
domain-switching behavior in situ during cyclic loading.
For this work, it has to be noted that these two diffractome-
ters are designed for different purposes; HIPPO is an instru-
ment for bulk texture analysis while SMART is suitable for
in situ (ferroelastic) strain measurement. When combining

the results from these two diffractometers, a complete analy-
sis of domain-switching behavior can be achieved.

2.1. Domain texture analysis using the HIPPO
diffractometer

The domain texture of a poled sample before being sub-
jected to the fatigue testing, which is represented by 00 2
and 200 pole figures, was determined using the HIPPO
diffractometer. Then, the sample was subjected to the cyclic
loading under a stress of §-80 MPa up to 3000 cycles. The
change of bulk texture after cyclic testing was revealed and
confirmed by the HIPPO diffractometer. In the case of a
typical texture measurement using HIPPO, spectra are
recorded from four rotation positions of a sample and 30
detectors are used: eight detectors at the diffraction angles
of 20 = 140°, 10 detectors at 20 = 90°, and 12 detectors at
20 = 40° (details of HIPPO have been published elsewhere
[13]). The collection time of diffracted neutrons of each
rotation was 60 min, so the complete texture measurement
for one sample required 240 min.

2.2. Dynamic domain switching analysis using the SMARTS
diffractometer

In this experiment, TOF neutron diffraction patterns
were collected in situ while the sample was subjected to cyc-
lic loading in the SMARTS neutron diffractometer. To
conduct in situ testing, the sample was mounted on an
Instron load frame installed in the diffractometer.
SMARTS contains two banks of detectors, which consist
of a total of 384 single-ended *He tubes. The detectors
are fixed and aligned at +90° to the incident beam. The
load axis of the load frame was oriented at 45° to the inci-
dent beam (Fig. 1).

The detectors at +90° (detector bank 1) and —90°
(detector bank 2) simultaneously record diffraction data
according to the diffraction vectors Q; (perpendicular to
the load axis) and Q, (parallel to the load axis), respec-
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Fig. 1. The experiment geometry, showing the alignment of detectors, the
sample, loading direction and neutron beams.
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tively. Details of the SMARTS diffractometer have been
published elsewhere [14]. Before the experiment was con-
ducted, the crosshead of the loading frame was painted
with GdO, to avoid diffraction interference from the cross-
head material. In addition, the extensometer was shielded
from the neutron beam by mounting a cadmium plate in
front of it. To secure the sample and avoid domain switch-
ing while the sample was installed, the sample was fixed
into the crosshead by preloading at 2 MPa. During the
unloaded state of each cycle, the sample was held at a con-
stant load of 8 MPa, which is well below the coercive stress
required to induce domain switching (about 20 MPa [4]).
The cyclic loading test was conducted under load control,
for which the maximum and minimum compressive stresses
were 80 and 8 MPa, respectively, at a frequency of 0.1 Hz.
The macroscopic strain was measured using the extensom-
eter. Domain-switching behavior can be detected by the
intensity changes of 00/ and /00 peaks obtained from
the diffractometer. The quantitative analysis of domain
switching is represented by the change in 0 0 2 pole density
values reflecting the volume fraction of preferred c-domain
orientation. Moreover, the change in lattice strains (micro-
scopic strains) was extracted from diffraction patterns.
During the test, the neutron diffraction patterns were col-
lected at constant maximum (80 MPa) and minimum
(8 MPa) stress following 1, 10, 100, 300, 500, 10° and
3 x 10% cycles. In this experiment, the term “loaded state”
and “unloaded state” will represent the maximum
(80 MPa) and minimum (8 MPa) stresses, which were held
constant during diffraction data collection. To investigate
dynamic ferroelastic behavior, the neutron spectra were
collected at three intervals at each loading and unloaded
state. A collection time of 300 s is required for each interval
to provide a sufficient signal-to-noise ratio of the diffrac-
tion data.

3. Data analysis

In this experiment, the diffraction spectra obtained form
the SMARTS and HIPPO diffractometers were analyzed
via a full-pattern Rietveld analysis using the GSAS soft-
ware package [15]. The space group of the PZT sample
used in the Rietveld method was P4mm for a tetragonal
phase. The fitting parameters including the lattice parame-
ters, background coefficients, histogram scale factor, dif-
fractometer constants, absorption factors, reflectivity
corrections and profile coefficients were initially refined.
The initial lattice parameters of PZT samples were
a=4.0429 A, and ¢24.1318 A. These parameters are in
agreement with prior work [7,16,17]. For domain global
texture analysis, the spherical harmonic method, which is
available in the GSAS software, was utilized; the spherical
harmonic order =2 was assigned for the diffraction data
collected from the HIPPO diffractometer. Because this
present study focuses on the ferroelastic behavior under
mechanical loading, the explanation of the refinement
method will not be discussed. However, details of this

method for powder diffraction analysis using the GSAS
software can be found in prior work [18,19]. In addition
to texture analysis, the diffraction data obtained from the
SMARTS diffractometer were used to ascertain lattice
strain, which is calculated from the difference between the
lattice spacing before and after loading, expressed as:

Epkl = —0 (1)
where g, is lattice strain, and dj,, and d),, are the lattice
spacings before and after loading. The lattice strain and lat-
tice spacing are determined by a single peak fitting ap-
proach using a specific code (SMARTSware), which relies
on GSAS, developed for the SMARTS diffractometer;
the detail of the code is published elsewhere [20].

4. Results
4.1. Change of global domain texture

Before the results of ferroelastic dynamic behavior are
determined, the general nature of the change of global
domain texture before and after cyclic loading will be dis-
cussed. The complete domain texture of the poled sample
can be achieved by employing the HIPPO diffractometer.
These textures are represented by 002 and 2 0 0 pole fig-
ures which are extracted from the orientation distribution
function (ODF) [21] calculated using the GSAS software
package (Fig. 2a and b). 00 1 and 1 0 0 pole figures present
the pole intensities of preferred ¢- and a-domains, respec-
tively. The pole intensity is normalized and presented in a
unit of multiples of a random distribution (MRD) [22];
MRD values are indicated by colors shown in the color
bar. In this case, MRD values correspond to the volume
fraction of switched domains in the bulk sample. Theoret-
ically, MRD of a 0 0 2 pole figure (or MRDg;) = 3 means
that all c¢-domains orient along the poling direction.
MRDg, = 1 means that c-domains are randomly oriented,
while MRDg; = 0 means that all of the c-domains align
perpendicular to the poling direction. In the case of the
unloaded sample (Fig. 2a), the pole figure exhibits fiber tex-
ture due to electrical poling. The pole figure in Fig. 2a also
indicates a texture of preferred c-domains along the axial
direction of the sample which is exaggerated schematically
in Fig. 2a’. The change of the texture after fatigue testing is
represented by the pole figure in Fig. 2b. In the latter case,
the pole figure indicates that the sample possesses less pre-
ferred c-domain orientating along the axial direction
(Fig. 2b). The decrease of the degree of preferred c-domain
orientation is caused by 90° domain switching induced by a
compressive load which is known as mechanical depoling.

4.2. Dynamic ferroelastic behavior
To elucidate the dynamic mechanism of ferroelastic

switching which leads to mechanical depoling, the diffrac-
tion spectra collected in situ during mechanical loading
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Fig. 2. The global texture of the poled sample which is probed by the HIPPO diffractometer: (a) before cyclic loading and (b) after cyclic loading. The
visual aid to the possibility of domain alignment in sample (a’), which processes preferred domain orientation, before cyclic loading, and sample (b’), which
is mechanically depoled, after 3000 cycles of loading is schematically shown beside the pole figures.

using the SMARTS diffractometer are analyzed. The neu-
tron spectra obtained prior to mechanical loading are pre-
sented in Fig. 3 where detector bank 1 shows the diffraction
data perpendicular to the load axis and detector bank 2
shows the diffraction parallel to the load axis. For this
refinement, the y factor, representing goodness of fit, is
1.598 which shows significant agreement between the Riet-
veld model and diffraction data [23].

The relative intensity ratio of the 002 peak to the
200 peak (Iooa/l>00) can be used to estimate the volume
fraction of the c- and a-domains in the given sample
direction. In Fig. 3, the small Iyy/l5y ratio from detec-
tor bank 1 suggests that, for this sample, there is a
low volume fraction of c-domains oriented in the radial
or transverse direction parallel to the scattering vector
0, (see Fig. 1). On the other hand, the Iyy/lro ratio
obtained from the detector bank 2 is much higher than
that obtained from the detector bank 1. These results
confirm that there is a strongly preferred c-domain orien-
tation along the poling, or sample axial, direction (paral-
lel to the scattering vector Q).

In addition to the neutron diffraction data, the macro-
scopic axial strain during cyclic mechanical testing was
recorded using the extensometer. The resultant strain
behavior as a function of time is demonstrated in Fig. 4.

It can be seen that during periods of cyclic compression,
cumulative compression strain occurred as observed in
other configurations [12,16]. Furthermore, during 900 s
holds at the maximum compressive stress (80 MPa) com-
pressive creep occurred, while 900 s holds at the minimum
compressive stress (8 MPa) were accompanied by strain
recovery despite the sample still being subjected to a low
compressive stress.

Creep and recovered deformation are much more pro-
nounced in the first cycle. However, the time-dependent
deformation decreases with increase in cycle number. Dur-
ing mechanical loading, the majority of creep and recovered
deformation may be attributed to domain-switching behav-
ior [11,24,25]. When the compressive load reaches the coer-
cive stress, the c-domains, which are oriented along the axial
direction, start switching to align as close as possible to the
direction perpendicular to the compressive axis. On the
other hand, when the load is removed, some domains switch
back to the original direction. This ferroelastic switching
process, including both forward and backward switching,
involves the movement of ions in the crystal unit cell (i.e.
the movement of Ti*", Zr*" ion relative to neighboring ions,
Pb>", O%7); the ions may be repelled or attracted by the
same or different electrical charged ions [26-28], respec-
tively. It has been proposed that the movement of ions in
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Fig. 3. The neutron diffraction patterns obtained from detector banks 1
and 2 before loading.

the unit cell during a switching process may be considered
as the movement of particles in viscous media [29]. There-
fore, this process involves a time-dependent mechanism that
affects creep and recovery of the sample.

Using the GSAS software package, the diffraction data
recorded during maximum and minimum loading were
used to calculate the 0 0 2 pole intensity which reflects the
volume fraction of switched c-domains in a unit of MR Dy,
as described in the previous section. In this section, the dis-
tribution orientation of preferred c-domains is presented by
the distributions of MRDy; as a function of o angle, where
o= 0° and o« = 90° are the directions parallel and normal to
the loading direction, respectively (see Fig. 5bl for the sam-
ple and loading geometry). The distributions of MR Dy, at
different cycle number are presented in Figs. 5al, 5b1 and
5cl. In this case, the values of MRDy; at o = 0° are consid-
ered because they are indicative of the change of volume
fraction of c-domains in the axial direction which directly
relates to the ferroelastic switching (90° domain switching)
in this direction. The lower the MRDq,; values at o = 0°,
the smaller the volume fraction of ¢-domain in the axial
direction.

Significantly, under the loaded state at the peak of the
first cycle (i.e. the load is held at the maximum stress of
80 MPa for 900 s), the values of MRDyy, decrease with
time (Fig. 5al). This result implies that the forward-switch-
ing process continuously takes place although the stress is
kept constant. On the other hand, during the unloaded
state at the end of the first cycle (i.e. at the minimum stress
of 8 MPa for 900 s) MRDy; values increase with time
(Fig. 5al). This may be interpreted as showing that the for-
ward-switched domains are recovered when the load is
decreased to a lower level. This recovery process can be
attributed to the process of backward-switching of
domains. The evolution of domain-switching behavior
through mechanical loading cycles is presented in Figs.
5al-5cl. From these figures, it can be seen that during
the loaded state (a constant load of 80 MPa), creep defor-
mation occurs in the bulk material at 1 and 10 cycles and
the MR Dy, values decrease with increasing time. However,
this time dependence of domain switching under load is less
significant following higher numbers of loading cycles (i.e.
3 x 10? cycles). Conversely, deformation recovery in the
bulk sample and MRDy, values increase with time in the
unloaded state (a constant load of 8 MPa). This recovery
behavior is clearly detected following lower numbers of load-
ing cycles (i.e. 1, 10 and 100 cycles), while is it is barely dis-
cernible after higher numbers of loading cycles (i.e. 10°,
3 x 10° cycles). These results show that the ability of
domains to switch (including forward and backward switch-
ing) declines with the number of mechanical loading cycles.
The decrease in domain switchability also reflects the effect
of a cyclic fatigue environment on ferroelastic behavior.

From the change of MRDy under cyclic loading, the
microscopic strain represented by c-lattice strain is calcu-
lated by using SMARTSware. The results are shown in
Figs. 5a2, 5b2 and 5¢2 following 1, 10 and 3 x 10° loading
cycles, respectively. In this experiment, the change of
microstrain is represented by the change in c-lattice strain
since it directly reflects ferroelastic strain in PZT ceramics
with tetragonal phase [16]. It should be noted that all lat-
tice strain measurements are referred to the lattice strain
of the poled sample before applying compressive stress
(as described in Eq. (1)). The trend of the time-dependent
deformation of the lattice strain is nearly the same as that
of domain switching. Similar to MR Dy, values, creep and
recovered deformation of the lattice strain can be observed
following small numbers of loading cycles (i.e. 1, 10,
100 cycles). These phenomena almost disappear following
higher numbers of loading cycles (i.e. 10°, 3 x 10° cycles).

When considering the results from MRDy, lattice
strain and macroscopic strain together, it can be seen that
these results show a similar trend for creep and recovered
deformation (see Figs. 4 and 6). In addition to the time
dependence shown above, the relationship between macro-
scopic and microscopic behavior can be interpreted using
the change of reversible strains and reversible domain
switching during the loaded and unloaded state. To eluci-
date this relationship, the fraction of the reversible strains
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Fig. 4. (Top) Macroscopic axial strain as a function of time recorded by the extensometer. (Bottom) Some enlarged sections of macroscopic strain during creep
and recovery states. In addition, fitting curves (red lines), which will be discussed in terms of the viscoelastic model for creep and recovery data, are presented
(fitting parameters are in Table 2). (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.)
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and the switchable domains during the stress was kept con-
stant at 1, 10, 100, 300, 500, 10% and 3 x 10° cycles and is
calculated using following equations:

(2)
where € ., & .mac, a0d &y mac are the reversible macroscopic
strain, strain at the loaded state and strain at the unloaded

state, respectively. The macroscopic strain was detected by
the extensometer:

€nac — €lmac — €ulmac;

g =

mic &l mic — €ul,mic»

3)
where €/ ., & .mic, and &y mic are the reversible lattice strain,
lattice strain at the loaded state and lattice strain at the un-

loaded state, respectively. The lattice strain was calculated
using Eq. (1).
%Reversible domain (RD) = %BD — %FD, (4)

where

: : _ MRDunload
%BD (%Backward switched domain) = m x 100,
()
. . MRDygq
%FD (%Forward switched domain) = m x 100,

(6)

where MRD o4, MRD)gaq, MRD 004, are the values of
MRD, before loading, during the loaded state and in
the unloaded state, respectively. All MRD values are ob-
tained from pole densities at o = 0°.

By applying Egs. (2)—(6), the reversible macro and lat-
tice strains and the fraction of reversible domains as a func-
tion of the number of cycles are obtained, as shown in
Fig. 6; errors for macroscopic strain data are shown in
Table 1.

Significantly, the trends of these three sets of results are
nearly the same. The percentage of reversible macroscopic
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Fig. 5b. The evolution of: (bl) MRDy, and (b2) lattice strain at 10 cycles.

strain, reversible domain and lattice strain decreases expo-
nentially with increase in the number of cycles. The revers-
ible macroscopic and lattice strain becomes saturated after
about 500 cycles, while the reversible domain seems to
continuously decrease with number of cycles. These phe-
nomena are in good agreement with our previous work
[16,30].

In this section, the correlation between macroscopic and
microscopic behavior has been presented and quantita-
tively analyzed. To explain the dynamic mechanism of fer-
roelastic switching, a viscoelastic deformation model is
proposed next.

4.3. Viscoelastic model

From the results shown in the previous subsection, when
the compressive load was kept constant in the loaded or

unloaded state, time-dependent deformation, including
creep and recovery, was observed. The creep or recovery
of the sample may be attributed to domain switching.
The switching behavior in the loaded and unloaded state
can therefore be explained by viscoelastic-based concepts
[31-33].

With the viscoelastic-based concept, it may be assumed
that there are three main component forces involved in the
domain-switching mechanism under mechanical loading.
The first component is the local mechanical force attrib-
uted to the applied load. This local force drives domains
to orient at 90° to the direction of the applied load. The
second component is the viscous force represented by inter-
nal friction (Fy). For ferroelectric/ferroelastic ceramics, the
internal friction may be caused by the interaction between
the point defects which possess an electrical dipole, and
domains which have spontaneous polarization [34-36].
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Fig. S5c. The evolution of: (c1) MRDy, and (c2) lattice strain at 3 x 10° cycles.

Table 1

Percent reversible macroscopic strain statistical errors.

% Reversible macroscopic strain % Error
0.147723 0.002113
0.126932 0.001794
0.109467 0.001602
0.104036 0.001413
0.101214 0.0013
0.099025 0.001454
0.096072 0.001296
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Fig. 6. The percentage of reversible domains and strains as a function of
the number of cycles. The error bar of macroscopic strain is less than each
datum, so errors of macroscopic data are shown in Table 1. The reversible
domain datum is a single point obtained from the intersection of MRD
function at «=0° (Figs. 5al, 5bl, and 5cl) so the error bar is not
presented.

This may lead to a decrease in domain switchability under
cyclic loading. The last component is the restoring force
(F;), which drives a stabilization of the energy of the
domain configuration. Therefore, this force will reorient
the domains back to the stable configuration [33] via a
backward-switching process. From this concept, the
switching process entails the movement of ions in the unit
cells. The movement of ions during a switching process
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Fig. 7. A qualitative model used to explain forward- and backward-
switching mechanism based on a viscoelasticity concept [29].

may be considered as the movement of particles in viscous
media; therefore, ferroelastic switching is a time-dependent
mechanism which is reflected in the deformation of the
bulk material. The influence of the various forces outlined
above on the domain structure is illustrated in Fig. 7.

Here, we assume that the applied load is a square wave. In
the case of the loaded state, when the mechanical load is
applied and reaches the coercive stress, the local mechanical
force overcomes the internal friction (Fy) and the restoring
force (F;). Consequently, the forward-switching process
starts and domain wall movement occurs. Since this mecha-
nism is time dependent, the domains continuously switch,
although the load is held constant, leading to the bulk creep.
On the other hand, after the load is removed (F,, = 0), the
backward-switching process starts if the friction force is less
than the restoring force (Fy < F;). This causes bulk recovery
deformation. Moreover, these reversible domains result in
reversible ferroelastic strain. However, if the friction force
is greater than the restoring force (F;> F;), the domains do
not switch back; hence, the domain walls do not move back
to the original position. This may cause permanent or irre-
versible ferroelastic strain.

From a macroscopic view, the time-dependent deforma-
tion under mechanical loading of ferroelectric/ferroelastic
ceramics can be explained by the schematic diagram shown
in Fig. 8.

From Fig. 8, under the loaded state (0-1-2), there are
three components of strain corresponding to the applied
load. First, the elastic strain, &, is caused by stretching of
ionic bonds in this material. This strain component
instantly takes place at low applied stress and is reversible
when the load is removed. Second, the transient creep
strain, &g, occurs immediately after the stress is held con-
stant. In this state, the rate of deformation changes with

Stress (o)
5, 1 2 5 6
0 3 4 7 8
Time (T)
Strain (g) .
7
5 8
4
Time (T)

Fig. 8. The macroscopic time-dependent behavior under the cyclic
loading. Subscripts ss is steady state, ts is transient state, e is elastic
behavior, c is creep, and r is recovery.

the loading time. Theoretically, after the load is removed,
most of this transient strain is reversed, which corresponds
to reversible domains. This infers that the majority of the
transient creep strain is caused by reversible domains.
Finally, the steady-state creep strain, &g, will replace the
transient creep strain after a certain period of loading time.
This strain component is not reversible and may be attrib-
uted to irreversible domains. Unlike creep deformation
during the loaded state, the recovered strains are caused
by the recovery mechanism involved in the domain back-
switching process. At the unloaded state (2-3-4), when
the load is removed or lowered below the coercive stress,
recovery deformation occurs. The elastic strain, &, is recov-
ered instantly. Then, the strain is recovered gradually with
time and represented by the transient recovered strain, &g,
Eventually, the steady-state recovery strain, &, takes
place during the unloaded state.

To quantify and explain the link between the macro-
scopic mechanism (time-dependent deformation) and the
microscopic mechanism (domain switching), a rheological
model is proposed (Fig. 9).

The model is composed of a combined Kelvin model
(dashpot and spring in parallel) in series with a Maxwell
model (dashpot and spring in series). This model can rep-
resent both creep and recovery behavior. A spring with
the elastic constant E; (units of N m~?) represents elastic
behavior. A dashpot with the viscoelastic coefficient #;
(units of N'sm™?) represents steady-state behavior. The
combination of a spring with elastic constant E, and a
dashpot with the viscoelastic coefficient #, represents tran-
sient behavior. According to the model, the relationship
between stress and strain as a function of time can be
explained by the following equations [37].

In the case of creep deformation, the elastic strain &, the
transient creep strain, &s., and the steady-state creep
strain, &g, can be expressed as:
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where the subscript ¢ denotes the creep strain, # is the time
that a constant stress o, is maintained, and 0 = f—f with the
units of time (s) where the retardation time reflects the
duration of the transient creep deformation to approach
completion.

In the case of recovery strain, the elastic strain repre-
sented by spring E is recovered immediately after unload-
ing, so this component is not calculated in this case. The
steady-state strain is irreversible, so the dashpot 1, compo-
nent is included in this calculation. The transient recovered
strain, &g, and the steady-state recovered strain, &g, can
be expressed as:

Egr — Sts,ceim/oy (10)
oot
Essr — _07 11
- (11)

where the subscript r denotes the recovered strain, At is the
time elapsed since the applied stress is removed, and 0= 1_
with the units of time (s) where the recovery time reflects

Table 2

the duration of the transient recovered strain to approach
completion.

In this case, the important parameters used to character-
ize transient and steady- state behavior are 0 and ”—T, respec-
tively. The parameter 0 indicates the duration of the
transient strain which implies a time constant for the do-
main-switching process to stabilize (denoted as “transience
time”). Moreover, 0 is related to the fraction of switchable
domains which remain after cycling. For example, if 6 ob-
tained from the first cycle is large, it may suggest that there
are large numbers of switchable domains remaining at that
loading cycle. The parameter ?* indicates the deformation
rate, which is constant, durlng steady state creep or recov-
ery. This parameter also reflects the number of irreversible
domains in a particular loading cycle. To characterize the
creep and recovery behavior of the bulk sample, the tran-
sient and steady-state creep strain data (Fig. 4) are fitted
to Egs. (8) and (9), respectively. Furthermore, the transient
and steady-state recovery strain data (Fig. 4) are fitted to
Egs. (10) and (11), respectively. Examples of fitted curves
for transient and steady-state creep and recovery deforma-
tion are presented in Fig. 4. The fitting parameters 6, and ‘;—]‘
are presented in Table 2.

Table 2 shows that, in the case of creep deformation, the
transience time and creep rate decrease with the increase in
the number of loading cycles. It is noted that the transience
time at 10% and 3 x 10° cycles cannot be calculated because
the transient creep strain almost disappears. Decline of the
transience time (0) suggests that the time required for the
domain-forward-switching process to stabilize becomes
shorter. Moreover, the decrease of the creep rate (‘;—;’)
implies that the fraction of forward switchable domains
decreases after a higher number of loading cycles. The
same trend is also observed in the case of recovered defor-
mation. However, the majority of recovered deformation is
caused by the domain-back-switching process. The
decrease of transience recovery time (6) indicates that the
average stabilization time for the backward-switching pro-
cess decreases with an increase in number of loading cycles.
Moreover, the decline in the recovery rate ( ) may be
caused by a decrease in the number of backward switchable
domains. The significant decrease of forward and back-

The fitting parameters 0, and % obtained from a strain vs. time curve (Fig. 4).

Cycle Creep behavior

Recovery behavior

Transient state Steady state

Trans. time, R>

Transient state Steady state

Trans. time, R?

] Creep rate, R-square 1 Recovery rate, R-square
0 (s) aoln (s7') 0 (s) aoln (s7)
1 94.79 0.97 Decrease || —7.40E—6 0.96 Decrease | 115.86 0.98 Decrease | 5.25E—6 0.93 Decrease |

10 63.82 0.94 —4.95E-6 0.94 85.10 0.89 2.60E—6 0.76
100 53.54 0.86 —2.59E-6 0.77 77.90 0.88 2.55E—6 0.73
300 50.96 0.79 —2.00E-6 0.67 76.80 0.88 2.22E—6 0.69
500 51.92 0.80 —1.88E—6 0.68 2.22E—6 0.76
1000 - - —1.80E-6 0.59 - - 2.10E—6 0.75
3000 - - —1.44E-6 0.53 - - 1.76E—6 0.72
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ward switchable domains may be attributed to the interac-
tion between domain wall and point defects. Importantly,
this switching behavior can be described by the viscoelastic
model and based on the macroscopic data. Creep and
recovered deformation obtained from macroscopic data
correspond well with the switching behavior obtained from
the neutron diffraction measurement.

5. Conclusions

In situ TOF neutron diffraction data may be used to
probe the evolution of domain texture and the dynamic fer-
roelastic behavior under mechanical cyclic loading. The
diffraction data are quantitatively analyzed by using a
full-pattern Rietveld method via the GSAS package soft-
ware. The change of domain global texture before and after
loading is confirmed by the powerful texture analysis
HIPPO diffractometer. The in situ measurement of
dynamic ferroelastic mechanism of bulk PZT is achieved
by employing the SMARTS diffractometer.

It is found that there is a strong link between time-
dependent deformation of the bulk PZT and ferroelastic
switching. From the quantitative analysis, in the case of
loading, the volume fraction of preferred c-domains repre-
sented by MRDy, values significantly decreases with the
loading time during the loaded state. This is caused by
the forward-switching process of c-domains. On the other
hand, MRDyy values increase with time under the
unloaded state because of the backward-switching process
of c-domains. The trend of the change of MRDyg; values
with the time during the loaded or unloaded state is the
same as that of the lattice strain. This evidence indicates
that the strong correlation exists between macroscopic
deformation (creep and recovered deformation) and a
microstructural dynamic mechanism (a domain-forward-
switching or backward-switching process). Moreover, the
results show that the degree of degradation of ferroelastic
switching is more severe after the material has been sub-
jected to a higher number of loading cycles. The mecha-
nism of ferroelastic switching can be explained by using a
viscoelastic model. Importantly, the model can be applied
to describe the intimate relationship between macroscopic
strain and ferroelastic domain switching.
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